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Abstract

In modern meteorology, weather forecasts are often constructed from ensemble prediction sys-
tems which consist of multiple runs of dynamical numerical weather prediction models differing
in the initial conditions and/or in the details of the parameterised numerical representation of
the atmosphere. Statistical postprocessing of the ensemble forecasts is often required to realise
their full potential in the sense that biases and dispersion errors need to be addressed. Several
ensemble postprocessing methods have been proposed, yet state-of-the-art approaches only apply
to a single weather quantity, at a single location and for a single prediction horizon. In many
applications, however, there is a critical need to account for spatial, temporal and cross-variate
dependence structures within the ensemble. To address this, we propose a novel tool called en-
semble copula coupling (ECC), a copula-based multivariate statistical postprocessing technique.
ECC is a two-step procedure in which existing univariate postprocessing methods are employed
in a first step to obtain calibrated and sharp forecasts for each location, variable and look-ahead
time separately. In a second step, the resulting univariate distributions are aggregated in a dis-
crete copula approach, where the multivariate rank dependence pattern is inherited from the
unprocessed raw ensemble, thereby capturing the flow dependency. In this thesis, we present the
ECC technique, study its relationships to discrete copulas and apply it at major airports in Ger-
many using the 50-member European Centre for Medium-Range Weather Forecasts (ECMWF)
ensemble.

Zusammenfassung

In der modernen Meteorologie werden Wettervorhersagen oft anhand von Ensemblevorhersagesys-
temen erstellt, welche aus mehreren Durchläufen bestehen, die sich hinsichtlich der Anfangsbe-
dingungen und/oder der Details der parametrisierten numerischen Darstellung der Atmosphäre
unterscheiden. Oft benötigt man eine statistische Aufbereitung der Ensemblevorhersagen, um
deren volle Leistungsfähigkeit in dem Sinn, dass systematische und Dispersionsfehler berück-
sichtigt werden müssen, zu erfassen. Es sind bereits einige Nachbearbeitungsmethoden für En-
sembles veröffentlicht worden, jedoch sind die gegenwärtigen Ansätze nur für einzelne Wetter-
größen, an einzelnen Stationen und für einzelne Vorhersagehorizonte anwendbar. In vielen An-
wendungen ist es aber von entscheidender Bedeutung, Abhängigkeitsstrukturen in Raum, Zeit
und unter den Wettergrößen innerhalb des Ensembles zu berücksichtigen. Um dies zu bewerk-
stelligen, präsentieren wir ein neuartiges Werkzeug namens Ensemble Copula Coupling (ECC),
eine copulabasierte multivariate statistische Aufbereitungstechnik. ECC ist ein zweistufiges Ver-
fahren, in welchem zunächst bestehende univariate Nachbearbeitungsmethoden verwendet wer-
den, um kalibrierte und scharfe Vorhersagen für jeden Ort, jede Variable und jeden Vorher-
sagehorizont getrennt zu erzielen. In einem zweiten Schritt werden die erhaltenen univariaten
Verteilungen in einem diskreten Copulaansatz zusammengeführt, wobei das multivariate Rangab-
hängigkeitsmuster vom ursprünglichen Ensemble geerbt wird, wodurch die Datenabhängigkeit
erfasst wird. In dieser Arbeit stellen wir die ECC-Methode vor, untersuchen ihre Verbindung
zu diskreten Copulas und wenden sie auf Hauptflughäfen in Deutschland an, wobei wir das 50
Mitglieder umfassende Ensemble des Europäischen Zentrums für mittelfristige Wettervorhersage
(EZMW) benutzen.
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Chapter 1

Introduction and motivation

It has always been an ambitious goal in meteorology to provide accurate forecasts for a
variety of weather quantities like temperature, precipitation or wind speed, for instance.
This is very interesting and important for numerous reasons such as

• energy generation through wind power plants or solar technology,

• organisation of one’s leisure time activities including travel, sports or sailing,

• warnings about natural catastrophes like storms, droughts or inundations and

• economic and financial purposes, consider for example weather derivatives,

to name just a few.

In practice, there are various approaches to achieve weather predictions. Until the early
1990s, weather forecasting was regarded as a purely deterministic issue in the sense
that carefully developed dynamical and numerical weather prediction models were im-
plemented in order to get deterministic forecasts of future atmospheric states. Thereby,
the idea is that for a certain set of "best" input data, one "best" weather forecast is pro-
duced. Although those methods are still used today, a radical change in the development
of weather forecasting has taken place during the last twenty years. Weather prediction
has been transformed by the implementation of so-called ensemble forecasts or ensemble
prediction systems.
An ensemble forecast consists of multiple runs, typically between five and one hundred,
of dynamical numerical weather forecast models differing in the initial conditions and/or
the details of the parameterised numerical representation of the atmosphere, compare
[12]. However, the fact that model biases and dispersion errors need to be addressed
requires of statistical postprocessing for the model output of an ensemble forecast.

Together with statistical postprocessing, ensembles lead to so-called probabilistic fore-
casts, which means that we obtain a predictive probability distribution over future
weather quantities. Fortunately, statistically postprocessed ensemble forecasts turn out
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to be much better calibrated than the raw ensemble forecasts. Besides sharpness, cal-
ibration is an essential criterion for a "good" probabilistic forecast, see [14]. In many
applications, not necessarily in meteorology, probabilistic forecasts form an improvement
compared to purely deterministic point forecasts, like for example in weather-risk finance
or disease modelling, see [42]. A non-technical introduction to probabilistic forecasting
with applications can be found in [17].
During the past few years, several statistical postprocessing methods have been devel-
oped for and applied to several weather variables such as temperature, precipitation,
sea level pressure, wind speed, wind direction or wind vectors. Common state-of-the-art
approaches are

• Bayesian model averaging (BMA), compare [46], [54], [55] and [1],

• ensemble model output statistics (EMOS), see [13] and [57],

• logistic regression, compare [18], [19], [60] and [61], and

• quantile regression, see [4].

These techniques provide calibrated univariate probabilistic forecasts. Unfortunately,
they can only be used for a single weather quantity at a single location and for a sin-
gle look-ahead time. However, for many applications it is exceedingly important that
postprocessed forecast fields have physically coherent multivariate dependence structures
across space, time and variables. In the field of air traffic management, for example, it
would be very helpful if there was a tool ensuring physical consistency of statistically
postprocessed forecasts simultaneously at several airport stations, for several prediction
horizons and for several weather quantities like precipitation and wind speed. Besides
air traffic control, we can think of flood management and ship routeing as further ap-
plications. Thereby, we should notice that, in reality, we have to face an extremely high
dimensionality in our challenge. For example, if we consider a probabilistic weather
forecast on a three-dimensional grid over Europe, we might have to work with some

500× 500� �� �
horizontal grid

× 30����
vertical grid

× 72����
look-ahead times

× 10����
weather variables

= 9 000 000

univariate distributions or individual forecasts, respectively.
There already exist some techniques handling spatial dependence structures, compare
[10], [2] and [3]. However, these methods cannot be used to describe intervariable or
temporal dependencies.

To solve the problem exposed above, a novel approach called ensemble copula coupling
(ECC) is introduced in this thesis.
For the first time, a part of the notion of ECC appeared in the context of the design
of the Bayesian processor of ensemble (BPE) proposed by Krzysztofowicz and Toth,
compare [30], and Bremnes, see [5]. In this thesis, we develop this very useful idea and
connect it to the field of copulas, which is presented in a general frame by Nelsen in [40],
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and discrete copulas as discussed by Kolesárová et al. in [24], in particular.
Roughly speaking, ECC proceeds in two steps as follows: First, we use the well-known
and established ensemble postprocessing methods previously mentioned to generate cal-
ibrated and sharp individual univariate probabilistic forecasts for each location, predic-
tion horizon and weather quantity. Then, we employ our novel ECC concept to connect
the obtained univariate distributions in a copula approach. Thereby, the multivariate
dependencies are inherited from the unprocessed raw ensemble, and the flow dependency
is captured.

The thesis at hand is organised as follows.
In Chapter 2, we outline the theoretical and methodological background of the ECC
technique. First, we expose a general overview of the topical field of copulas, which is
fast-paced and has many applications in the context of modelling dependencies. Then,
we discuss the state-of-the-art ensemble postprocessing methods named above which
lead to univariate probabilistic forecast distributions.
We then carry on with Chapter 3 starting with a description of the origins of ECC by
studying the BPE, followed by initial examples and the theoretical development of our
novel ECC method, which forms the key part of the thesis. Moreover, we show that
ECC — as suggested by the name — can indeed be interpreted as a copula approach by
pointing out its relationships to discrete copulas.
In Chapter 4, we present several tools to assess the predictive performance of probabilis-
tic forecasting methods for both univariate and multivariate quantities as suggested in
[16]. Some of them are employed to evaluate the ECC technique later on.
We continue with practical applications of the novel ECC approach in Chapter 5. ECC is
applied to data provided by the European Centre for Medium-Range Weather Forecasts
(ECMWF) in a case study. More precisely, ECC is employed for statistical postprocess-
ing of ensemble forecasts based on the ECMWF ensemble consisting of 50 members for
several weather quantities at the three locations Berlin, Hamburg and Frankfurt during
a test period in the year 2010. Moreover, as mentioned before, we employ verification
methods for multivariate quantities to assess the predictive performance of the ECC
forecast fields and compare to other reference forecasts like the raw ensemble.
Finally, in Chapter 6, we give both a summary and a discussion of the results in this
thesis. Furthermore, we provide an overview of topics, challenges and subjects of current
research related to ECC and give an outlook for possible future work.
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Chapter 2

Theoretical and methodological

background

In this chapter, we develop some theoretical and methodological background facts con-
nected to the ECC method, which will be introduced in Chapter 3 later on. First, we
study copulas in general and collect the most important facts about them. Afterwards,
we describe several ensemble postprocessing techniques that are employed to obtain
calibrated and sharp univariate probabilistic forecasts for each weather quantity, loca-
tion and look-ahead time separately, namely those mentioned in the introduction in the
preceding chapter.

2.1 Copulas

It has always been an important and interesting task for statisticians to study the rela-
tionship between a multivariate distribution function and its lower dimensional marginals.
After several mathematicians like Fréchet, Dall’Aglio and Hoeffding had worked on this
topic by examining the bivariate and trivariate distribution functions with given uni-
variate marginals, Sklar solved the problem for the univariate marginals case in 1959
by introducing a new class of functions which he called "copulas". Between 1959 and
1976, copulas mainly appeared in the development of the theory of so-called probabilistic
metric spaces, especially in the study of binary operations on the space of probability
distribution functions. Facts about the historical development of probabilistic metric
spaces and information about this field in general can be found in [51]. Later, cop-
ulas were employed to define nonparametric measures of dependence between random
variables. Since then, the concept of copula began to play a decisive role in solving prob-
lems in probability theory and mathematical statistics, particularly in questions about
dependencies, given marginals and functions of random variables which are invariant
under monotone transformations. Moreover, copulas were used in simulation studies,
for example for generating a sample from a specified joint distribution. All those and
also further annotations about the history of copulas can be seen in "An Introduction
to Copulas" written by Nelsen, see [40]. This textbook is the most important summary
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about the field of copulas, and this section essentially is based on it. Other references
are explicitly stated.

2.1.1 Preliminaries

Before giving a rigorous mathematical definition of a copula, we introduce some notation
as well as some basic definitions and facts.

For any n ∈ N = {1, 2, 3, ...}, we let Rn denote the extended n-space R× · · ·× R� �� �
n times

, where

R = R ∪ {−∞,∞}.
Furthermore, we use vector notation for points in Rn, for example a = (a1, ..., an) or
b = (b1, ..., bn), and write a ≤ b (a < b) if ak ≤ bk (ak < bk) for all k ∈ {1, ..., n}.
For a ≤ b let [a,b] be the n-box B = [a1, b1]×· · ·×[an, bn], that is the Cartesian product
of n closed intervals.
The vertices of an n-box B are the points c = (c1, ..., cn), where each ck is equal to either
ak or bk for k ∈ {1, ..., n}.
The unit n-cube In is the product I× · · ·× I� �� �

n times

, where I = [0, 1] is the unit interval.

An n-place real function H is a function whose domain Dom(H) is a subset of Rn and
whose range Ran(H) is a subset of R.

Example 2.1: For n = 2 we have the rectangle B = [x1, x2] × [y1, y2] in R2 as a
"2-box" with vertices (x1, y1), (x1, y2), (x2, y1) and (x2, y2). Moreover, the unit "2-cube"
is I2, the unit square. A 2-place real function H is a function with Dom(H) ⊆ R2 and
Ran(H) ⊆ R.

Definition 2.2: Let S1, ..., Sn be nonempty subsets of R, let H be an n-place real
function with Dom(H) = S1 × · · · × Sn and let B = [a,b] be an n-box all of whose
vertices are in Dom(H).
Then VH(B) =

�
c

sgn(c)H(c) is called the H-volume of B, where the sum extends over
all vertices c of B and

sgn(c) =
�

1 if ck = ak for an even number of k’s
−1 if ck = ak for an odd number of k’s,

with k ∈ {1, ..., n}.

Remark 2.3: Equivalently, VH(B) is the n-th order difference of H on B, that is,

VH(B) = ∆b

aH(t) = ∆bnan∆bn−1
an−1 ...∆

b1
a1H(t),

where

∆bkakH(t) = H(t1, ..., tk−1, bk, tk+1, ..., tn)−H(t1, ..., tk−1, ak, tk+1, ..., tn).

Example 2.4:
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1. For a 2-place real function H with domain R2 and the rectangle B = [x1, x2] ×
[y1, y2], the H-volume of B is

VH(B) = H(x2, y2)−H(x2, y1)−H(x1, y2) +H(x1, y1).

We note that for ∆x2
x1H(x, y) = H(x2, y)−H(x1, y) and

∆y2y1H(x, y) = H(x, y2)−H(x, y1) we get

VH(B) = ∆y2y1∆x2
x1H(x, y)

= ∆y2y1(H(x2, y)−H(x1, y))
= H(x2, y2)−H(x2, y1)−H(x1, y2) +H(x1, y1).

2. For a 3-place real function H with domain R3 and the 3-box B = [x1, x2]×[y1, y2]×
[z1, z2], the H-volume of B is

VH(B) = H(x2, y2, z2)−H(x2, y2, z1)−H(x2, y1, z2)−H(x1, y2, z2)
+H(x2, y1, z1) +H(x1, y2, z1) +H(x1, y1, z2)−H(x1, y1, z1).

Definition 2.5:

1. An n-place real function H is called n-increasing if VH(B) ≥ 0 for all n-boxes B
whose vertices lie in Dom(H).

2. Suppose that Dom(H) = S1 × · · · × Sn, where each Sk, k ∈ {1, ..., n}, has a least
element ak. Then, H is grounded if H(t) = 0 for all t ∈ Dom(H) such that tk = ak
for at least one k.
H has margins if each Sk is nonempty and has a greatest element bk.
The one-dimensional margins of H are the functions Hk given by Dom(Hk)=Sk
and Hk(x) = H(b1, ..., bk−1, x, bk+1, ..., bn) for all x ∈ Sk.
Note that we can define higher dimensional margins by fixing fewer places in H.

Example 2.6: Let H be the function with Dom(H) = [−1, 1]× [0,∞] given by

H(x, y) = (x+ 1)(ey − 1)
x+ 2ey − 1 .

Since H(x, 0) = 0 and H(−1, y) = 0, H is grounded. Moreover, H has the one-
dimensional margins

H1(x) = H(x,∞) = lim
y→∞

(x+ 1)(ey − 1)
x+ 2ey − 1 = lim

y→∞
xe
y − x+ ey − 1
x+ 2ey − 1

= lim
y→∞

xe
y

x+ 2ey − 1 − 0 + lim
y→∞

e
y

x+ 2ey − 1 − 0 L’Hospital= lim
y→∞
xe
y

2ey + lim
y→∞

e
y

2ey

= x

2 + 1
2 = x+ 1

2
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and

H2(y) = H(1, y) = 2(ey − 1)
2ey = 1− 1

ey
= 1− e−y.

With immediate effect, one-dimensional margins are called "margins", and for k ≥ 2, we
write "k-margins" for k-dimensional margins.

Definition 2.7: H is called non-decreasing in each argument if
(t1, ..., tk−1, x, tk+1, ..., tn), (t1, ..., tk−1, y, tk+1, ..., tn) ∈ Dom(H) and x < y implies that
H(t1, ..., tk−1, x, tk+1, ..., tn) ≤ H(t1, ..., tk−1, y, tk+1, ..., tn).

Lemma 2.8: If S1, ..., Sn are nonempty subsets of R and if H is a grounded n-increasing
function with Dom (H)=S1 × · · ·× Sn, then H is nondecreasing in each argument.

Proof: This follows directly from Definition 2.2, Remark 2.3 and Definition 2.5.1. �

Lemma 2.9: Let S1, ..., Sn be nonempty subsets of R, let H be a grounded, n-increasing
function with margins with domain Dom(H)=S1× · · ·×Sn, and let x = (x1, ..., xn) and
y = (y1, ..., yn) be any points in S1 × ...× Sn. Then,

|H(x)−H(y)| ≤
n�

k=1

|Hk(xk)−Hk(yk)|.

Proof: See [51]. �

2.1.2 Definition and examples

Due to the preliminaries in Subsection 2.1.1 we are now able to give a definition of the
term "copula". Roughly speaking, copulas are functions that join or couple multivariate
distribution functions to their one-dimensional marginal distribution functions. We can
also say that a copula is a distribution function C : In → I whose one-dimensional mar-
gins are uniform on I, that is to say C(1, ..., 1, uj����

position j

, 1, ..., 1) = uj for all j ∈ {1, ..., n}.

Nevertheless, we still need a mathematically rigorous definition of copulas, which is given
as follows.

Definition 2.10:

1. An n-dimensional subcopula, or also an n-subcopula, is a function C̃ with the
following properties:

• Dom (C̃)=S1×· · ·×Sn, where each Sk, k ∈ {1, ..., n}, is a subset of I containing
0 and 1,
• C̃ is grounded and n-increasing and
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• C̃ has one-dimensional margins C̃k, where k ∈ {1, ..., n}, which satisfy C̃k(u) =
u for all u ∈ Sk.

We remark that 0 ≤ C̃(u) ≤ 1 for all u ∈ Dom(C̃) implies that Ran(C̃)⊆ I.

2. An n-dimensional copula, or also an n-copula, is an n-subcopula whose domain is
In.

Remark 2.11: Equivalently, an n-copula is a function C : In → I such that

• C(u) = 0 if at least one coordinate of u is 0 and C(u) = uk if all coordinates of u
are 1 except uk for all u ∈ In, where k ∈ {1, ..., n}.

• VC([a,b]) ≥ 0 for all a,b ∈ In with a ≤ b.

Remark 2.12: It can be shown that for any n-copula C, where n ≥ 3, each k-margin
of C is a k-copula, where 2 ≤ k < n.

We now give several examples for copulas, which can be found in [40] and [44].

Example 2.13:

1. Let C be a function defined by C(u, v, w) = w ·min{u, v}.

• By the definition of C it can be easily seen that C(u, v, w) = 0 if at least one
coordinate, namely u, v or w, is 0 and that

C(u, v, w) =






u if v, w = 1,
v if u,w = 1,
w if u, v = 1,

for every u, v, w ∈ I.
• The C-volume of the 3-box B = [a1, b1] × [a2, b2] × [a3, b3], where ak, bk ∈

I, ak ≤ bk and k = 1, 2, 3, is
VC(B) = ∆b3a3∆b2a2∆b1a1C(u, v, w) = (b3 − a3)

� �� �
≥0(b3≥a3)

∆b2a2∆b1a1 min{u, v}
� �� �

≥0

≥ 0.

Therefore, according to Remark 2.11, C is indeed a 3-copula.
The 2-margins of C are
C1,2(u, v) = C(u, v, 1) = min{u, v},
C1,3(u,w) = C(u, 1, w) = w ·min{u, 1} and
C2,3(v, w) = C(1, v, w) = w ·min{1, v}.
These are all 2-copulas, compare Remark 2.12.

2. Πn(u) =
n�
i=1

ui is an n-copula, the so-called product copula.

3. For α,β ∈ I, the function Cα,β(u, v) = min{u1−α
v, uv

1−β} is a two-parameter
family of 2-copulas, the so-called Marshall-Olkin family.
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4. For θ ∈ [−1, 1], the function Cθ(u, v) = uv + θuv(1− u)(1− v) is a one-parameter
family of 2-copulas, the so-called Farlie-Gumbel-Morgenstern family.

2.1.3 Sklar’s theorem and other properties

Since we now have a rigorous definition of copulas, we want to collect several essential
properties about them, including Sklar’s theorem, the most important one.

Uniform continuity and partial derivatives

We start with the uniform continuity of n-subcopulas and hence n-copulas.

Theorem 2.14: For every n-subcopula C̃ and every u,v ∈ Dom (C̃), the inequality

|C̃(v)− C̃(u)| ≤
n�

k=1

|vk − uk|

holds. Hence, C̃ is uniformly continuous on its domain.

Proof: This follows immediately from Lemma 2.9. �

We continue with a theorem about the partial derivatives of n-copulas.

Theorem 2.15: Let C be an n-copula. Then,

1. ∂C(u)

∂ui
exists for all u ∈ In, i ∈ {1, ..., n}, almost everywhere on I, in the sense of

Lebesgue measure,

2. 0 ≤ ∂C(u)

∂ui
≤ 1 for all i ∈ {1, ..., n} and

3. the functions Cui(u) = ∂C(u)

∂ui
are non-decreasing for all ui �= uj , j ∈ {1, ..., n}\{i},

almost everywhere on I.

Proof: A proof for the bivariate case can be found in [40]. Since all relevant results
for the proof also hold for n dimensions, where n ≥ 3, it is straightforward to verify the
n-dimensional analogon, compare also Section 2.2 in [49]. �

Sklar’s theorem

Before stating the central theorem of this section, we need the following definitions and
remarks

Definition 2.16: A function H with Dom (H)=Rn such that

1. H is n-increasing and
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2. H(t) = 0 for all t ∈ Rn such that tk = −∞ for at least one k ∈ {1, ..., n} and
H(∞, ...,∞) = 1

is called an n-dimensional distribution function.

Remark 2.17: If H is grounded and Dom (H)=Rn, then, according to Lemma 2.8,
the one-dimensional margins of an n-dimensional distribution function are distribution
functions. They are denoted by F1, ..., Fn.

Definition 2.18: Let F be a distribution function. A function F (−1) with domain
I such that

1. t ∈ Ran(F ) implies that F (−1)(t) = x ∈ R with F (x) = t,
that is, F (F (−1)(t)) = t for all t ∈ Ran (F ), and

2. t /∈ Ran(F ) implies that F (−1)(t) = inf{x|F (x) ≥ t} = sup{x|F (x) ≤ t}

is called a quasi-inverse of F .

Remark 2.19: If F is strictly increasing, there is a single quasi-inverse, which is the
ordinary inverse denoted by F−1.

We are now ready to formulate Sklar’s theorem, which explains the role copulas play in
the relationship between multivariate distribution functions and their univariate mar-
gins. Most of the applications in the field of copulas are based on this result whose
tremendous importance is therefore obvious.

Theorem 2.20: (Sklar)
Let H be an n-dimensional distribution function with margins F1, ..., Fn.
Then, there is an n-copula C such that

H(x1, ..., xn) = C(F1(x1), ..., Fn(xn)) for all x ∈ Rn. (2.1)

If F1, ..., Fn are all continuous, then C is unique. Otherwise, C is uniquely determined
on Ran(F1) ×· · ·× Ran(Fn).
Conversely, if C is an n-copula and F1, ..., Fn are distribution functions, then the func-
tion H defined by (2.1) is an n-dimensional distribution function with margins F1, ..., Fn.

Proof: For the case of n = 2, a complete proof can be found in Section 2.3. in [40].
The proof of the n-dimensional case, where n ≥ 3, proceeds in a similar way by showing
the n-dimensional versions of Lemma 2.3.4 and Lemma 2.3.5, the so-called "extension
lemma", in [40]. �

Corollary 2.21: Let H,C, F1, ..., Fn be as in Theorem 2.20, and let F (−1)

1
, ..., F

(−1)

n

be quasi-inverses of F1, ..., Fn, respectively. Then,

C(u1, ..., un) = H(F (−1)

1
(u1), ..., F (−1)

n (un))
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for all u ∈ In.

We note that no probabilistic elements like for example random variables are mentioned
in the definitions and results up to now. In particular, the definition of distribution
functions is non-probabilistic.
In a probabilistic sense we say that F is the distribution function of the random variable
X if FX(x) = P[X ≤ x] for all x ∈ R and we define F to be right-continuous. For n
random variables X1, ...,Xn we also have the common definition for a joint distribution
function F , namely FX(x) = P[X1 ≤ x1, ...,Xn ≤ xn] for all x ∈ Rn.
All results obtained before also hold for the probabilistic definition of distribution func-
tions, regardless of any additional restrictions that may be imposed. We always assume
that all random variables can be defined on a common probability space (Ω,A, P ).
In particular, there exists a version of Sklar’s theorem for random variables.
Before stating this theorem, we recall the following well-known fact from probability
theory.

Theorem 2.22: Let X be a random variable with values in R and continuous distribu-
tion function F . Then U := F (X) ∼ U I, where U I denotes the uniform distribution on I.

We now present a version of Sklar’s theorem in terms of random variables.

Theorem 2.23: (Sklar’s theorem for random variables)
Let X1, ...,Xn be random variables defined on a common probability space with distri-
bution functions F1, ..., Fn, respectively, and joint distribution function H.
Then, there exists an n-copula C such that

H(x1, ..., xn) = C(F1(x1), ..., Fn(xn)) for all x ∈ Rn. (2.2)

If F1, ..., Fn are all continuous, C is unique. Otherwise, C is uniquely determined on
Ran(F1) ×· · ·× Ran(Fn).

Corollary 2.24: Let H,C, F1, ..., Fn be as in Theorem 2.23, and let F (−1)

1
, ..., F

(−1)

n

be quasi-inverses of F1, ..., Fn, respectively.
Then,

C(u1, ..., un) = H(F (−1)

1
(u1), ..., F (−1)

n (un))

for all u ∈ In.

For reasons of simplicity, we assume that F1, ..., Fn are continuous and differentiable
distribution functions. Then, according to Sklar’s theorem, C is unique and can also be
expressed by

C(u1, ..., un) =
u1�

0

. . .

un�

0

c(v1, ..., vn)dv1 . . . dvn,
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where uj = Fj(xj) and c is the corresponding copula density. Hence, for continuous
random variables X1, ...,Xn with distribution function
H(x1, ..., xn) = C(F1(x1), ..., Fn(xn)) we have the joint probability density

f(x1, ..., xn) = c(F1(x1), ..., Fn(xn)) · f1(x1) · ... · fn(xn),

where
c(F1(x1), ..., Fn(xn)) = ∂

∂F1(x1) ...
∂

∂Fn(xn)
C(F1(x1), ..., Fn(xn))

and fj(xj) = dFj(xj)

dxj
for all j ∈ {1, ..., n}, compare Section 3 in [50].

Fréchet-Hoeffding bounds

We now search for both a lower and an upper bound for every copula C. As we will see,
the functions

M
n(u) = min{u1, ..., un} and Wn(u) = max{u1 + ...+ un − n+ 1, 0}

play an important role in finding the answer to that question.

Theorem 2.25: (Fréchet-Hoeffding bounds inequality, copula version)
If C̃ is any n-subcopula, then

W
n(u) ≤ C̃(u) ≤Mn(u)

for all u ∈ Dom(C̃).

Proof: This follows directly from Lemmas 2.8 and 2.9. �

Remark 2.26:

1. Wn is called the Fréchet-Hoeffding lower bound,Mn is called the Fréchet-Hoeffding
upper bound.

2. The function Mn is a copula for all n ≥ 2.

3. The function Wn is a copula for n = 2, but never for n ≥ 3.

The left-hand inequality in Theorem 2.25 is "best-possible" in the following sense.

Theorem 2.27: For any n ≥ 3 and any u ∈ In, there is an n-copula C = C(u)
such that C(u) =Wn(u).

Proof: Compare the proof of Theorem 2.10.13 in [40]. �

An interesting property of the Fréchet-Hoeffding upper bound Mn is the following one.
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Theorem 2.28: For n ≥ 2, each of the continuous random variables X1, ...,Xn is
almost surely a strictly increasing function of any of the others if and only if the n-
copula of X1, ...,Xn is Mn.

For further properties of the Fréchet-Hoeffding bounds for joint distribution functions
in the case of n = 2, we refer to Section 2.5 in [40].

Independence of random variables

We have already defined the product copula in Example 2.13.2., namely Πn(u) =
�
n

i=1
ui

. The following theorem provides a characterisation of independent random variables
via the product copula.

Theorem 2.29: For n ≥ 2, let X1, ...,Xn be continuous random variables with dis-
tribution functions F1, ..., Fn, respectively, and joint distribution function H.
Then, X1, ...,Xn are independent if and only if the n-copula of X1, ...,Xn is Πn.

Proof: This follows from Sklar’s theorem for random variables, see Theorem 2.23, and
the fact that X1, ...,Xn are independent if and only if H(x1, ..., xn) = F1(x1) · ... ·Fn(xn)
for all xk ∈ R, where k ∈ {1, ..., n}. �

Monotone transformations

A reason for the use of copulas in the study of nonparametric statistics is that, for
strictly monotone transformations of the random variables, copulas are either invariant
or change in predictable ways. This is expressed in the following theorem in which we
limit ourselves to the case of n = 2. Remember that for a continuous distribution func-
tion of a random variable X and a strictly monotone function α whose domain contains
Ran(X) the distribution function of the random variable α(X) is continuous as well.

Theorem 2.30: (monotone transformations)
Let X1 and X2 be continuous random variables with copula CX1X2 and let α and β be
strictly monotone functions on Ran(X1) and Ran(X2), respectively.

1. If α and β are strictly increasing, then
Cα(X1)β(X2)(x1, x2) = CX1X2(x1, x2).

2. If α is strictly increasing and β is strictly decreasing, then
Cα(X1)β(X2)(x1, x2) = x1 − CX1X2(x1, 1− x2).

3. If α is strictly decreasing and β is strictly increasing, then
Cα(X1)β(X2)(x1, x2) = x2 − CX1X2(1− x1, x2).

4. If α and β are strictly decreasing, then
Cα(X1)β(X2)(x1, x2) = x1 + x2 − 1− CX1X2(1− x1, 1− x2).
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Remark 2.31: In Theorems 2.6 and 2.7 proposed in [9], the generalisation of the
monotone transformations to the more complex multivariate case is exposed and proved.
Hence, the two-dimensional statements we consider here follow immediately as a special
case.

2.1.4 Construction of copulas

In this subsection, we deal with the methods of constructing copulas explicitly.
If we have a collection of copulas, then, according to Sklar’s theorem, we have one of bi-
or multivariate distributions with whatever marginal distribution we desire. This fact is
very useful in the fields of modelling and simulation.
We start with the presentation of three general methods to construct bivariate copulas,
that is, we consider the case of n = 2, and then continue with the construction of
multivariate n-copulas, where n ≥ 3.

Construction of bivariate copulas

Essentially, there are three general approaches to construct bivariate copulas.

1. Inversion method

The inversion method is based on Sklar’s theorem and the corresponding corollary.
Copulas are produced directly from joint distributions. Given a bivariate distribution
function H(u, v) with continuous margins F (u) and G(v), inverting according to the
corollary of Sklar’s theorem leads to the copula C(u, v) = H(F (−1)(u), G(−1)(v)). With
this copula C, we can construct new bivariate distributions H̃ with arbitrary margins,
say F̃ and G̃. Due to Sklar’s theorem, we have H̃(x, y) = C(F̃ (x), G̃(y)).
We now give two explicit examples for the inversion method to construct copulas.

Example 2.32: It can be verified that the function

H(x, y) =






(x+1)(e
y−1)

x+2ey−1
for (x, y) ∈ [−1, 1]× [0,∞],

1− e−y for (x, y) ∈ (1,∞)× [0,∞],
0 elsewhere,

is indeed a distribution function. Its margins F and G are given by

F (x) =






0 for x < −1,
x+1

2
forx ∈ [−1, 1],

1 for x > 1,

and
G(y) =

�
0 for y < 0,

1− e−y for y ≥ 0.
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The quasi-inverses of F and G are

F
(−1)(u) = inf{x|F (x) ≥ u} = inf

�
x

����
x+ 1

2 ≥ u
�

= inf{x|x ≥ 2u− 1} = 2u− 1

and

G
(−1)(v) = inf{y|G(y) ≥ v} = inf{y|1− e−y ≥ v} = inf{y|ey(1− v) ≥ 1}

= inf
�
y

����e
y ≥ 1

1− v

�
= inf

�
y

����y ≥ log
� 1

1− v

��
= log

� 1
1− v

�

= − log(1− v)

for u, v ∈ I. Since Ran(F ) = Ran (G) = I, we obtain the copula

C(u, v) = (2u− 1 + 1)(e− log(1−v) − 1)
2u− 1 + 2e− log(1−v) − 1

=
2u
�

1

1−v − 1
�

2u− 2 + 2

1−v
=
u

�
1

1−v − 1
�

u− 1 + 1

1−v

=
uv

1−v
(u−1)(1−v)+1

1−v
= uv(1− v)

(1− v)(u− uv + v − 1 + 1) = uv

u+ v − uv .

Example 2.33: Gumbel’s bivariate exponential function is given by the joint distri-
bution function

Hθ(x, y) =
�

1− e−x − e−y + e−(x+y+θxy) for x, y ≥ 0,
0 otherwise ,

where θ ∈ I.
The margins F and G are exponentials that have quasi-inverses F (−1)(u) = − log(1−u)
and G(−1)(v) = − log(1− v) for u, v ∈ I. Hence, we obtain the copula

Cθ(u, v) = 1− e−(− log(1−u)) − e−(− log(1−v)) + e−(− log(1−u)−log(1−v)+θ log(1−u) log(1−v))

= 1− (1− u)− (1− v) + (1− u)(1− v)e−θ log(1−u) log(1−v)

= u+ v − 1 + (1− u)(1− v)e−θ log(1−u) log(1−v)
.

2. Geometric methods

With geometric methods we are able to construct singular copulas whose support lies
in a specified set or copulas with sections given by simple functions like polynomials,
for instance. These techniques follow the original conception of copulas in Definition
2.10. In particular, no distribution functions or random variables are required for the
construction.
There are three well-known types of copulas that are based upon geometric construction
procedures, namely

• ordinal sums,
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• shuffles of M and

• convex sums.

For details, see [40], Chapter 3.2.

3. Algebraic method

In this approach, copulas are constructed from relationships involving the bivariate and
marginal distribution function. The algebraic relationship could be a ratio, for instance.
For details, we refer to [40], Chapter 3.3.

Construction of multivariate n-copulas

The construction of multivariate n-copulas, where n ≥ 3, is a very difficult challenge
and there are often no n-dimensional analogues of the procedures previously described
for the case of n = 2.
For the following statements, we recall the definitions of the functions Mn, Wn and Πn,
that is
M
n(u) = min{u1, ..., un},
W
n(u) = max{u1 + ...+ un − n+ 1, 0} and

Πn(u) =
n�
i=1

ui,

where n ≥ 2 and u = (u1, ..., un). In the case of n = 2, we simply write M , W and Π
instead of M2, W 2 and Π2 with immediate effect.
We remember that 2-copulas join one-dimensional distribution functions to form bi-
variate distribution functions. A first naive idea might be that 2-copulas couple other
2-copulas.

Example 2.34: We define C via C(u, v, w) = Π(M(u, v), w) = w ·min{u, v}. It can be
shown that C is a 3-copula.

However, the following counterexample clarifies that our naive technique can fail.

Example 2.35: Let C be C(u, v, w) =W (W (u, v), w) = max{u+ v+w− 2, 0}. Hence,
C =W 3, but it can be proved that W 3 is not a copula. Each of the 2-margins of W 3 is
W and in a set of three random variables X, Y and Z it is impossible for each random
variable to be almost surely a decreasing function of each of the remaining two.

Definition 2.36: C1 is directly compatible with C2 if C1 and C2 are 2-copulas such
that C2(C1(u, v), w) is a copula.

There are several criteria for direct compatibility if C1 or C2 are M , W or Π.

Theorem 2.37:
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1. Every 2-copula is directly compatible with Π.

2. The only 2-copula directly compatible with M is M .

3. The only 2-copula directly compatible with W is M .

4. M is directly compatible with every 2-copula C.

5. W is directly compatible only with Π.

6. Π is directly compatible with a 2-copula C if and only if the function u �→
VC([uv1, uv2]× [w1, w2]) is non-decreasing on I for all v1, v2, w1, w2 ∈ I with v1 ≤ v2
and w1 ≤ w2.

Proof: See [43]. �

Endowing a 2-copula with a multivariate margin often succeeds in the special class
of Archimedean copulas, compare Chapter 4 in [40], which we discuss in the next sub-
section.
Sklar’s theorem shows that if C is a 2-copula and F and G are univariate distribution
functions, then C(F (x), G(y)) is a two-dimensional distribution function.
The question now is whether an extension is possible, namely whether F and G can be
replaced by multivariate distribution functions. In other words, we search for copulas
satisfying the following implication: If F (x) is an m-dimensional distribution function
and G(y) is an n-dimensional distribution function, then C(F (x), G(y)) is an (m+ n)-
dimensional distribution function for all m,n with m+ n ≥ 3.
An answer to that issue is provided by the next theorem.

Theorem 2.38: Let m and n be positive integers with m+ n ≥ 3 and suppose that C
is a 2-copula such that H(x,y) = C(F (x), G(y)) is an (m+ n)-dimensional distribution
function with margins H(x,∞) = F (x) and H(∞,y) = G(y) for all m-dimensional dis-
tribution functions F (x) and n-dimensional distribution functions G(y).
Then, C = Π.

Proof: See [11]. �

Another important result related to the preceding theorem is the following one.

Theorem 2.39: Let m and n be integers with n,m ≥ 2, and let C1 be an m-copula
and C2 be an n-copula.

1. Define C : Im+n → I via
C(x1, ..., xm+n) =M(C1(x1, ..., xm), C2(xm+1, ..., xm+n)).
Then, C is an (m+ n)-copula if and only if C1 =Mm and C2 =Mn.

2. Let C �, C �� and C ��� be functions given by
C
�(x1, ..., xm+1) = Π(C1(x1, ..., xm), xm+1),
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C
��(x1, ..., xn+1) = Π(x1, C(x2, ..., xn+1)) and
C
���(x1, ..., xm+n) = Π(C1(x1, ..., xm), C2(xm+1, ..., xm+n)).

Then,
C
� is always an (m+ 1)-copula,
C
�� is always an (n+ 1)-copula and
C
��� is always an (m+ n)-copula.

Proof: See [51]. �

Example 2.40: We consider the Farlie-Gumbel-Morgenstern (FGM) n-copulas.
The FGM family Cθ(u, v) = uv+ θuv(1− u)(1− v) with θ ∈ [−1, 1], see Example 2.13.4
in this thesis, has an extension to a (2n − n − 1)-parameter family of n-copulas, where
n ≥ 3, by

C(u) = u1...un



1 +
n�

k=2

�

1≤j1<...<jk≤n
θj1...jk(1− uj1)...(1− ujk)



 .

Each copula of this family is absolutely continuous and has density

∂
n
C(u)

∂u1...∂un
= 1 +

n�

k=2

�

1≤j1<...<jk≤n
θj1...jk(1− 2uj1)...(1− 2ujk).

Since C(u) is quadratic in each variable, ∂
n
C(u)

∂u1...∂un
is linear in each variable. Hence, the

density is greater than or equal to zero on In if and only if the density is greater than or
equal zero at each of the 2n vertices of In. Therefore, we obtain 2n constraints for the
parameters, namely

1 +
n�

k=2

�

1≤j1<...<jk≤n
�j1 ...�jkθj1...jk ≥ 0,

where �j1 , ..., �jk ∈ {−1, 1}.
This means that each parameter has to satisfy |θ| ≤ 1.
We note that each k-margin, where 2 ≤ k < n, of an FGM-copula is an FGM k-copula.

Remark 2.41: As mentioned in the beginning, the construction of multivariate copu-
las is an exceedingly difficult task because the methods are not obvious in many cases.
There are still many open questions about this topic.

2.1.5 Classification of copulas

We can group copula functions or copula densities into families. Two of the most impor-
tant classes are elliptical copulas and Archimedean copulas, which are discussed in this
subsection.
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Elliptical copulas

At first, we consider elliptical distributions which are defined as follows in [9].

Definition 2.42: Let X be an n-dimensional random vector, µ ∈ Rn and Σ a non-
negative definite, symmetric (n × n)-matrix. Moreover, let the characteristic function
ϕX−µ(t) ofX − µ be a function of the quadratic form ttΣt, that is ϕX−µ(t) = φ(ttΣt).
Then, X has an elliptical distribution with parameters µ,Σ and φ, and we write X ∼
En(µ,Σ,φ).

According to [50], elliptical copulas are the copulas of elliptical distributions. They
extend to arbitrary dimensions and are comparably rich in parameters. Moreover, they
are restricted to radial symmetry. This represents a strong limitation with respect to
tail dependence. Hence, elliptical copulas might not be suitable to model precipitation,
for example, if we consider practical applications in meteorology. The most important
members of the class of elliptical copulas are the normal or Gaussian copula and the
Student-t copula, which are presented in the following.

Normal copula

We follow [50] and assume that X = (X1, ...,Xn) is a random vector whose compo-
nents have known marginal cumulative distribution functions (CDF) F1, ..., Fn.
Since Uj = Fj(Xj) ∼ U I for j ∈ {1, ..., n}, each Xj can be transformed to a random
variable Zj := Φ−1(Fj(Xj)) ∼ N (0, 1) having a standard normal distribution, where
Φ−1 is the inverse function of the CDF of the N (0, 1)-distribution. Furthermore, let
Z = (Z1, ..., Zn) follow a multivariate standard normal distribution Nn(0,Σ) with cor-
responding probability density function (PDF) h and CDF H, where Σ denotes the
covariance matrix.
Then, according to Corollary 2.24, the PDF of X, which is the copula in our situation
here, is given by

C(u1, ..., un) = H(Φ−1(u1), ...,Φ−1(un)).
Hence, the normal copula density is

c(u1, ..., un) = ∂

∂u1

. . .
∂

∂un
C(u1, ..., un)

= h(Φ−1(u1), ...,Φ−1(un))
n�
j=1

ϕ(Φ−1(uj))
,

where ϕ denotes the PDF of the N (0, 1)-distribution.
In the bivariate case, the copula expression can be written as

C(u, v) =
Φ
−1

(u)�

−∞

Φ
−1

(v)�

−∞

1
2π
�

1−R2
12

exp
�

−s
2 − 2R12st+ t2

2(1−R2
12

)

�

ds dt ,
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where R12 is the usual linear correlation coefficient of the corresponding bivariate normal
distribution, compare [9].
The normal copula can be employed in a range of applications. The estimation pro-
cedures are well-known and hence quality is controllable. However, the normal copula
assumes linear relationships among the transformed random variables with rather small
dependence for large deviations. Moreover, normal copulas do not necessarily exist in
closed form expressions.

Student-t copula

Again, we follow [50] and define the t-copula via a multivariate extension of the t-
distribution, namely

C(u1, ..., un) = Ht(ν,Σ)(F−1

t(ν)
(u1), ..., F−1

t(ν)
(un)),

where Ft(ν) denotes the CDF of a univariate t-distribution with ν degrees of freedom
and positive definite dispersion matrix Σ, which leads to 1 + n(n−1)

2
parameters.

In the bivariate case, the copula expression is

C(u, v) =

F
−1
t(ν)(u)�

−∞

F
−1
t(ν)(v)�

−∞

1
2π
�

1−R2
12

�

1 + s
2 − 2R12st+ t2
ν(1−R2

12
)

�− ν+2
2

ds dt ,

where R12 is the usual linear correlation coefficient of the corresponding bivariate tν-
distribution for ν > 2, compare [9].
We note that there are various definitions of a multivariate t-distribution and conse-
quently of t-copulas.
The t-copula offers some flexibility as far as covariance structure and tail dependence
are concerned. In this context, we can interpret tail dependence as the conditional prob-
ability of observing an extreme in one component given the other being in an extreme
state.

Archimedean copulas

Archimedean copulas show some advantages, that are responsible for the fact that they
are used in a wide range of applications.
Archimedean copulas allow for a wider variety of dependence structures, are able to
model different upper and lower tail dependence, can be constructed easily, have nice
properties and many copulas belong to this class, see [40]. According to [50], they are
mostly employed in the bivariate case and thus we restrict to this situation at first.
Later, we generalise the concept to the multivariate case.

We start with the definition and some properties of the so-called pseudo-inverse, which
plays a central role in the construction of Archimedean copulas.
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Definition 2.43: Let ϕ : I → [0,∞] be a continuous, strictly decreasing function
with ϕ(1) = 0.
Then the pseudo-inverse of ϕ, denoted by ϕ[−1], satisfies Dom(ϕ[−1]) = [0,∞] and
Ran(ϕ[−1]) = I and is given by

ϕ
[−1](t) =

�
ϕ
−1(t) for 0 ≤ t ≤ ϕ(0),
0 for ϕ(0) ≤ t ≤ ∞.

Remark 2.44:

• ϕ[−1] is continuous and non-increasing on [0,∞] and strictly decreasing on [0,ϕ(0)].

• ϕ[−1](ϕ(u)) = u on I and

ϕ(ϕ[−1](t)) =
�
t for 0 ≤ t ≤ ϕ(0)
ϕ(0) for ϕ(0) ≤ t ≤ ∞

�

= min{t,ϕ(0)}

• ϕ(0) =∞ implies that ϕ[−1] = ϕ−1.

Now we are ready to define Archimedean copulas.

Definition 2.45: Copulas of the form

C : I2 → I, C(u, v) = ϕ[−1](ϕ(u) + ϕ(v)), (2.3)

are called Archimedean copulas.
The function ϕ is called the generator of the Archimedean copula.
If ϕ(0) = ∞, ϕ is called a strict generator. Then, ϕ[−1] = ϕ−1, and C is called a
strict Archimedean copula.

Remark 2.46: It can be shown that C as defined by (2.3) satisfies the copula boundary
conditions and that C is 2-increasing if and only if u1 ≤ u2 and C(u2, v) − C(u1, v) ≤
u2−u1, compare [40]. Furthermore, and this is very important, the function C as defined
in (2.3) is a copula if and only if ϕ is convex.

Example 2.47:

1. We consider ϕ(t) = log(t) for t ∈ I. Since ϕ(0) =∞, ϕ is strict. Thus, ϕ[−1](t) =
ϕ
−1(t) = exp(−t), and C(u, v) = exp(−[(− log u) + (− log v)]) = uv = Π(u, v).

Hence, Π is a strict Archimedean copula.

2. We consider ϕ(t) = 1− t for t ∈ I. Then,

ϕ
[−1](t) =

�
1− t for t ∈ I

0 for t > 1

�

= max{1− t, 0}.

Hence, C(u, v) = max{u+ v − 1, 0} =W (u, v), and W is an Archimedean copula.
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3. An overview of Archimedean copulas and their corresponding generators can be
found in [40]. An excerpt is given in Table 2.1.

Copula Cθ(u, v) ϕθ(t) θ ∈ strict?
Clayton max((u−θ + v−θ − 1)−1/θ

, 0) 1

θ
(t−θ − 1) [−1,∞) \ {0} for

θ ≥ 0
Frank −1

θ
log(1 + (e

−θu−1)(e
−θv−1)

e−θ−1
) − log e−θt−1

e−θ−1
(−∞,∞) \ {0} yes

Gumbel exp(−[(− log u)θ + (− log v)θ]1/θ) (− log t)θ [1,∞) yes
Al-Mikhail- uv

1−θ(1−u)(1−v) log 1−θ(1−t)
t

[−1, 1) yes
Haq

Table 2.1: Some Archimedean copulas

Remark 2.48: According to the preceding facts, for the construction of Archimedean
copulas we only need functions ϕ serving as generators and possessing the necessary
properties previously mentioned, therefore ϕ : I → [0,∞] should satisfy ϕ(1) = 0 and
should be continuous, strictly decreasing and convex. Then, an Archimedean copula can
be constructed via (2.3).

We now extend the Archimedean copula concept to the multivariate case and set

C
n(u) = ϕ[−1](ϕ(u1) + ϕ(u2) + ...+ ϕ(un)). (2.4)

The functions Cn are the serial iterates of the Archimedean 2-copula generated by ϕ,
that is, if we set

C
2(u1, u2) = C(u1, u2) = ϕ[−1](ϕ(u1) + ϕ(u2)),

then we get
C
n(u1, ..., un) = C(Cn−1(u1, ..., un−1), un) for all n ≥ 3,

see [51].
However, this method of composing copulas fails in general. For example, if we set
ϕ(t) = 1 − t in (2.4), we obtain Wn, but that fails to be a copula for any n ≥ 2, as
previously mentioned.
We have already stated properties of ϕ such that C2 is a copula and now search for
similar characteristics in the case of n ≥ 3.

Definition 2.49: A function g(t) is called completely monotone on an interval J ⊆ R if
it is continuous in J and satisfies (−1)k dk

dtk
g(t) ≥ 0 for all t ∈ int(J) and k ∈ {0, 1, 2, ...},

where int(J) denotes the interior of J .

Theorem 2.50: Let ϕ : I → [0,∞] be a continuous, strictly decreasing function with
ϕ(0) =∞ and ϕ(1) = 0 and let ϕ−1 denote the inverse of ϕ. If Cn : In → I is given by
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(2.4), then Cn is an n-copula for all n ≥ 2 if and only if ϕ−1 is completely monotone on
[0,∞).

Proof: See [23]. �

A recent result proposed by McNeil and Nešlehová in [36], which is structurally sim-
ilar to Theorem 2.50, uses the concept of n-monotonicity to characterise n-dimensional
Archimedean copulas.

Definition 2.51: A real function g(t) is called n-monotone in (a, b), where a, b ∈ R
and n ≥ 2, if it is differentiable there up to order n − 2 and if the derivatives satisfy
(−1)k dk

dtk
g(t) ≥ 0 for k ∈ {0, 1, ..., n−2} for any t ∈ (a, b) and further if (−1)n−2 d

n−2
dtn−2 g(t)

is non-increasing and convex in (a, b).
For n = 1, g is called 1-monotone if it is non-negative and non-increasing there.

It is possible to extend Definition 2.51 to functions on not necessarily open intervals
as follows.

Definition 2.52: A real function g on an interval J ⊆ R is n-monotone on J , where
n ∈ N, if it is continuous there and if g restricted to int(J) is n-monotone on int(J).

The following important Theorem 2.53 shows the relationship between n-monotonicity
and n-dimensional Archimedean copulas and can be found in [36].
Note that in [36], Archimedean copulas are defined in terms of ϕ rather than ϕ−1, and
the definition of generators differs analogously. However, we stick to the definition in-
troduced before, and thus, the following results taken from [36] are rewritten in our
terminology.

Theorem 2.53: Let ϕ be a generator. Then,

C
n : In → I, Cn(u) = ϕ−1(ϕ(u1) + ...+ ϕ(un)),

where u = (u1, ..., un) ∈ In, is an n-dimensional copula if and only if ϕ−1 is n-monotone
on [0,∞).

Proof: See [36]. �

Corollary 2.54: Let ϕ be a generator whose inverse ϕ−1 has derivatives up to order n
on (0,∞). Then, ϕ generates an Archimedean copula if and only if (−1)k dk

dtk
ϕ
−1(t) ≥ 0

for k ∈ {1, ..., n}.

Remark 2.55: Evidently, generators with n-monotone inverses do not necessarily gen-
erate Archimedean copulas in dimensions higher than n. Hence, n-monotonicity of a
function ψ does not imply that ψ is k-monotone, where k > n.
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However, on the other hand, it can be easily seen that an n-monotone function, where
n ≥ 2, is also k-monotone for any k ∈ {1, ..., n}.

We close this subsection with several examples for n-dimensional Archimedean copu-
las. In particular, we consider the Clayton, Frank and Gumbel families, which have
n-dimensional extensions for certain values of θ.

Example 2.56: Let ϕθ(t) = t−θ for θ > 0. This ϕ generates the subfamily of the
bivariate Clayton family, whose generators are strict. We get ϕ−1

θ
(t) = (1 + t)−1/θ, and

it can be verified that ϕ−1

θ
is completely monotone on [0,∞). Hence, the Clayton family

of n-copulas for θ > 0 and any n ≥ 2 can be expressed as

C
n

θ (u) = (u−θ
1

+ ...+ u−θn − n+ 1)−1/θ
.

Example 2.57: We consider ϕθ(t) = − log
�
e
−θt−1

e−θ−1

�
, the generator of the bivariate

Frank family, whose inverse is given by ϕ−1

θ
(t) = −1

θ
log(1−(1−e−θ)e−t). Let θ ∈ (0,∞).

Then, f(x) = −1

θ
log(1−x) is absolutely monotone for x ∈ (0, 1), and g(t) = (1−e−θ)e−t

is completely monotone for t ∈ [0,∞). Hence, ϕ−1

θ
is completely monotone on [0,∞).

Therefore, a generalisation to the Frank family of n-copulas for θ > 0 and any n ≥ 2 is
given by

C
n

θ (u) = −1
θ

�

1 + (e−θu1 − 1)...(e−θun − 1)
(e−θ − 1)n−1

�

.

We note that for θ < 0, ϕ−1

θ
is not completely monotone.

Example 2.58: We consider ϕθ(t) = (− log t)θ for θ ≥ 1, the generator of the bivariate
Gumbel family. Its inverse is given by ϕ−1

θ
(t) = exp(−t1/θ). Since e−x is completely

monotone and t1/θ is a positive function that has a completely monotone derivative,
ϕ
−1

θ
(t) is completely monotone. Hence, a generalisation to the Gumbel family of n-

copulas for θ ≥ 1 and any n ≥ 2 is provided by

C
n

θ (u) = exp(−[(− log u1)θ + ...+ (− log un)θ]1/θ).

2.1.6 Copulas and dependence

In this subsection, we discuss several aspects of dependence and dependence measures
with respect to copulas. Thereby, we focus on the bivariate case, but comment on
extensions to the multivariate case, too.

Perfect dependence

We recall the Fréchet-Hoeffding inequality for an n-copula, namely

W
n(u1, ..., un) ≤ C(u1, ..., un) ≤Mn(u1, ..., un),
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and the fact that the lower and the upper bounds are copulas themselves in the case of
n = 2. Moreover, it can be shown thatW andM are the bivariate distribution functions
of (U, 1−U) and (U,U), respectively, where U ∼ U I. In this situation, W describes per-
fect negative and M perfect positive dependence, compare [9].

Theorem 2.59: Let (X,Y ) have one of the copulas W or M . Then, there are two
monotone functions α,β : R→ R and a random variable Z with (X,Y ) =d (α(Z),β(Z)).
In this connection, α is increasing and β is decreasing in the case of W and both α and
β are increasing in the case of M . The converse holds, too.

Proof: See [8]. �

Concordance

Definition 2.60: Let X and Y be continuous random variables and (x, y) and (x̃, ỹ) two
observations from (X,Y ). Then, (x, y) and (x̃, ỹ) are concordant if (x− x̃) · (y − ỹ) > 0
and discordant if (x− x̃) · (y − ỹ) < 0.

Theorem 2.61: LetX and Y be continuous random variables and (X,Y ) and (X̃, Ỹ ) be
independent with joint distribution functions H and H̃, respectively, with common mar-
gins F ofX and X̃ andG of Y and Ỹ . Moreover, let C and C̃ be the copulas of (X,Y ) and
(X̃, Ỹ ), respectively, such that H(x, y) = C(F (x), G(y)) and H̃(x, y) = C̃(F (x), G(y)),
according to Sklar’s theorem. We define the concordance function Q by

Q := P[(X − X̃) · (Y − Ỹ ) > 0]− P[(X − X̃) · (Y − Ỹ ) < 0]. (2.5)

Then,

Q = Q(C, C̃) = 4 ·
1�

0

1�

0

C̃(u, v)dC(u, v)− 1.

Proof: See [40]. �

Corollary 2.62: Q is symmetric, therefore Q(C, C̃) = Q(C̃, C).

Measures of concordance: Kendall’s tau and Spearman’s rho

Definition 2.63: A measure κ ∈ R of dependence between two continuous random
variables X and Y with copula C is a measure of concordance if the following properties,
that can be found in [47], are satisfied:

1. κ is defined for every pair (X,Y ) of continuous random variables.

2. −1 ≤ κX,Y ≤ 1, κX,X = 1 and κX,−X = −1.

3. κX,Y = κY,X .
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4. If X and Y are independent, then κX,Y = κΠ = 0.

5. κ−X,Y = κX,−Y = −κX,Y .

6. If C and C̃ are copulas such that C is less concordant than C̃, that is C(u, v) ≤
C̃(u, v) for all (u, v) ∈ I2, then κC ≤ κC̃ .

7. If {Xn, Yn} is a sequence of continuous random variables with copulas Cn, and if
{Cn} converges pointwise to C, then lim

n→∞
κCn = κC .

In what follows, we present two measures of concordance, namely Kendall’s tau and
Spearman’s rho. In [40] it is shown that those measures defined below satisfy the prop-
erties in Definition 2.63. Hence, they are indeed measures of concordance.

Definition 2.64: Let (X,Y ) be a random vector.

1. Let (X̃, Ỹ ) denote an independent copy of (X,Y ). Then, Kendall’s tau for (X,Y )
is given by

τ(X,Y ) = P[(X − X̃) · (Y − Ỹ ) > 0]− P[(X − X̃) · (Y − Ỹ ) < 0]
= probability of concordance − probability of discordance .

2. Let (X,Y ), (X̃, Ỹ ) and (X̂, Ŷ ) be independent copies. Then, Spearman’s rho is
defined as

ρ(X,Y ) = 3 · (P[(X − X̃) · (Y − Ŷ ) > 0]− P[(X − X̃) · (Y − Ŷ ) < 0]).

For non-elliptical distributions, the usual linear correlation coefficient is inappropriate.
In this situation, Kendall’s tau and Spearman’s rho provide good alternatives. We now
study several properties of and relationships between Kendall’s tau and Spearman’s rho.

Theorem 2.65: For a vector (X,Y ) of continuous random variables with copula C,
Kendall’s tau is given by

τ(X,Y ) = Q(C,C) = 4 ·
1�

0

1�

0

C(u, v)dC(u, v)− 1.

Proof: See [40]. �

In many cases, the double integral in Theorem 2.65 cannot be calculated easily. However,
for Archimedean copulas there exists another expression for Kendall’s tau depending on
the generator and its derivative.

33



Theorem 2.66: For random variables X and Y with an Archimedean copula C gener-
ated by ϕ, Kendall’s tau is given by

τ = 1 + 4 ·
1�

0

ϕ(t)
ϕ
�(t)dt.

Proof: See [40] or [9]. �

Example 2.67: We consider the Gumbel family whose generator is ϕ(t) = (− log t)θ
for θ ≥ 1. Then,

ϕ
�(t) = θ(− log t)θ−1 · (−1

θ
) = − t

θ
(− log t)θ−1

,

and hence
ϕ

(
t)

ϕ
�(t) = (− log t)θ

− t
θ
(− log t)θ−1

= − t
θ

(− log t) = t log t
θ
.

According to Theorem 2.66, we obtain

τ = 1 + 4
1�

0

t log t
θ
dt = 1 + 4

θ

1�

0

t log tdt = 1 + 4
θ




�1

2 t
2 log t

�
1

0

−
1�

0

1
2 t

2
1
t
dt





= 1 + 4
θ

�

0− 0−
�1

4 t
2

�
1

0

�

= 1 + 4
θ
·
�
−1

4

�
= 1− 1

θ
.

Theorem 2.68: For a vector (X,Y ) of continuous random variables with copula C,
Spearman’s rho is given by

ρC = 3Q(C,Π) = 12 ·
1�

0

1�

0

u v dC(u, v)− 3 = 12 ·
1�

0

1�

0

C(u, v) du dv − 3.

Proof: See [40] and Section 3 in [48], respectively. �

Remark 2.69: According to [40], Spearman’s rho is often called the "grade" correlation
coefficient. Grades are the population analogs of ranks: If x and y are observations from
two random variables X and Y , respectively, with corresponding distribution functions
F and G, then u = F (x) and v = G(y) are the grades of x and y. Observe that the
grades u and v are observations from the random variables U = F (X) and V = G(Y ),
which are uniformly distributed on (0, 1) and whose joint distribution function is C.
From elementary probability theory, it is well-known that U and V each have mean 1

2

and variance 1

12
in that case. Hence, the expression for ρC in Theorem 2.68 can be
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written as

ρC = 12
1�

0

1�

0

uv dC(u, v)− 3 = 12 E[UV ]− 3 =
E[UV ]− 1

4

1

12

=
E[UV ]− 1

2
· 1

2�
1

12
·
�

1

12

= E[UV ]− E[U ] E[V ]
�

Var(U)
�

Var(V )
.

As we see, Spearman’s rho for a pair of continuous random variables X and Y is identical
to Pearson’s product-moment correlation coefficient for the grades of X and Y , that is,
the random variables U = F (X) and V = G(Y ).

The following result holds both for Kendall’s tau and Spearman’s rho.

Theorem 2.70: Let X and Y be continuous random variables with copula C and
let κ be Kendall’s tau or Spearman’s rho. Then,

1. κ(X,Y ) = 1 if and only if C =M and

2. κ(X,Y ) = −1 if and only if C =W .

Proof: Compare [8]. �

The following results reflect the relationships between Kendall’s tau and Spearman’s
rho.

Theorem 2.71: Let X and Y be continuous random variables, τ denote Kendall’s
tau and ρ denote Spearman’s rho. Then,

1. −1 ≤ 3τ − 2ρ ≤ 1 and

2. 1+ρ

2
≥ (1+τ

2
)2 and 1−ρ

2
≥ (1−τ

2
)2.

Proof: See [40]. �

Corollary 2.72: 3τ−1

2
≤ ρ ≤ 1+2τ−τ2

2
for τ ≥ 0 and τ2

+2τ−1

2
≤ ρ ≤ 1+3τ

2
for τ ≥ 0.

Proof: We obtain the claims by combining Theorems 2.70.1 and 2.70.2, compare [40]. �

Remark 2.73: Other interesting scalar measures of dependence are given by Schweizer
and Wolff’s sigma and Gini’s gamma, compare [40]. While Gini’s gamma is indeed a
concordance measure, Schweizer and Wolff’s sigma is not.

After having discussed both the notion of concordance and concordance measures in
the bivariate case, we now focus on extensions to the multivariate situation by general-
ising the concept of concordance and presenting a multivariate version of Spearman’s rho.
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Remark 2.74: For a generalisation of the notion of concordance and the concordance
function Q defined in (2.5), we assume that x and y are two observations of a vector X
consisting of continuous random variables.
According to [39], concordance generalises in the following sense: We say that x and y
are concordant if (xi, xj) and (yi, yj) are concordant for all i �= j. However, it is not
possible to extend the notion of discordance to dimensions n ≥ 3. Indeed, if (x1, x2) and
(y1, y2) are discordant and (x2, x3) and (y2, y3) are discordant, then (x1, x3) and (y1, y3)
have to be concordant. Hence, in the multivariate case, we consider the probability of
concordance alone, rather than the difference of the probabilities of concordance and
discordance.
Let X1 and X2 be independent vectors of continuous random variables with common
univariate margins and n-copulas C1 and C2, respectively. We follow [39] and define

Q
�
n := P[X1 > X2] + P[X1 < X2]

as the probability of concordance between X1 and X2. It can be shown that then,

Q
�
n = Qn(C1, C2) =

1�

0

...

1�

0

C2(u) dC1(u) +
1�

0

...

1�

0

C1(u) dC2(u).

A multivariate analog Qn of the concordance function Q for continuous random vectors
X1 and X2 with corresponding copulas C1 and C2 is given by

Qn(C1, C2) := 1
2n−1 − 1

�
2n−1
Q
�
n(C1, C2)− 1

�
. (2.6)

For a detailed discussion of multivariate concordance in general, we refer to [20].
Many of the measures of concordance have multivariate versions. For instance, a mul-
tivariate population version of Spearman’s rho for a continuous random vector X with
copula C is given by

ρn,C = (n+ 1)(2n−1 − 1)
2n − (n+ 1) Qn(C,Πn)

= n+ 1
2n − (n+ 1)



2n−1




1�

0

...

1�

0

C(u) dΠn(u) +
1�

0

...

1�

0

Πn(u) dC(u)



− 1



 ,

where n ≥ 2, see [39]. Here, Qn is defined as in (2.6).

Remark 2.75: Note that there are several multivariate versions for a measure of bi-
variate concordance. For Spearman’s rho, we follow [48] and derive an extension which
is different to that presented in the preceding remark in what follows.
Recall that, according to Theorem 2.68, Spearman’s rho for a two-dimensional vector
(X,Y ) of continuous random variables with copula C can be written as

ρC = 12
1�

0

1�

0

C(u, v) du dv − 3.
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Moreover, it can be shown that

1�

0

1�

0

Π(u, v) du dv =
1�

0

1�

0

uvdu dv = 1
4

and
1�

0

1�

0

M(u, v) du dv =
1�

0

1�

0

min{u, v} du dv = 1
3 .

Hence,

ρC = 12
1�

0

1�

0

C(u, v) du dv − 3 =

1�

0

1�

0

C(u, v) du dv
1

12

− 1
4

12

=

1�

0

1�

0

C(u, v) du dv − 1

4

1

12

=

1�

0

1�

0

C(u, v) du dv − 1

4

1

3
− 1

4

=

1�

0

1�

0

C(u, v) du dv −
1�

0

1�

0

Π(u, v) du dv

1�

0

1�

0

M(u, v) du dv −
1�

0

1�

0

Π(u, v) du dv

=

1�

0

1�

0

uv dC(u, v)−
1�

0

1�

0

uv dΠ(u, v)

1�

0

1�

0

uv dM(u, v)−
1�

0

1�

0

uv dΠ(u, v)
.

Therefore, ρC can be seen as the normalised average distance between the copula C and
the product copula Π.
Due to this representation of ρC and the identities

1�

0

...

1�

0

Πn(u) du =
1�

0

...

1�

0

u1...un du1...dun = 1
2n

and
1�

0

...

1�

0

M
n(u) du =

1�

0

...

1�

0

min{u1, ..., un} du1...dun = 1
n+ 1 ,
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whose proofs are straightforward, a canonical n-dimensional extension of ρC to ρn,C for
an n-copula Cn is given by

ρn,C =

1�

0

...

1�

0

C
n(u) du−

1�

0

...

1�

0

Πn(u) du

1�

0

...

1�

0

Mn(u) du−
1�

0

...

1�

0

Πn(u) du

=

1�

0

...

1�

0

C
n(u) du− 1

2n

1

n+1
− 1

2n

=

2
n

1�
0
...

1�
0
C
n

(u) du

2n

2n−(n+1)

(n+1)2n

= n+ 1
2n − (n+ 1)




2n
1�

0

...

1�

0

C
n(u) du− 1




 .

This multivariate version of Spearman’s rho will play a role later on.

Tail dependence

According to [9], tail dependence reflects the amount of dependence in the upper-right-
quadrant tail or the lower-left-quadrant tail if we consider a bivariate distribution. More-
over, it is important for the study of dependence between extreme values.

Definition 2.76: Let X and Y be continuous random variables with marginal dis-
tribution functions F and G, respectively. The coefficient λU of upper tail dependence
is defined by

λU = lim
u�1

P[Y > G−1(u)|X > F−1(u)]

if the limit λU ∈ [0, 1] exists.
In the case of λU ∈ (0, 1], X and Y are asymptotically dependent in the upper tail. In
the case of λU = 0, X and Y are asymptotically independent in the upper tail.

An alternative and equivalent definition for continuous random variables is the following
one.

Definition 2.77: If the limit

λU = lim
u�1

�1− 2u+ C(u, u)
1− u

�

exists for a bivariate copula C, then C has upper tail dependence if λU ∈ (0, 1] and
upper tail independence if λU = 0.

Remark 2.78: For copulas that have no simple closed form, like the Gaussian cop-
ula, an alternative formula for λU is more suitable. We recall Theorem 2.22 and remark
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that for a pair of random variables (U, V ), where U, V ∼ U I, with copula C, λU can be
determined as follows:

λU = lim
u�1

{P[V > u|U = u] + P[U > u|V = u]}.

If C(u, v) = C(v, u), the expression simplifies to λU = 2 · lim
u�1

P[V > u|U = u].
For a derivation, we refer to [9].

In the case of Archimedean copulas, tail dependence can be written in terms of the
generators.

Theorem 2.79: Let ϕ be a strict generator. If ϕ−1
�(0) is finite, then C(u, v) =

ϕ
−1(ϕ(u) +ϕ(v)) does not have upper tail dependence. If C has upper tail dependence,

then ϕ−1
�(0) = −∞ and the coefficient of upper tail dependence is given by

λU = 2− 2 · lim
s�0

�
ϕ
−1
�(2s)

ϕ−1 �(s)

�

.

Proof: See [9]. �

Example 2.80: We determine λU for the bivariate Gumbel family of copulas given
by

Cθ(u, v) = exp(−[(− log u)θ + (− log v)θ]1/θ),
where θ ≥ 1, in two different ways.

1. We have 1−2u+C(u,u)

1−u = 1−2u+exp(−[2(− log u)
θ
]
1/θ

)

1−u = 1−2u+exp(2
1/θ

log u)

1−u

= 1−2u+exp(log u
21/θ

)

1−u = 1−2u+u
21/θ

1−u , and by employing Definition 2.77 we get

λU = lim
u�1

1− 2u+ C(u, u)
1− u = lim

u�1

1− 2u+ u2
1/θ

1− u = lim
u�1

−2 + 21/θ
u

2
1/θ−1

−1
= 2− lim

u�1

(21/θ
u

2
1/θ−1) = 2− 21/θ

.

Hence, Cθ has upper tail dependence for θ > 1.

2. The Gumbel copulas are strict Archimedean with generator ϕ(t) = (− log t)θ.
Thus, we have ϕ−1(s) = exp(−s1/θ), and ϕ−1

�(s) = −s 1
θ−1 exp(−s1/θ)· 1

θ
. Theorem

2.79 yields

λU = 2− 2 · lim
s�0

ϕ
−1
�(2s)

ϕ−1 �(s) = 2− 2 · lim
s�0

�
−(2s)1/θ−1 exp(−(2s)1/θ) · 1

θ

−s1/θ−1 exp(−s1/θ) · 1

θ

�

= 2− 2 · 21/θ−1 lim
s�0

exp(−(2s)1/θ)
exp(−s1/θ)

� �� �
=1

= 2− 21/θ
,

the result from 1.
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Copula Upper Tail Dependence Lower Tail Dependence
Product − −
Normal − −

Student-t + +
Clayton − +
Gumbel + −
Frank − −

Fréchet + +
Marshall-Olkin + −

Farlie-Gumbel-Morgenstern − −

Table 2.2: Ability of copulas to model upper or lower tail dependence

Similar to the upper tail dependence, we can define the lower tail dependence as follows.

Definition 2.81: If the limit
λL = lim

u�0

C(u, u)
u

exists, then C has lower tail dependence if λL ∈ (0, 1] and lower tail independence if
λL = 0.

Remark 2.82: For copulas without a simple closed form, we use

λL = lim
u�0

{P[V < u|U = u] + P[U < u|V = u]}

as an alternative formula for λL,where (U, V ) is a random vector with copula C, see [9].
If C(u, v) = C(v, u), then λL simplifies to λL = 2 · lim

u�0

P[V < u|U = u].

As in the case of λU , there is an alternative expression for λL if C is a strict Archimedean
copula.

Theorem 2.83: Let ϕ be as in Theorem 2.79. Then, for the copula C(u, v) =
ϕ
−1(ϕ(u) + ϕ(v)), we obtain

λL = 2 · lim
s→∞
ϕ
−1
�(2s)

ϕ−1 �(s) .

Proof: The proof is similar to that of Theorem 2.79. �

In Table 2.2, we employ the information given in [9] and [50] and summarise the ability
of frequently used copulas to model upper or lower tail dependence, where + denotes
adequacy and − denotes inadequacy of the copula for the corresponding modelling.

40



2.2 State-of-the-art ensemble postprocessing techniques

In this section, we summarise several ensemble postprocessing methods that apply to a
single weather quantity at a single location and for a single look-ahead time only and lead
to univariate probabilistic forecasts. To be precise, we discuss the approaches mentioned
in the introduction in Chapter 1, namely Bayesian model averaging (BMA), ensemble
model output statistics (EMOS), logistic regression and quantile regression.

2.2.1 Bayesian model averaging (BMA)

We discuss four different versions of the BMA approach that can be used depending
on the weather quantity to be forecasted. The first variant deals with the prediction of
temperature and sea level pressure, the second with precipitation forecasting, the third
with wind speed forecasting and the fourth with the prediction of wind directions.

BMA for temperature and sea level pressure

First, we describe the BMA method to obtain statistically postprocessed, calibrated and
sharp ensemble forecasts for temperature and sea level pressure as suggested in [46].
We take a look at an ensemble of M weather field forecasts and write y for the weather
quantity we are interested in and f1, ..., fM for the respective ensemble member forecasts.
Moreover, let gm(y|fm) denote the conditional probability density function (PDF) we
associate with each ensemble member. This PDF can be loosely interpreted as the
conditional PDF of y given the fact that member m is the best among the ensemble
member predictions. The BMA predictive PDF p for y is

p(y|f1, ..., fM ) =
M�

m=1

wmgm(y|fm), (2.7)

where wm denotes the probability that ensemble member m is the best. Since the wm’s

are probabilities, they are non-negative and
M�
m=1

wm = 1.
Hence, the BMA predictive PDF is a weighted average of predictive PDFs associated
with each individual ensemble member, and the weights reflect the member’s relative
skill or performance.
In [46], the approximation of the conditional PDF gm(y|fm) for forecasting temperature
and sea level pressure is given by a univariate normal density centered at a linearly bias-
corrected forecast with a standard deviation assumed to be constant across ensemble
members, that is

y|fm ∼ N (am + bmfm,σ2). (2.8)

Then, the BMA predictive mean is the conditional expectation of y given the forecasts,
namely

E[y|f1, ..., fM ] =
M�

m=1

wm(am + bmfm).

41



We estimate the weights wm in (2.7) and the parameters am, bm and σ in (2.8) from
training data as follows:

• We use linear least squares regression to estimate am and bm for each ensemble
member separately.

• w1, ..., wM and σ2 are estimated simultaneously for all the M ensemble members
by employing the Expectation Maximization (EM) algorithm to maximise the log-
likelihood function in the Maximum Likelihood (ML) approach for the estimation
of w1, ..., wM and σ2. Finally, the estimate of σ is refined by optimising the so-called
continuous ranked probability score (CRPS), compare Section 4.3, for the training
data, that is we employ minimum CRPS estimation as described more explicitly in
the EMOS approach presented below. This is done by searching numerically over
a range of values of σ centered at the ML estimate, where the other parameters
are fixed.

In the following, we denote space and time by subscripts s and t, respectively. Conse-
quently, fmst denotes the mth forecast in the ensemble for place s and time t and yst
the corresponding verification.
The BMA predictive variance of yst given the ensemble of forecasts can be expressed by

Var(yst|f1st, ..., fMst) =
M�

m=1

wm((am + bmfmst)−
M�

n=1

wn(an + bnfnst))2 + σ2
. (2.9)

In other words, we have a decomposition of the BMA forecast variance into two compo-
nents, namely

Predictive Variance = Between-Forecast Variance + Within-Forecast Variance. (2.10)

The ensemble spread only captures the first component. Hence, we would expect to
have a spread-error correlation because the predictive variance includes the spread as a
component. But, in addition to this, employing the ensemble spread alone might un-
derestimate uncertainty by ignoring the second term on the right-hand side of (2.9) or
(2.10). So the decomposition explains the coexistence of a positive spread-error correla-
tion and a lack of calibration in the sense of underdispersion, which can be observed in
several ensembles.

BMA for precipitation

In the case of precipitation we have to modify the BMA approach presented above be-
cause the predictive distribution of precipitation is far from normal for two major reasons:
It has a positive probability of being equal to zero, and if it is not zero, the predictive
density is skewed. Therefore, we cannot employ normal distributions to approximate
the conditional PDF as in the case of temperature or sea level pressure.
Instead, we model the conditional PDF gm(y|fm) for a given ensemble member as a
mixture of a point mass at zero and a gamma distribution as proposed by Sloughter et
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al. in [54].
Our model for gm(y|fm) is divided into two parts.

First, we specify the probability of precipitation as a function of the forecast fm by
using logistic regression with a power transformation of the forecast as a predictor vari-
able and obtain

logit P[y = 0|fm] = log P[y = 0|fm]
P[y > 0|fm] = a0m + a1mf1/3

m + a2mδm, (2.11)

where the predictor δm is equal to 1 if fm = 0 and equal to 0 otherwise, and P[y > 0|fm]
denotes the probability of non-zero precipitation given fm if fm is the best ensemble
member forecast for that day.

Second, we specify the PDF of the precipitation amount given that it is not zero. We
consider the gamma distribution with shape parameter α and scale parameter β having
PDF

h(y) =
�

1

βαΓ(α)
y
α−1 exp

�
− y
β

�
for y > 0,

0 otherwise,

mean µ = αβ and variance σ2 = αβ2, where Γ denotes the well-known gamma function
from analysis. Gamma distributions are appropriate to model precipitation amounts
because they can fit skewed data and are flexible.
Rather than fitting the gamma distribution to the observed precipitation amounts them-
selves, we fit the gamma distribution to powers of the observed values. It turns out to be
the best if we fit the gamma distribution to the cube root of the observed precipitation
amounts.
For the data of Sloughter et al. in [54], the mean of the fitted gamma distribution of
the cube root of precipitation is approximately linear as a function of the cube root of
the forecast accumulation, and the variance of the fitted gamma distribution is approx-
imately linear as a function of the forecast.
Thus, given that forecast fm is the best, we obtain

gm(y|fm) = P[y = 0|fm]1{y=0} + P[y > 0|fm]hm(y|fm)1{y>0},

where y denotes the cube root of the precipitation accumulation, and P[y = 0|fm] is
specified by (2.11).
As the conditional PDF hm(y|fm) of the cube root precipitation amount y given that it
is positive we have

hm(y|fm) = 1
β
αm
m Γ(αm)y

αm−1 exp
�
− y
βm

�
.

Moreover, the mean µm = αmβm and the variance σ2
m = αmβ2

m of the gamma distribu-
tion can be expressed via

µm = b0m + b1mf1/3

m
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and
σ

2

m = c0m + c1mfm, (2.12)

where fm is the original forecast.
Since it can be observed that c0m and c1m in (2.12) do not vary much from one model
to another, Sloughter et al. consider them to be constant across all ensemble members
and thus reduce the number of parameters. Thus, we get as final BMA model for the
predictive PDF of y which is the cube root of precipitation accumulation here:

p(y|f1, ..., fM ) =
M�

m=1

wm{P[y = 0|fm]1{y=0} + P[y > 0|fm]hm(y|fm)1{y>0}}. (2.13)

In this connection,

• wm can be interpreted as the posterior probability of ensemble member m being
the best,

• fm is the original forecast,

• logit P[y = 0|fm] = a0m + a1m + f1/3

m + a2mδm,
where δm equals 1 if fm = 0 and 0 otherwise,

• hm(y|fm) = 1

β
αm
m Γ(αm)

y
αm−1 exp

�
− y
βm

�
and

• the parameters αm = µ
2
m
σ2
m

and βm = σ
2
m
µm

of the gamma distribution depend on fm
via
µm = αmβm = b0m + b1mf1/3

m and σ2
m = αmβ2

m = c0 + c1fm.

We note that the results we obtain by (2.13) in terms of the cube root of the precipita-
tion amount can be expressed easily in terms of the original amounts.

Finally, we briefly comment on the methods employed to estimate the parameters based
on data from an adequate training period.

• a0m, a1m and a2m are member specific and estimated by logistic regression with
precipitation/no precipitation as dependent variable and f1/3

m and δm as predictor
variables.

• b0m and b1m are member specific and estimated by linear regression, where the non-
zero precipitation observations are cases, the cube root of the precipitation amount
is the dependent variable and the cube root of the forecasted accumulations is the
predictor variable.

• w1, ..., wM , c0 and c1 are estimated by the ML method and the EM algorithm,
respectively, from the training data.

For a detailed description, we refer to [54].
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BMA for wind speed

As a further variant of the BMA method, we study BMA for wind speed forecasting as
suggested by Sloughter et al. in [55]. As far as wind speed is concerned, there are two
major challenges statistical postprocessing approaches have to face.
First, the distribution of wind speed is extremely skewed.
Second, wind observations are usually reported to the nearest whole unit, and any wind
speeds below unit one are recorded as zero. This is a much coarser discretisation than
that employed for other weather quantities.
Hence, our extended BMA approach for wind speed forecasting has to take account of
both the skewness of the predictive distributions and the discreteness of the observations.
Mostly, we need not model the separate probability of wind speed being equal to zero.
We create a BMA variant for wind speed by taking a gamma distribution to model the
component distribution for a given ensemble member.
Wind speed distributions are often modelled by Weibull densities. This is generalised
by using gamma distribution fits to power transformations of the observed wind speeds.
Experimentation shows that it is appropriate to model the component PDFs of wind
speed as untransformed gamma distributions instead of using any power transformation.
The Γ(α,β)-distribution has PDF

g(y) =
�

1

βαΓ(α)
y
α−1 exp

�
− y
β

�
for y > 0

0 otherwise

with mean µ = αβ and variance σ2 = αβ2.
By an exploratory data analysis, Sloughter et al. find in [55] that the observed wind speed
is approximately linear as a function of the forecasted wind speed, and the corresponding
standard deviation is also approximately linear as a function of the forecast.
Thus, we have

gm(y|fm) = 1
β
αm
m Γ(αm)y

αm−1 exp
�
− y
βm

�
(2.14)

as a model for the component gamma PDF of wind speed. Furthermore, the mean
µm = αmβm and the standard deviation σm = √αmβm of the distribution can be
expressed depending on the ensemble member forecast fm via

µm = b0m + b1mfm and σm = c0m + c1mfm.

By restricting the standard deviation parameters to be constant across all ensemble
members, we reduce the number of parameters and thus replace c0m and c1m by c0 and
c1, respectively. So we have

p(y|f1, ..., fM ) =
M�

m=1

wmgm(y|fm)

as final model for the predictive PDF of maximum wind speed y, where gm is defined
by (2.14).
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Finally, we name the standard methods we employ for the estimation of the param-
eters, which is based on forecast-observation pairs from an adequate training period.

• b0m and b1m are estimated by linear regression.

• w1, ..., wM , c0 and c1 are estimated by the ML method and the EM algorithm,
respectively, from the training data.

For other methods that are possible and details of the parameter estimation procedure,
compare [55].

BMA for wind direction

Having precise forecasts of wind direction is important in a large number of applications,
like air pollution management or aircraft and ship routeing, for instance.
However, in contrast to weather quantities as temperature, sea level pressure or wind
speed, which are linear variables taking values on the real line R, wind direction is an
angular variable taking values on the circle. Hence, the BMA postprocessing methods
discussed before become ineffective or inapplicable.
To circumvent this problem, Bao et al. propose an effective bias correction and a BMA
version tailored to wind direction in [1], the paper which we refer to in what follows.

Since wind direction is an angular variable taking values on the circle, as mentioned
before, we employ degrees to describe wind directions, where 0, 90, 180 and 270 degrees
correspond to a northerly, easterly, southerly and westerly wind, respectively.
We define the angular distance or the circular absolute error between two directions f
and y, where f, y ∈ [0, 360), by

AEcirc(f, y) = min{|y − f |, 360− |y − f |},

which is non-negative and has a maximum of 180 degrees.
Sometimes, it can be helpful to identify a direction y with the point θ(y) = eiπ

90−y
180 on

the unit circle in the complex plane. In this case, wind directions of 0, 90, 180 and 270
degrees correspond to i, 1,−i and −1, respectively, where i denotes the imaginary unit,
that is, i2 = −1.

For the bias correction, which is an important step in weather forecasting, we follow
[1] and employ a circular-circular regression technique. For this purpose, let f and y
be the predicted and the observed wind direction, respectively, and θ(f) and θ(y) de-
note the associated points on the unit circle in the complex plane. Then, the regression
equation is given by

θ(y) = β0 ·
θ(f) + β1

1 + β̄1θ(f)
, (2.15)

where β0 ∈ C with |β0| = 1, β1 ∈ C, and β̄1 is the complex conjugate of β1.
The mapping from θ(f) to θ(y) is a Moebius transformation in the complex plane and
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maps the unit circle to itself. Hence, we have a nice connection to the field of complex
analysis.
The regression parameters β0 and β1 can be interpreted as follows: β0 is a rotation
parameter and β1 stands for pulling a direction towards a fixed angle, namely the point
β1
|β1| on the unit circle, with the concentration about β1

|β1| increasing as |β1| increases.
Both β0 and β1 in (2.15) are estimated from training data by minimising the sum of
the circular distances between the fitted bias-corrected forecasts and the corresponding
verifying directions as a function of β0 and β1.
Besides the circular-circular regression technique, there exist other approaches to correct
systematic biases, for example the median-angle correction or the mean-angle correction.
For details, see Section 2.a in [1].

To model angular data like wind direction, the so-called von Mises distribution is a
natural choice. An angular variable has a von Mises distribution with mean direction µ
and concentration parameter κ ≥ 0 if it has density

g(y|µ,κ) = 1
360 ·

exp(κ · cos((y − µ) π
180

))
I0(κ)

on the circle, where I0 denotes a modified Bessel function of the first kind and order
zero. We note that the von Mises distribution becomes a uniform distribution on the
circle as κ tends to zero.
We are now in the position to develop the BMA approach for wind directions as proposed
in [1]. Let f1, ..., fM be an ensemble of forecasts that are bias-corrected. Then, the BMA
predictive PDF p is a mixture

p(y|f1, ..., fM ) =
M�

m=1

wmgm(v|fm,κm),

where the components are von Mises distributions with mean direction fm and con-
centration parameter κm, and the BMA weights w1, ..., wM satisfy both wm ≥ 0 for

m ∈ {1, ...,M} and
M�
m=1

wm = 1.
A standard version of this model uses a common concentration parameter κ. This simpli-
fies and stabilises estimation, does not necessarily deteriorate the predictive performance
and leads to

p(y|f1, ..., fM ) =
M�

m=1

wmgm(y|fm,κ).

The weights w1, ..., wM and the parameter κ of the component PDFs are estimated by
maximum likelihood and the EM algorithm, respectively, from training data. For a de-
tailed description of the procedure, compare Section 2.c in [1].
Moreover, there exists a specification of the precedent BMA method with a uniform
mixture component, which might be useful if all member forecasts turn out to be sub-
stantially different from the verifying direction, compare Section 2.c in [1].

47



Weather Quantity Model Distribution / Density
temperature Normal distribution
sea level pressure Normal distribution
precipitation Gamma distribution with point mass in zero
wind speed Gamma distribution
wind direction von Mises distribution

Table 2.3: BMA: Weather variables and component densities

In this case, we have the so-called BMA+ predictive density

p(y|f1, ..., fM ) =
M�

m=1

wmgm(v|fm,κ) + wM+1u(v),

where wm ≥ 0 for all m ∈ {1, , ...,M + 1},
�
M+1

m=1
wm = 1, and u is the density of a

uniform distribution on the circle, that is a von Mises distribution with κ = 0.
It is straightforward to adapt the EM algorithm from the BMA to the BMA+ technique
in order to estimate the weights w1, ..., wM+1 and the parameter κ.

Summary

In a nutshell, a BMA predictive PDF p is given by a mixture of the form

p(y|f1, ..., fM ) =
M�

m=1

wmgm(y|fm),

where f1, ..., fM denote the forecasts of an ensemble of size M , y the weather variable of
interest, wm the weights satisfying both wm ≥ 0 for allm ∈ {1, ...,M} and

�
M

m=1
wm = 1

and gm a modeling density depending on the weather quantity of interest. In Table 2.3,
we give an overview of the densities employed for modelling the different weather vari-
ables in the BMA approach.
Instead of considering wind direction and wind speed, we can also study wind vectors
consisting of a horizontal u- and a vertical v-component as an equivalent representation.
For details about this option, we refer to Subsection 5.1.3 in the thesis on hand. The
BMA predictive PDF for the u- and the v-component, respectively, of a wind vector can
be modelled by a mixture of normal distributions as in the case of temperature and sea
level pressure.

For the R language and environment for statistical computing and graphics, compare [45],
there exists a package called ensembleBMA comprising most of the methods discussed in
this subsection in order to compute statistically postprocessed ensemble forecasts accord-
ing to the BMA approach. It is available online at http://www.cran.r-project.org.
We work with this tool in the applications of the ECC technique, compare Chapter 5 of
this thesis.
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2.2.2 Ensemble model output statistics (EMOS)

We present three versions of the EMOS approach that can be employed depending on
the form of the weather quantity, where we focus on temperature, sea level pressure and
wind speed.
In addition, the development of a bivariate EMOS approach applying to wind vectors is
a subject of current research, and an R package tentatively called ensembleMOS offering
several EMOS techniques for computation is under construction. The current version
of ensembleMOS is available online at http://www.stat.lsa.umich.edu/∼bobyuen/
ensembleMOS.

Standard EMOS for temperature and sea level pressure

Starting with the standard EMOS approach, which can be applied to continuous, real-
valued weather quantities like temperature and sea level pressure, that can be assumed to
be normally distributed as described in [13], we suppose that X1, ...,XM is an ensemble
of individually distinguishable forecasts for a univariate weather variable Y and write

Y = a+ b1X1 + ...+ bMXM + � (2.16)

as a multiple linear regression equation for Y in terms of X1, ...,XM , where � denotes
an error term averaging to zero, and a, b1, ..., bM ∈ R.

Moreover, let S2 denote the ensemble variance, that is S2 = 1

M

M�
m=1

(Xm − X̄)2, where

X̄ = 1

M

M�
m=1

Xm.
The variance of the error term � in (2.16) is modelled by a linear function of the ensemble
spread, namely

Var(�) = c+ dS2
, (2.17)

where c, d ≥ 0.
The EMOS predictive PDF then is a normal distributionN (µ,σ2) with EMOS predictive
mean µ and variance σ2, where

• µ = a+b1X1 + ...+bMXM is a weighted average of the ensemble member forecasts
that is bias-corrected and

• σ2 = c+ dS2 is a linear function of the ensemble variance.

We now discuss the meaning of the parameters.

• The regression coefficient a is a correction term for the bias.

• b1, ..., bM are regression coefficients, which reflect both the overall performance
of the ensemble member models over the training period, relative to the other
members, and the correlations between the ensemble members.
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• c and d are variance coefficients, that reflect the ensemble spread and the perfor-
mance of the ensemble mean forecast.
If all else is equal, larger values of d suggest a more pronounced spread-error rela-
tionship.
In the case of independency between spread and error, we will estimate d as neg-
ligibly small.

Therefore, we can say that EMOS is robust because it adopts both to the presence and
the absence of significant spread-error correlation.
The challenge is now to estimate the coefficients a, b1, ..., bM , c and d from training data.
Classically, this can be handled by ML estimation. However, there is a general estimation
strategy including the ML method as a special case, namely the following one. We
consider so-called scoring rules, which are functions that are used for the evaluation of
forecast performances. For a more detailed description of them we refer to Section 4.3.
After having selected a scoring rule being appropriate to the problem we are interested
in, we express the score for the training data as a function of the coefficients. Then,
we optimise that function with respect to the parameter values. Since we take scoring
rules to be negatively orientated, that is, the smaller, the better, we have to minimise
the training score.
For reasons of robustness, we choose the continuous ranked probability score (CRPS) as
a scoring rule. The CRPS is defined via

crps(F, y) =
∞�

−∞

(F (x)− 1{x≥y})2
dx,

where F is the predictive CDF, y the verifying observation and 1 the indicator function,
see also Section 4.3.
In our situation here, we have to find the parameters a, b1, ..., bM , c and d minimising
the CRPS value for the training data.
For a CDF of a normal distribution N (µ,σ2) it can be calculated that

crps(N (µ,σ2), y) = σ
�
y − µ
σ

�
Φ
�
y − µ
σ

�
− 1
�

+ 2ϕ
�
y − µ
σ

�
− 1√
π

�
, (2.18)

where ϕ and Φ denote the PDF and the CDF, respectively, of a standard normal distri-
bution N (0, 1).
Furthermore, we note that the average score is defined by

CRPS = 1
N

N�

n=1

crps(Fn, yn). (2.19)

By using (2.18) and (2.19), the training CRPS can be written as

Γ(a; b1, ..., bM ; c; d) = 1
N

N�

n=1

�
c+ dS2

n

�
Zn [2Φ(Zn)− 1] + 2ϕ(Zn)−

1√
π

�
, (2.20)
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where Zn = Yn−(a+b1Xn1+...+bMXnM )√
c+dS2 denotes the standardised forecast error,Xn1, ...,XnM

the nth ensemble forecast in the training set, S2
n its variance and Yn the nth verification.

The sum extends over all training data.
The coefficient values minimising (2.20) can be determined numerically by the Broyden-
Fletcher-Goldfarb-Shanno algorithm, which is implemented in the R language and envi-
ronment.
We constrain the parameters c and d to be non-negative, which is not an issue for c. To
guarantee that d ≥ 0, we set d = δ2, where δ ∈ R, and optimise over δ.
In addition, the algorithm requires initial values. Those based on past experience of-
ten lead to good solutions. Unfortunately, the solution might be sensitive to the initial
values, and convergence to a global extremum is not ensured.

EMOS+ method for temperature and sea level pressure

As suggested in [13], a modification of the standard EMOS approach described above is
given by the so-called EMOS+ method in which the regression coefficients b1, ..., bM in
equation (2.16) are constrained to be non-negative, that is b1, ..., bM ≥ 0.
This restriction can be very useful because negative weights seem much harder to inter-
pret in the context of ensemble forecasts.
If EMOS weights are exactly zero, they can be seen in terms of reduced ensembles.
To get the EMOS+ model, we proceed according to the following scheme:

• We estimate the parameters of the standard EMOS model as previously described
by minimising the CRPS value (2.18).

• If all estimated regression coefficients are non-negative, we employ the estimates
of standard EMOS for the EMOS+ model and are done.

• If one or more of the b1, ..., bM are negative, those are set to zero and (2.18) is
minimised under this enforcement.

• The ensemble variance is recomputed, where only the ensemble members remaining
in the regression equation are used. We subsequently employ the recomputed
ensemble spread.

• We iterate these steps until all estimated b1, ..., bM are non-negative.

EMOS for wind speed

The two EMOS variants previously discussed cannot be applied directly to non-negative
weather quantities like wind speed. Hence, we propose the following modification of the
EMOS technique, which can be found in [57].
Let X1, ...,XM be an ensemble of individually distinguishable point forecasts for a uni-
variate, R0

+-valued, continuous quantity Y . To take the non-negativity of the predictand
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into account, we use a truncated normal predictive distribution having a cutoff at zero,
that is

N 0(µ,σ2), where µ = a+ b1X1 + ...+ bMXM and σ2 = c+ dS2
. (2.21)

We recall that S2 is defined by S2 = 1

M

M�
m=1

(Xm − X̄)2, where X̄ = 1

M

M�
m=1

Xm.
In this connection, the interpretation of the parameters is the same as in the standard
EMOS method.
We obtain the EMOS predictive density f for the future variable Y by

f(y) =






1
σϕ( y−µσ )

Φ(µσ ) for y > 0,
0 otherwise.

To ensure that (2.21) gives a valid probability distribution, the coefficients c and d need
to be non-negative. Moreover, we enforce b1, ..., bM to be non-negative. Therefore, we
write b1 = β2

1
, ..., bM = β2

M
, c = γ2 and d = δ2, where β1, ...,βM , γ, δ ∈ R.

Similar to the procedure in the other EMOS approaches, we optimise a negatively ori-
entated proper scoring rule like the CRPS, which we employ for reasons of robustness
here, as a function of the parameter values, here a,β1, ...,βM , γ and δ, on training data.
For a truncated normal predictive distribution and an observation y ≥ 0, we obtain

crps(N 0(µ,σ2), y) = σΦ
�
µ

σ

�−2
�
y − µ
σ

Φ
�
µ

σ

��
2Φ
�
y − µ
σ

�
+ Φ
�
µ

σ

�
− 2
�

+ 2ϕ
�
y − µ
σ

�
Φ
�
µ

σ

�
− 1√
π

Φ
�√

2µ
σ

��
.

To solve our problem, we find the values of a,β1, ...,βM , γ and δ which minimise the
expression

1
N

N�

n=1

crps(N 0(a+ β2

1Xn1 + ...+ β2

MXnM , γ
2 + δ2S2

n), Yn),

where the sum extends over the forecast cases in the training set. This is done by
employing the Broyden-Fletcher-Goldfarb-Shanno algorithm implemented in R.

2.2.3 Logistic regression

In probability forecasts we consider the predictand to be a binary variable rather than
a measurable quantity like a weather variable. A non-linear regression technique being
convenient for probability forecasting is given by logistic regression, see [61]. If p is the
probability being forecast, a logistic regression has the form

p = exp(f(x))
1 + exp(f(x)) . (2.22)
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In this connection, f denotes a linear function of the predictor variables x = (x1, ..., xM ),
that is to say

f(x) = b0 + b1x1 + ...+ bMxM .

We note that the logistic regression equation (2.22) leads to S-shaped prediction functions
being strictly bounded on the unit interval due to 0 < p < 1 and is linear on the logistic
scale

log
�
p

1− p

�
= f(x). (2.23)

Since, in training data, the predictand values are binary, that is they have values 0 or 1,
the left-hand side of (2.23) is not defined. That implies that we cannot employ standard
linear regression models in order to estimate the regression coefficients although (2.23)
has a linear form. Hence, we estimate the parameters via an iterative ML procedure.
Logistic regression can be employed in the context of ensemble forecast postprocessing
for continuous predictands like temperature or precipitation, compare [18], [19] and [60].
In those cases, the forecast probabilities pertain to the occurrence of the verification
V above or below a fixed prediction threshold that corresponds to a particular data
quantile q. So we have, for example, the two-predictor logistic regression

p = P[V ≤ q] = exp(b0 + b1x̄ens + b2x̄enssens)
1 + exp(b0 + b1x̄ens + b2x̄enssens)

(2.24)

as proposed in [60].
In this context, b0, b1 and b2 denote fitted constants, x̄ens the ensemble mean forecast
and sens the ensemble spread, namely the standard deviation.
Instead of employing the product of ensemble mean and ensemble spread, another ap-
proach in [19] uses the ensemble spread alone as the second predictor. Thus, as far as
EMOS is concerned, x1 is generally the ensemble mean and x2 may involve the ensemble
standard deviation, either alone or multiplied by the ensemble mean, if ensemble spread
provides significant predictive information. If the second predictor does not improve the
forecast performance, we can set b2 = 0 and employ the one-predictor version of (2.24)
as discussed in [18].
At the beginning, logistic regression has been employed for MOS postprocessing in the
sense that separate equations for selected predictand quantile thresholds were fitted.
However, according to [61], this approach has the following shortcomings:

• The method can lead to nonsense results as illustrated in the following example.
We look at probability forecasts for the lower tercile q1/3 and the upper tercile q2/3
of the climatological distribution of a predictand. Then, we would forecast p1/3 =
P[V ≤ q1/3] and p2/3 = P[V ≤ q2/3] by log

�
p1/3

1−p1/3

�
= f1/3(x) and log

�
p2/3

1−p2/3

�
=

f2/3(x), respectively, according to (2.23). Unless f1/3(x) and f2/3(x) are exactly
parallel, that is to say they only differ with respect to their intercept parameters
b0, they will cross for some values of x. Therefore, we obtain that p1/3 > p2/3,
which implies that P[q1/3 < V < q2/3] < 0. Since probabilities are non-negative,
this is of course a nonsense result.
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• We need some kind of interpolation to estimate the probabilities that correspond
to threshold quantiles for which regressions have not been fitted.

• We have to estimate a lot of parameters to fit many prediction equations.

To avoid those deficits, we need a well-fitting regression that can be estimated simulta-
neously for all forecast quantiles.
The following approach to obtain that is proposed in [61]. We extend (2.22) and (2.23)
to include a non-decreasing function g(q) of the threshold quantile q and fuse the equa-
tions for individual quantiles to get a single equation belonging to any quantile. So we
have

p(q) = exp(f(x) + g(q))
1 + exp(f(x) + g(q)) (2.25)

or
log
�
p(q)

1− p(q)

�
= f(x) + g(q), (2.26)

respectively.
Equation (2.26) specifies parallel functions of x whose intercepts b∗

0
(q) show a monotone

increase with q, namely

log
�
p(q)

1− p(q)

�
= b0 + g(q)
� �� �

=b
∗
0(q)

+b1x1 + ...+ bMxM

= b
∗
0(q) + b1x1 + ...+ bMxM .

In practice, the challenge is to find a functional form g(q) such that (2.25) provides better
forecasts than the single-quantile approach according to (2.22) or at least forecasts being
as good as those.

2.2.4 Quantile regression

An alternative approach of probabilistic weather forecasting is given by quantile regres-
sion whose goal is to make forecasts in terms of quantiles. In [4], the article which we
refer to in the following, that method is discussed for precipitation.
We informally define the pth quantile as the value where the probability of an observa-
tion less than this value is p. If we specify probabilities in percent, we refer to quantiles
as percentiles.
Our approach employs means of regression methods with the advantage that distri-
butional assumptions are not necessary, and any type of essential information can be
included as predictors. For instance, ensembles are not required, but possible.
First, we note that precipitation shows a discrete-continuous probability distribution. A
common procedure to address this problem is to estimate the probability of precipitation
first and then model the precipitation amounts conditional on the occurrence of precip-
itation. However, these two steps can be connected by using results from probability
theory.
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Probability of precipitation

Let y1, ..., yL be binary observations taking the value 1 if precipitation occurs and 0 if
there is no precipitation and being realisations of the random variables Y1|x1, ..., YL|xL
from Bernoulli distributions. In this connection, the vector variables x1, ...,xL are pre-
dictors and contain the information available about the observations at a given time
before they become known. Our model is

Yl|xl ∼ Ber(πl)

and

Φ−1(πl) = α0 +
N�

n=1

αnxln for l ∈ {1, ..., L}, (2.27)

where πl denotes the probability of precipitation for case l, xln the nth component
of xl and Φ−1 the inverse N (0, 1)-distribution function. The unknown parameters
α0,α1, ...,αJ are to be estimated.

Precipitation amounts given occurrence of precipitation

In the case of precipitation amounts, we estimate directly the quantiles we are inter-
ested in by quantile regression. We assume that r1, ..., rL∗ are observed precipitation
amounts of cases with observed precipitation above a given lower threshold. Moreover,
let z1, ..., zL∗ be the respective predictor values, where zl = (zl1, ..., zlM ).
For linear quantile functions

qθ(zl;β) = β0 +
M�

m=1

βmzlm,

we solve the minimisation problem

arg min
β

L
∗�

l=1

ρθ(rl − qθ(zl;β)),

where ρθ is defined by

ρθ(u) =
�

uθ for u ≥ 0,
u(θ − 1) otherwise,

in order to get an estimate of the θ-quantile qθ(z;β), where θ ∈ (0, 1).
We have to repeat the minimisation for each quantile if we are interested in several quan-
tiles. Perhaps, we also have to put constraints on the β’s if we want to avoid crossing
quantiles.

However, the standard quantile regression might have the following two shortcomings:

• Restricting quantiles to be linear can be unrealistic, and it might be a problem to
find suitable transformations of the predictors.
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• It might cause trouble to put constraints on all the β’s in order to avoid crossing
quantiles.

Therefore, we employ the local quantile regression (LQR), that is we assume that the
quantiles are only locally linear in the neighbourhood of a given predictor value z.
We obtain an estimate for qθ(z;β) for a given predictor value z by

arg min
β

L
∗�

l=1

wlρθ(rl − qθ(zl;β)),

where

qθ(zl;β) = β0 +
M�

m=1

βm(zlm − zm),

and zm denotes the mth component of z.
In contrast to the first approach, the LQR technique

• gives a weight wl to each item in the sum and

• centers the predictors around z such that the estimate of qθ(z;β) is the estimate
of β0.

Hence, it suffices to put possible constraints on β0, and we need not do that for all β’s
simultaneously. We choose

wl = w
� ||zl − z||
hλ(z)

�
for l ∈ {1, ..., L∗}

as weights, where

w(u) =
�

(1− u3)3 for u ∈ [0, 1),
0 otherwise,

which is one possibility among many others.
In this connection, ||.|| is the Euclidean norm, λ ∈ (0, 1] a smoothing parameter and
hλ(z) the distance from z to the λL∗ nearest predictor value.
Thus, cases with predictor values close to z have greater impact on the fit than those
farther away.
Furthermore, we remark that there should be a scaling of each predictor variable before
computing the weights.

Forecasting

We make forecasts for the probability of precipitation by replacing α0,α1, ...,αJ in (2.27)
with estimates and inserting values for the predictor. This does not take account of the
uncertainties in the parameter estimates. However, those are negligible compared to the
model assumptions in many cases.
To make forecasts in terms of quantiles, let R be a random variable for precipitation,
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and qp the quantile we are interested in, that is P[R ≤ qp] = p. Moreover, let π̂ denote
the estimated probability of precipitation and c the threshold for precipitation.
To estimate qp, we need the estimates of the correct quantile for precipitation amounts
given that there is precipitation.
By using well-known facts from probability theory, we get

P[R ≤ qp|R > c] = P[c < R ≤ qp]
P[R > c] = 1− P[R ≤ c]− P[R > qp]

P[R > c]

= 1− (1− π̂)− (1− p)
π̂

= π̂ − (1− p)
π̂

= 1− 1− p
π̂
.

Hence, if we want to have a forecast of the p-quantile, we have to estimate the (1− 1−p
π̂

)-
quantile in the preceding considerations, which is possible only if π̂ is larger than 1− p.

To get good forecasts, we have to select the predictors carefully. For more flexibility
and a possible improvement of the forecasts one might allow the quantiles to depend
on different predictors. If the information consists of an raw ensemble of forecasts, that
could be useful.
It is straightforward to apply the method presented here to other weather quantities like
wind speed or temperature.

Since quantile regression yields quantile forecasts at a given level only, the challenge
is to ensure consistency in the sense that quantiles need to be constrained to be mono-
tonically increasing.
In the case of logistic regression, which yields probability forecasts at a given threshold
only, we have already seen in Subsection 2.2.3 how to solve the problem that threshold
non-exceedance probabilities need to be monotonically increasing.
The development of an analogous technique for quantile regression is a subject of current
research.
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Chapter 3

The ensemble copula coupling

(ECC) approach

Unfortunately, all the state-of-the-art techniques described in Section 2.2 are applicable
to single weather quantities at a single location and for a single look-ahead time only, as
previously mentioned.
On the contrary, the novel ensemble copula coupling (ECC) approach, which is intro-
duced in this chapter, is able to cope with spatial, temporal and cross-variate dependen-
cies.
We start with a description of the origins of the ECC notion, which are connected to the
design of the Bayesian processor of ensemble (BPE). Then, we carry on with elementary
and introductory examples to illustrate the basic idea of ECC. Afterwards, we expose
the complete theoretical development of our novel ECC technique. Finally, we show
that it is justified to consider ECC as a copula approach by studying its relationships to
so-called discrete copulas, which are introduced in this connection.

3.1 Origins of ECC: The Bayesian processor of ensemble

(BPE)

In this section, we study the so-called BPE, a theoretically-based method for probabilis-
tic forecasting of weather variables. This approach includes a crude, but very useful
idea, which we develop in our novel ECC method later on. In this sense, the BPE can
be considered as a contribution to the ECC notion. The BPE is an extended technique
and a generalisation of the Bayesian processor of output (BPO) introduced by Krzyszto-
fowicz and Maranzano, see [25] and [26], which processes output data from a numerical
weather prediction (NWP) model and optimally fuses them with climatic data in order
to quantify uncertainty about a predictand. In other words, the BPO processes single
values of multiple predictors into a posterior distribution function of a predictand.
In addition to this, according to [27] and [28], the achievement of the BPE is to process
an ensemble generated by multiple integrations of an NWP model and optimally fuse it
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with climatic data with the intention to quantify uncertainty about the predictand, to
get a full probability distribution of each predictand and to adjust the ensemble. This
means that the BPE technique can map a given raw ensemble into a posterior ensemble
which is calibrated, provides maximal informativeness and preserves the spatial, tem-
poral and intervariate dependence structure of the NWP output fields. The theoretical
framework of the BPE approach is given by the well-known and famous Bayesian statis-
tical theory. Bayes’ theorem and the law of the total probability are suitable and useful
tools for fusing information from different sources as well as for getting the posterior
distribution function of a predictand.
Hence, the BPE method shows that Bayesian theory can be applied to complex forecast-
ing challenges and contributes to an advanced understanding of the stochastic properties
of meteorological ensembles.
In the following, we summarise the main aspects of works by Bremnes, compare [5], on
the one hand, and Krzysztofowicz and Toth, see [27], [28], [29], [30] and [31], on the
other hand, in which the BPE is described in detail.

3.1.1 BPE for precipitation: Bremnes’ contribution

In [5], the BPE method is studied for two situations. First, a model for the probability
of precipitation is presented. Then, a further one for the distribution of precipitation
amount given that precipitation occurs is discussed.

Probability of precipitation

The BPE approach mainly consists of the idea to transform each variable to standard
normal and carry on as if the joint distribution was multivariate normal. To be precise,
Bayes’ rule, which is well-known from probability theory, is used to decompose the
estimation in simpler tasks. In our case here, this involves estimation of the distributions
of the predictor for the event that precipitation occurs and that precipitation does not
occur, respectively.
To continue with the theoretical details, let Y be a binary random variable defined via

Y =
�

1 if precipitation occurs,
0 if precipitation does not occur,

and let f0(x∗) and f1(x∗) be the respective densities of the predictor vector x∗ of length
M , where M ∈ N denotes the number of ensemble members, when observing precipita-
tion or not. Then, the probability of precipitation π can be calculated by
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π = P[Y = 1|x∗]

= πcf1(x∗)
(1− πc)f0(x∗) + πcf1(x∗)

=
�(1− πc)f0(x∗) + πcf1(x∗)

πcf1(x∗)

�−1

=
�
1 + 1− πc

πc
· f0(x∗)
f1(x∗)

�−1

, (3.1)

where πc = P[Y = 1] denotes the climatological probability of precipitation, and the
second equality follows from Bayes’ rule, as well as from the law of the total probability.
For multivariate Gaussian densities f0(x∗) and f1(x∗) with mean vector 0 = (0, ..., 0)
and invertible correlation matrices Σ0 and Σ1, we obtain by inserting in (3.1) that

π =



1 + 1− πc
πc

1

(2π)n/2
√

det(Σ0)
exp
�
−1

2
x∗tΣ−1

0
x∗
�

1

(2π)n/2
√

det(Σ1)
exp
�
−1

2
x∗tΣ−1

1
x∗
�





−1

=
�

1 + 1− πc
πc

�
det(Σ1)
det(Σ0) exp

�
−1

2
�
x∗tΣ−1

0
x∗ − x∗tΣ−1

1
x∗
���−1

. (3.2)

However, forecasts based on output data from atmospheric models are not normally
distributed.
Hence, we have to transform the original predictors x. While a single multivariate trans-
formation of x to x∗ cannot be found easily, that of each variable is possible by means
of the normal quantile transform as suggested in [25]. In [5], another technique called
local quantile-to-quantile transformation (LQQT) is employed, in which quantiles in the
standard normal distribution instead of the observations are used.
As a side note, we outline the technical details of the LQQT approach, which operates
on each ensemble member individually and whose aim is to remove biases by evolv-
ing transformations such that the climatology or marginal distribution of the adjusted
forecasts and of the observations is the same. Roughly speaking, this is achieved by or-
dering historical predictions and observations separately and estimating the relationship
between them. Then, we create a new adjusted ensemble by applying the fitted relation
to a new ensemble forecast.
To describe the procedure theoretically, let FY and FX be the cumulative distribu-
tion functions for observations and forecasts, respectively. From probability theory, it
is well-known that the random variable F−1

Y
(FX(X)) has the same distribution as the

observations, namely FY . However, this result only holds for variables which have a con-
tinuous distribution, and therefore it cannot be used directly for daily precipitation data.
Furthermore, both distribution functions are unknown, and we are forced to estimate
them. Our estimation of the transformation is based upon the relationship between the
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ordered samples of the two quantities. Then, we make adequate adjustments to deal
with no precipitation events.
We assume that the size of our training sample is N and that y(1) ≤ ... ≤ y(N) and
x(1) ≤ ... ≤ x(N) denote ordered observations and forecasts, respectively. Then, the es-
timation of the transformation is based upon the pairs (x(n), y(n)), where n ∈ {1, ..., N}.
Let n0 be the number of pairs for which either the observation or the forecast is zero or
below the lower threshold for precipitation occurrence, t(.) the estimated transformation
and r randomly chosen from {1, 2, ..., n0}.
For a new forecast xnew, we obtain the adjusted forecast ynew via

ynew(xnew) =
�
t(xnew) for xnew > 0
y(r) for xnew = 0.

The transformation t(.) can be estimated by local linear regression as follows. We assume
that, in the neighbourhood of xnew, the relation can be expressed by a linear function
t(x) = α0 + α1(x− xnew) whose coefficients α0 and α1 are estimated by minimising the
weighted least square loss function, namely

N�

n=n0+1

(y(n) − t(x(n)))2
w(x(n), xnew). (3.3)

In this connection, w(.) represents an appropriate weight function 1 giving more weight
to the forecast values close to xnew than to those further away. In accordance with the
definition of t(.), t(xnew) is the estimate of α0. In practice, it often suffices to estimate
the relation on a fine grid and get forecasts in between by linear interpolation, so that we
need not solve the minimisation problem for every new predictor value as theoretically
required. Ideally, t(x(n0)) should take the value 0, but this need not be obeyed by (3.3).
However, this constraint usually poses no problems in practical applications, especially
if large training samples are involved.

Precipitation amounts

In the BPE approach for continuous variables, like precipitation amount in our case
here, we first have to transform the observed precipitation amounts and each predictor
variable separately to the standard normal distribution. In this connection, we have
to be conscious of the fact that all distributions are conditioned on that there will be
precipitation.
Let Y ∗ and X∗ be random variables for precipitation observations and forecasts for
days with precipitation, respectively. In practice, Y ∗ and X∗ are transformations of the

1For the experiments and evaluations in [5],

w(xm, xnew) =
�

(1− ( |xm−x |
d )3)3 if |xm − xnew| < d,

0 otherwise,
is taken as a weight function, where the constant d is the degree of smoothness in the transformation.
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original variables.
Moreover, we assume that

Y
∗ ∼ N (µ0,σ

2

0)

and

X∗|Y ∗ = y ∼ N (α+ β y,S),

which means that multivariate linear regression can be employed to model the distribu-
tion of the predictor vector given the observation, see [21].
Since, in practice, all parameters are unknown, we employ plug-in estimates to ascertain
the distribution of Y ∗|X∗ = x.
It is important to remember that, in reality, precipitation observations and predictions
do not follow a normal distribution. Therefore, we have to use transformations of those
to ensure the correspondence to reality of our model.
Again, the LQQT approach is applied in order to achieve a transformation for each
variable separately by means of the normal quantile transform.
Finally, the distribution of Y ∗|X∗ = x allows the derivation of the conditional distribu-
tion in original units.

Application of BPE forecasts in hydrological models

For deterministic hydrological runoff models, temporal simulations of precipitation and
temperature are required as input, amongst other data. Calibration of ensembles using
separate BPE models for each lead time can be problematic because the BPE technique
provides fully specified probability distributions as an output, but the temporal dimen-
sion is ignored. If we simply sampled from each BPE model and randomly linked the
samples in time, we would disregard the inherent temporal dependence structure in the
raw ensemble forecasts.
This unfortunate situation can be improved by proceeding according to the following
scheme, which can be found in Section 3.3 in [5]:

1. For each lead time, we compute as many quantiles from the BPE model as there
are ensemble members. It is desirable that the quantiles are evenly distributed. If
the ensemble comprises M members, then we could take the 1

M+1
,

2

M+1
, ...,

M

M+1

quantiles, for instance.

2. We determine the rank for each raw ensemble member at every lead time.

3. For each ensemble member, we employ its ranks to select corresponding BPE
quantiles and connect those in time.

The procedure described above is very useful, and a similar concept is employed in the
development of our novel ECC approach, which is presented in the next sections.
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3.1.2 BPE: Krzysztofowicz’ and Toth’s contribution

We now get a general idea of the BPE concept by Krzysztofowicz and Toth as described in
[27], [28], [29] and [30]. The aim of the development of the BPE is to provide a statistical
technique for probabilistic weather forecasting in the context of ensembles based on
Bayesian statistical theory. In particular, the BPE method should fulfil requirements
such as

• calibration of forecasts, that is reliability and unbiasedness,

• robustness of estimators,

• structural flexibility and ability to combine information from different sources and
of different types, namely ensembles from multiple centers, high resolution forecasts
and observations and climatic data, respectively,

• computational efficiency and

• appropriation of applicable versions for binary, multi-category and continuous pre-
dictands.

The main information to be fused by the BPE approach stem from two sources, namely
from the NWP ensemble forecasts on the one hand and the climatic data or observations
on the other hand.
For the description of the theoretical framework, let Y denote a predictand, X =
(X1, ...,XM ) an ensemble forecast and Ξ = (Ξ1, ...,ΞN ) sufficient statistics, where Ξ =
T (X) and N < M . Furthermore, to sketch the BPE theory for continuous predictands,
let g(y) be the prior density modelling the climatic uncertainty and stemming from a long
climatic sample of Y and f(ξ|y) be the conditional density function modelling stochas-
tic dependence and based on a short joint sample of (Ξ, Y ). Stochastic dependence is
often modelled by a joint density function π. Here, we consider two continuous variates
interpreted as a predictand Y and a predictor Ξ such that

π(y, ξ) = φ(y|ξ)κ(ξ) = f(ξ|y)g(y), (3.4)

where φ and f are conditional density functions and κ and g marginal density functions.
As similarly described in [31], the two factorisations of π in (3.4) are equivalent if they
satisfy

1. the law of the total probability

κ(ξ) =
∞�

−∞

f(ξ|y)g(y)dy (3.5)

and
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2. Bayes’ theorem
φ(y|ξ) = f(ξ|y)g(y)

κ(ξ) . (3.6)

These two steps are known as the BPE.
All in all, we have to model and estimate g and f first. Then, we derive κ and φ ac-
cording to the two steps. This leads to a complete and consistent model of stochastic
dependence which employs all available and given data.
We have to note that f(ξ|y) replaces f(x|y) in those calculations. This is correct ac-
cording to the informativeness arguments discussed above. In real time, ξ is given, and
we write φ(y) instead of φ(y|ξ).
In [31], it is described how to model and estimate, respectively, f and g in the case of a
univariate predictor Ξ. By inserting the properties of f and g in (3.5), we get κ, which
leads to φ via (3.6). This procedure might be applied to multivariate predictors Ξ as
ensemble forecasts similarly, for example by using multiple linear regression instead of
simple linear regression as in [31] in the context of parameter estimation.

At the end of this subsection, we summarise the main properties of the BPE approach.
The method provides a theoretically-based optimal fusion of an ensemble forecast with
climatic data. It revises a prior climatic distribution given an ensemble forecast based
on the comparison of past forecasts with observations. The theoretic details of the BPE
technique are always valid, and a framework for different modelling assumptions or esti-
mation procedures is offered. Moreover, the BPE method is able to handle distributions
of arbitrary form as well as non-linear and heteroscedastic dependency structures. It is
a parametric approach being robust when the joint sample is small. As an output, the
BPE provides the posterior distribution with corresponding density function and the
probability of non-exceedance for each member, which is identical for all predictands.

Moreover, BPE produces a calibrated posterior ensemble by mapping each member into
a posterior quantile via the inverse of the posterior distribution function, see Slide 6 in
[30]. In this connection, note that given the posterior distribution function, any quantile
can be calculated. This procedure is very similar to the notion proposed by Bremnes in
[5] in the context of the application of BPE forecasts in hydrological models, which we
discussed right at the end of Subsection 3.1.1.
It is illustrated for the case of precipitation amount in Figure 3.1, which is taken from
Slide 7 in [30]. Thereby, departing from our previous notation, Y is employed to de-
scribe ensemble forecasts, W denotes a predictand—precipitation amount in our case
here—, and X = T (Y) are sufficient statistics. In particular, y(1), y(2) and y(3) denote
the ordered raw ensemble forecasts and p(1), p(2) and p(3) the corresponding probabili-
ties of non-exceedance. The postprocessed BPE ensemble is then given by the quantiles
w(1), w(2) and w(3), where w(1) = Φ−1(p(1)), w(2) = Φ−1(p(2)) and w(3) = Φ−1(p(3)), and
Φ−1 denotes the inverse of the posterior distribution function.
The crude, but very useful notion by Krzysztofowicz and Toth, see [30], and Bremnes,
compare [5], appearing in the context of the BPE and discussed at the end of this and
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Figure 3.1: Construction of the calibrated BPE ensemble, compare Slide 7 in [30]. Take care of
the different notation in comparison to that of the main text in this subsection.

the preceding subsection, respectively, will play a role in the development of the ECC
approach, which we present in the next sections.

All in all, the BPE technique removes biases in the distribution, guarantees calibra-
tion of the adjusted ensemble, and spatial, temporal or cross-variate rank correlations
in the raw ensemble are preserved. A scheme of the BPE approach is given in Figure
3.2, which summarises the main aspects of the BPE procedure discussed before and is
based upon the information given in the references mentioned above.
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Figure 3.2: Scheme of the BPE approach

3.2 Basic idea and initial simulation examples of ECC

Before outlining its theoretical details, we describe briefly the general notion of the ECC
approach and study first simulations to illustrate the potential of our novel tool.
The ECC method essentially proceeds in two steps:

1. We employ state-of-the-art ensemble postprocessing techniques as proposed in the
preceding section in order to obtain calibrated and sharp univariate probabilistic
forecasts for each weather variable, location and look-ahead time individually.

2. We aggregate the univariate distributions of the first step in a copula approach and
ensure that the multivariate dependence structure is inherited from the original
numerical weather prediction (NWP) ensemble, whence the flow dependency is
captured.

To get a first impression of the idea of ECC, we consider 24 hours-ahead ensemble
forecasts for temperature in Kelvin at the two locations Berlin and Hamburg, valid
at 0000 Coordinated Universal Time (UTC) on 27 May 2010. The forecast data are
from the European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble
consisting of M = 50 members that are exchangeable. This data set is employed in the
practical part of this thesis later on, see Chapter 5.

We start with the unprocessed raw ensemble forecasts for temperature xm in Berlin and

67



280 282 284 286

2
7

9
2

8
1

2
8

3
2

8
5

Raw Ensemble

Berlin

H
a

m
b

u
rg

280 282 284 286

2
7

9
2

8
1

2
8

3
2

8
5

Postprocessed Ensemble

Berlin
H

a
m

b
u

rg

280 282 284 286

2
7

9
2

8
1

2
8

3
2

8
5

ECC Ensemble

Berlin

H
a

m
b

u
rg

 
Figure 3.3: Raw ensemble, postprocessed ensemble and ECC ensemble for 24 hours-ahead
forecasts for temperature in Kelvin at Berlin and Hamburg valid at 0000 UTC on 27 May 2010.
The verifying observation is indicated by a blue dot.

ym in Hamburg, where m ∈ {1, ..., 50}, given by the NWP models, that is

( x1����
Berlin

, y1����
Hamburg

)

� �� �
ensemble member number 1

, ..., ( x50����
Berlin

, y50����
Hamburg

)

� �� �
ensemble member number 50

.

Then, we form the univariate order statistics xσ(1) < ... < xσ(50) for Berlin and yτ(1) <

... < yτ(50) for Hamburg, respectively, where σ and τ denote permutations of {1, ..., 50}.
For ties, that is, if at least two ensemble forecasts have the same value, the correspond-
ing ranks are randomly chosen from those that are possible depending on the respective
situation and assigned then.
In the next step, the well-known univariate postprocessing techniques previously dis-
cussed provide predictive distributions, say Fx and Fy, for temperature at the two loca-
tions Berlin and Hamburg separately.
Afterwards, we take samples x̂1, ..., x̂50 and ŷ1, ..., ŷ50 from Fx and Fy, respectively.
In our case, Fx and Fy are obtained by BMA, compare Subsection 2.2.1, and the samples
are just the m

50.5
-quantiles, where m ∈ {1, ..., 50}. Details are explained later on in this

thesis.
Under the assumption of independence, a first naive approach would take (x̂1, ŷ1), ...,
(x̂50, ŷ50) as the statistically postprocessed bivariate ensemble. This site-by-site postpro-
cessed ensemble is bias-corrected and removes dispersion errors, but ignores dependen-
cies, in the sense that the bivariate rank order information of the NWP raw ensemble is
lost.
This shortcoming is restored by the ECC technique taking (x̂σ(1), ŷτ(1)), ...,
(x̂σ(50), ŷτ(50)) as the postprocessed bivariate ensemble, which ensures the inheritance
of the bivariate dependence structure from the dynamic NWP ensemble. That is, we re-
order both the x̂m-values following the order of the raw ensemble xm and the ŷm-values
following the order of the raw ensemble ym to get a postprocessed bivariate forecast
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Figure 3.4: Raw ensemble, postprocessed ensemble and ECC ensemble for 24 hours-ahead
forecasts for temperature in Kelvin at Berlin, Hamburg and Frankfurt valid at 0000 UTC on 27
May 2010. The verifying observation is indicated by a blue dot.

ensemble retaining the dynamic properties from the original physical model.
We remark that the site-by-site postprocessed and the ECC postprocessed ensemble
forecasts possess the same univariate margins. Nevertheless, they obviously differ in the
bivariate dependence structure to a great extent.

To underline our explanations, we consider the illustrations in Figure 3.3.
In the left panel, the unprocessed raw ensemble forecasts are shown.
The picture in the middle presents the naively site-by-site postprocessed ensemble fore-
casts. Here, we detect the loss of the bivariate rank order characteristics of the un-
processed forecasts from the left pattern, even though biases and dispersion errors have
been corrected.
Finally, we have the ensemble forecasts postprocessed by the ECC method in the right
panel, and see that ECC corrects biases and dispersion errors like the naively postpro-
cessed ensemble does, but also takes account of the dependence structure given by the
dynamic NWP ensemble.

It is straightforward to employ this idea for J locations, where J ≥ 3. Another illustra-
tion for the case of J = 3 is given in Figure 3.4, in which we consider 24 hours-ahead raw
ensemble forecasts of the 50-member ECMWF ensemble for temperature in Kelvin valid
at 0000 UTC on 27 May 2010 at the three locations Berlin, Hamburg and Frankfurt and
the corresponding postprocessed ensembles according to the procedure for the bivariate
case in three-dimensional scatterplots. Again, it can be seen that ECC retains the rank
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Figure 3.5: Raw ensemble for 24 hours-ahead forecasts for temperature in Kelvin and sea level
pressure in Pascal at Berlin and Hamburg valid at 0000 UTC on 27 May 2010.
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Figure 3.6: Postprocessed ensemble for 24 hours-ahead forecasts for temperature in Kelvin and
sea level pressure in Pascal at Berlin and Hamburg valid at 0000 UTC on 27 May 2010.
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     Figure 3.7: ECC ensemble for 24 hours-ahead forecasts for temperature in Kelvin and sea level
pressure in Pascal at Berlin and Hamburg valid at 0000 UTC on 27 May 2010.

order information from the raw ensemble.

In a next step, we consider 24 hours-ahead raw ensemble forecasts and the corresponding
postprocessed ensembles for two weather quantities at two locations. An example for
our ECMWF ensemble of size 50 is given by the scatterplot matrices in Figures 3.5, 3.6
and 3.7, where we focus on forecasts for temperature in Kelvin and sea level pressure in
Pascal at Berlin and Hamburg valid at 0000 UTC on 27 May 2010. We remark that the
results obtained in the precedent examples are corroborated.

After having presented several examples and simulations to get an overview of the topic,
we provide a complete theoretical description of the ECC method in the following section.

3.3 Theoretical development of the ECC method

In this section, we develop the ECC approach theoretically. Essentially, we generalise
the idea presented in the preceding section to an arbitrary number of locations, weather
quantities and prediction horizons.
For this purpose, let M denote the ensemble size, I the number of weather variables,
J the number of locations and K the number of look-ahead times. Moreover, the M
ensemble members are assumed to be exchangeable. Then, the ECC technique proceeds
as follows:
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1. We are given the raw ensemble, namely the separate forecasts x1, ..., xM of all M
ensemble members for each weather quantity i, location j and prediction horizon
k individually, where i ∈ {1, ..., I}, j ∈ {1, ..., J} and k ∈ {1, ...,K}. The raw
ensemble is denoted by

x
(i,j,k)

1
, ..., x

(i,j,k)

M
or (x(i,j,k)

m )m=1,...,M , respectively,

for each fixed i ∈ {1, ..., I}, j ∈ {1, ..., J} and k ∈ {1, ...,K}, where m runs through
all ensemble members from 1 to M .
For instance, x(2,1,3)

1
, ..., x

(2,1,3)

10
or (x(2,1,3)

m )m=1,...,10, respectively, denotes the raw
ensemble consisting of forecasts of 10 ensemble members for weather variable 2,
location 1 and prediction horizon 3.
For reasons of simplicity and clarity, we write l for the vector consisting of the
indices i, j and k, where i ∈ {1, ..., I}, j ∈ {1, ..., J} and k ∈ {1, ...,K}, that is, we
set l := (i, j, k). Hence, if L denotes the number of all possible combinations of
i, j and k, we have l ∈ {1, ..., L} and obtain (xlm)m=1,...,M as the raw ensemble for
each fixed l.

2. We determine the order statistics of the M ensemble member forecasts at each
location, for each weather variable and for each prediction horizon separately.
Hence, if there are no ties in the raw ensemble forecasts, we have

x
l

σl(1)
< ... < x

l

σl(M)
for each fixed l,

where σl is a permutation of {1, ...,M}.
If there are ties in the raw ensemble forecasts, as is often the case when considering
precipitation, for example, the corresponding ranks, which are natural numbers,
and hence the corresponding permutation, are randomly chosen from those that
are possible depending on the situation at hand.
To be precise, if there are T raw ensemble forecast values that are equal, that is,
xm1 = ... = xmT for m1, ...,mT ∈ {1, ...,M}, we randomly choose the permutation
σl from above which fixes the uniquely determined ranks of the raw ensemble
forecasts without ties and randomly assigns the T ranks t1, ..., tT , where t1, ..., tT
are T successive natural numbers from {1, ...,M}, to the forecasts xm1 , ..., xmT .
Note that there are T ! possibilities to assign T ranks to the corresponding ensemble
members.
Hence, any natural number from 1 to M appears as a rank for one of the M
ensemble forecasts.

3. By employing state-of-the-art statistical ensemble postprocessing methods, com-
pare Section 2.2, we obtain calibrated and sharp univariate predictive distributions
Fxl for each fixed l, that is to say for each location, weather variable and look-ahead
time individually.

4. Then, in each case, that is, for each l, we generate a sample of size M from
the predictive distributions obtained in the preceding step and denote them by
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(x̂lm)m=1,...,M for each l.
For instance, those M values can be obtained by taking the equally spaced m

M+0.5
-

quantiles of the corresponding predictive distribution Fxl , where m runs through
all natural numbers from 1 to M , that is, the 1

M+0.5
,

2

M+0.5
, ...,

M

M+0.5
-quantiles.

5. Finally, the ECC approach takes (x̂l
σl(m)

)m=1,...,M for each l as the statistically
postprocessed ensemble forecast. The ECC ensemble inherits the multivariate
dependence structure from the raw ensemble, whose rank order information is
retained.

Indeed, as previously mentioned, ECC employs elements discussed in the context of
the BPE before, compare Section 3.1, and consists of two steps by firstly using ensem-
ble postprocessing methods to get univariate predictive distributions for each location,
weather variable and prediction horizon separately and then connecting them in a copula
approach, while the multivariate dependence structure is inherited from the raw ensem-
ble.
In the next section, we discuss to what extent ECC can be regarded as a copula technique
by studying its relationships to this rapidly developing field.

3.4 Relationships of the ECC approach to copulas

We now outline the connections of our novel ECC approach described in the previous
subsection to the field of copulas introduced in Section 2.1 and show that ECC — as
suggested by the name — is indeed a copula technique. For this purpose, we have to
introduce the concept of discrete copulas as proposed in [24] first.

3.4.1 Discrete copulas

The notion of discrete copulas can be seen as a discrete multivariate distribution function
with uniform discrete univariate marginals. In [24], Kolesárová et al. consider the special
case when the marginals coincide and correspond to the uniform probability distribution
on a set of cardinality M implying that then the range of the distribution function is

IM :=
�

0, 1
M
,

2
M
, ...,
M − 1
M
, 1
�
⊂ I = [0, 1].

However, the discussion in [24] focuses on the bivariate case only. We generalise certain
definitions and results by extending them to the multivariate situation required by the
ECC approach. If such a generalisation is not possible or not obvious at all, we comment
on the results in [24] for the bivariate case.
Before starting with the technical details, we want to emphasise the relevance of discrete
copulas to the ECC method. As an initial example, we consider a bivariate random
vector H = (X,Y ) for a population of size M . For instance, in terms of ECC, we can
sample two-dimensional data corresponding to 24 hours-ahead forecasts for temperature
at Berlin X and Hamburg Y for an ensemble consisting of M members. If we assume
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that there are no ties among the forecast values, then both margins X and Y of the
bivariate distribution of H are uniformly distributed with step 1

M
, and the distribution

functions F and G, respectively, of the margins X and Y take values in IM , that is,
Ran(F )=Ran(G)=IM . According to the discrete version of Sklar’s theorem, which will
be presented in Theorem 3.8 in Subsection 3.4.3 later on, there exists a unique discrete
copula D on IM such that H(x, y) = D(F (x), G(y)), that is, the bivariate distribution
is connected to its univariate margins by the discrete copula D.
After this illustration, we switch to the general situation by considering random vectors
(X1
, ...,X

L) and note that even in case of ties, the range of the distribution functions of
the Xl, where l ∈ {1, ..., L}, is not IM , but a proper subset of IM that includes 0 and 1.
The main idea is that the joint distribution of (X1

, ...,X
L) can be expressed in terms

of the subcopula CM of some copula C. Hence, discrete copulas contribute to a better
understanding of the dependence structure of the multivariate distribution.
We continue with the theoretical development of the concept of discrete copulas and
show the relationship to the setting of our ECC approach.

Discrete copulas are a special class of subcopulas D, compare Definition 2.10 in Subsec-
tion 2.1.2, defined on Dom(D) = IM1 × · · ·× IML , where IMl :=

�
0, 1

Ml
,

2

Ml
, ...,

Ml−1

Ml
, 1
�

is a subset of I containing 0 and 1, and l ∈ {1, ..., L}.

Definition 3.1: A function D : IM1 × · · · × IML → I with the following properties
is called an L-dimensional discrete copula or a discrete L-copula on IM1 × ...× IML .

1. D is grounded, that is D(u) = 0 for all u = (u1, ..., uL) ∈ Dom (D) such that
ul = 0 for at least one l ∈ {1, ..., L}.

2. D has one-dimensional margins Dl, that is, Dl(x) = D(1, ..., 1, x����
position l

, 1, ..., 1) = x

for all x ∈ IMl , l ∈ {1, ..., L}. Hence, if all coordinates of u ∈ Dom(D) are 1 except
ul, then D(u) = ul.

3. D is L-increasing, that is VD([a,b]) ≥ 0 for every a,b ∈ Dom(D) such that a ≤ b,
where VD([a,b]) = ∆b

aD(u) = ∆bLaL ...∆
b1
a1D(u) with

∆blalD(u) = D(u1, ..., ul−1, bl, ul+1, ..., uL)−D(u1, ..., ul−1, al, ul+1, ..., uL),

compare Remark 2.3 in Subsection 2.1.1.

In what follows, we consider the situation in our ECC approach and stick to the no-
tation used in the previous section. Then, we have M := M1 = · · · = ML and thus
IM =

�
0, 1

M
, · · · , M−1

M
, 1
�

, where M denotes the number of ensemble members involved
in the ECC method. Moreover, L can be interpreted as the number of all possible states
of l := (i, j, k), that is l ∈ {1, ..., L}, where we recall that i ∈ {1, ..., I} denotes a weather
quantity, j ∈ {1, ..., J} a location and k ∈ {1, ...,K} a prediction horizon among the I
weather variables, J locations and K look-ahead times we consider.
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In our situation, which we refer to with immediate effect, we define discrete copulas as
follows.

Definition 3.2: A function D : IM × · · ·× IM� �� �
L times

→ I is called a discrete (L-)copula

on IM × · · ·× IM if

• D is grounded,

• D has one-dimensional margins Dl satisfying Dl(t) = t for all t ∈ IM , where
l ∈ {1, ..., L}, and

• D is L-increasing.

From now on, we write DM instead of D in this case in order to underline that we deal
with discrete copulas.

Remark 3.3: Since IM is a subset of I containing 0 and 1, and by setting Sk = IM for
all k ∈ {1, ..., n} in Definition 2.10 in Subsection 2.1.2, we see that every discrete copula
is indeed a subcopula by definition.

Remark 3.4: Every L-subcopula and hence every discrete L-copula can be extended to
an L-copula, see [40]. This can be done by a multilinear interpolation of the subcopula
to a copula. For the bivariate case of L = 2, a proof can be found in [40]. In the
multivariate case of L > 2, the proof is more involved, compare [53].
Due to this possible extension, any discrete copula DM on IM× · · ·×IM is the restriction
to IM × · · ·× IM of some copula C, that is, we have DM = C|IM×···×IM . In general, for
a given discrete copula DM , the copula C whose restriction is equal to DM need not be
unique.
Conversely, the restriction to IM × · · ·× IM of a given copula C is a discrete copula.

3.4.2 Discretisation of copulas

Both the following definition and the subsequent results about the discretisation of cop-
ulas are versions for the multivariate case obtained by extending the corresponding
concepts for the bivariate case in Theorems 1 and 2 in [24].

Definition 3.5: For a given copula C, its restriction DM to IM × · · ·× IM� �� �
L times

is called

the discretisation of order M of C and we have

DM

�
i1

M
, ...,
iL

M

�
= C
�
i1

M
, ...,
iL

M

�
,

where il ∈ {0, 1, ...,M} for l ∈ {1, ..., L}.

75



Theorem 3.6: For a copula C and its discretisation DM of order M , we have

lim
M→∞

DM

� [Mu1]
M
, ...,

[MuL]
M

�
= lim
M→∞

C

� [Mu1]
M
, ...,

[MuL]
M

�
= C(u1, ..., uL),

where u1, ..., uL ∈ I, and [x] is the integer part of x ∈ R.

Hence, every copula is the limit of the sequence of its discretisations. Conversely, the
following theorem holds.

Theorem 3.7: Let r ≥ 2 be a natural number and {Drs |s ∈ N, s ≥ 2} be a sequence
of discrete copulas satisfying the condition Drs( ri1rs , ...,

riL
rs

) = Drs−1( i1
rs−1 , ...,

iL
rs−1 ) for

0 ≤ i1, ..., iL ≤ rs−1. Then, the limit of the sequence {Drs( [r
s
u1]

rs
, ...,

[r
s
uL]

rs
)} exists at

every point (u1, ..., uL) ∈ IL and the function

C : IL → I, C(u1, ..., uL) := lim
s→∞
Drs

� [rsu1]
rs
, ...,

[rsuL]
rs

�

is a copula.

3.4.3 Discrete version of Sklar’s theorem

In Chapter 2, we have stated that Sklar’s theorem, see Theorems 2.20 and 2.23, respec-
tively, is a very important and fundamental result in the theory of copulas in general.
Thus, it is natural to search for a corresponding theorem which is valid in the discrete
setting we deal with in this section. In [35], Mayor et al. propose a discrete version of
Sklar’s theorem, which is presented in our terminology in the following result.

Theorem 3.8: Let F and G be distribution functions such that Ran (F )⊆ IM and
Ran (G)⊆ IM , where M ≥ 1.
If DM is a discrete copula on IM , then

H(u, v) = DM (F (u), G(v)) for all (u, v) ∈ R̄2

is a joint distribution function with Ran(H) ⊆ IM having F and G as marginal distri-
bution functions.
Conversely, if H is a joint distribution function with marginal distribution functions F
and G and Ran(H)⊆ IM , then there is a discrete copula DM on IM such that

H(u, v) = DM (F (u), G(v)) for all (u, v) ∈ R̄2
.

Moreover, this copula DM is uniquely determined if and only if Ran(F )=Ran(G)=IM .

Proof: See the proof of Theorem 1 in [35]. Note that the proof in [35] is given for
the equivalent scale IM = {0, ...,M}. �
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Furthermore, the following result holds, compare Corollary 2 in [35].

Corollary 3.9: Given F and G with Ran(F )=Ran(G)=IM , there are exactly M ! joint
distribution functions H with Ran(H)⊆ IM that have F and G as their marginal distri-
butions.

Remark 3.10: Following [35], Theorem 3.8 is formulated for the bivariate situation
here. However, a generalisation of the discrete version of Sklar’s theorem as stated
above to the multivariate case is very likely to be valid, too. Nevertheless, a rigorous
mathematical proof by extending the ideas and techniques used in the proof for the
bivariate case in [35] to higher dimensions has to be worked out.

3.4.4 Irreducible discrete copulas

Discrete copulas defined on IM × · · ·× IM� �� �
L times

allow to describe all L-variate random vectors

having discrete uniformly distributed marginals.
Note that IM ⊆ Ran(DM ) for any discrete copula DM , compare [24].
A special class of discrete copulas is given by the so-called irreducible discrete copulas.

Definition 3.11: A discrete (L-)copula DM : IM × · · ·× IM� �� �
L times

→ I is called irreducible if

it has minimal range, that is, Ran(DM )= IM . We denote the family of the irreducible
discrete copulas on IM by BM .

According to [37], the practical frame of irreducible discrete copulas is given by the
following considerations. For a population of size M , we look at a random vector
H := (X1

, ...,X
L). In terms of the ECC method, we can think of an ensemble consisting

of M members and random variables X1
, ...,X

L describing predictive distributions for
a single weather variable at a single location and for a single look-ahead time. We can
sample M times L-dimensional data corresponding to X1

, ...,X
L.

For reasons of simplicity, we assume that all sample values of X1
, ...,X

L are different.
Then, X1

, ...,X
L are uniformly distributed and Ran(FX1) = · · · = Ran(FXL) = IM ,

where FXl denotes the distribution function of X l for l ∈ {1, ..., L}. Furthermore, we
have Ran(FH) = IM for the joint distribution function FH of H, and hence the subcop-
ula DM : IM × · · ·× IM� �� �

L times

→ IM , which describes exactly this situation, is an irreducible

discrete copula.
The following theorem characterises irreducible discrete copulas in the bivariate case and
can be found in [24].

Theorem 3.12: A function DM : IM × IM → I is an irreducible discrete copula if
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and only if there is a permutation σ of {1, ...,M} such that

DM

�
i

M
,
j

M

�
= 1
M

j�

r=1

1{1,...,i}(σ(r)) for i, j ∈ {0, ...,M}. (3.7)

Moreover, there are exactly M ! irreducible discrete copulas on IM .

Proof: A proof for the equivalent scale IM = {0, ...,M} is given in [34], compare
Proposition 6 and Corollary 1 in that paper. �

In the context discussed before, the discrete probability distribution of the random vec-
tor H := (X1

, X
2) can be expressed by a matrix PH = (pH

ij
)M
i,j=1

, where pH
ij

= P[X1 =
x

1

(i)
, X

2 = x2

(j)
], and x1

(i)
and x2

(j)
denote the corresponding order statistics from samples

that describe values of X1 and X2, respectively, see [37]. We assume that all observed
values of X1 and X2, respectively, are different and recall the definition of a permutation
matrix, compare [34].
An (M×M)-permutation matrix A is an (M×M)-matrix A = (aij)Mi,j=1

such that there

is a permutation σ of {1, ...,M} such that aij =
�

1 if i = σ(j)
0 otherwise , which is equivalent

to the fact that in each row and in each column of A all entries are equal to 0 except
one which takes the value 1. Then, pH

ij
∈ {0, 1

M
} for all i, j and MPH is a permutation

matrix characterised by a permutation σH of {1, ...,M}, MpH
ij

= 1σH(i)(j).
The irreducible discrete copula DM written as an (M ×M)-matrix D = (dH

ij
)M
i,j=1

is the
cumulative counterpart of PH, namely

d
H

ij =
�

r≤i,s≤j
prs = 1

M

�

s≤j
1{σH(1),...,σH(i)}(s) = card({σH(1), ...,σH(i)} ∩ {1, ..., j}).

Conversely, we have pH
ij

= dH
ij
− dH
i−1,j
− dH
i,j−1

+ dH
i−1,j−1

, where dH
0j

= dH
i0

= 0 by con-
vention.
In a nutshell, the joint distribution function FH is fully characterised by the marginal
distribution functions FX1 and FX2 and the corresponding permutation σH, which spec-
ifies the dependence structure of H, see [37].

Example 3.13: In the style of the illustrations in [37], we discuss a specific exam-
ple for the considerations above. We consider 24 hours-ahead forecasts for temperature
at Berlin, Hamburg and Frankfurt described by random variables X1

, X
2 and X3, re-

spectively. We may think of statistically postprocessed ensemble forecasts obtained by
BMA such that the setting is similar to that of the initial simulation examples in Section
3.2, for instance. However, for reasons of clarity, we confine ourselves to an ensemble of
size 5 in this example here.
Let the forecast data be as in Table 3.1. The temperature values are given in Kelvin.
The irreducible discrete copula DH

5
: I5 × I5 → I5 which describes the random vector

H = (X1
, X

2), given in Table 3.1, can be expressed by a (5× 5)-matrix D := (dH
ij

)5

i,j=1
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Ensemble Member Temp. Berlin X1 Temp. Hamburg X2 Temp. Frankfurt X3

X
1-Order X

2-Order X
3-Order

1 289.2 288.7 289.8
1 4 4

2 290.4 289.5 290.1
5 5 5

3 289.6 288.4 289.4
3 2 1

4 289.4 288.3 289.5
2 1 2

5 289.8 288.6 289.7
4 3 3

Table 3.1: Data for Example 3.13

with dH
ij

= DH
5

( i
5
,
j

5
).

Since copulas are grounded, that is, C(0, x) = C(x, 0) = 0 for any (discrete) copula C,
we need not describe the values DH

5
(0, i

5
) = DH

5
( i

5
, 0) = 0 for each i ∈ {0, 1, ..., 5}. We

obtain

PH =





0 0 0 1

5

1

5
1

5

1

5

1

5

2

5

2

5
1

5

2

5

2

5

3

5

3

5
1

5

2

5

3

5

4

5

4

5
1

5

2

5

3

5

4

5
1




.

Observe that dH
ij

= P[H ∈ (−∞, u) × (−∞, v)], where u, v ∈ R, denote the values, for
which FX1(u) = P[X1

< u] = i

5
and FX2(v) = P[X2

< v] = j

5
, that is, dH

ij
= P[X1

<

u,X
2
< v].

For instance, if we consider the case i = j = 2, then any u ∈ (289.4, 289.6] and v ∈
(288.4, 288.6] fit FX1(u) = FX2(v) = 2

5
. Furthermore,

d
H

22 = P[X1
< 289.6, X2

< 288.6] = P[H ∈ {(289.4, 288.3)}] = 1
5 .

By employing the procedure proposed right before this example, we get

PH =





0 0 0 1

5
0

1

5
0 0 0 0

0 1

5
0 0 0

0 0 1

5
0 0

0 0 0 0 1

5




,

where PH = (pH
ij

)5

i,j=1
describes the discrete probability distribution of H = (X1

, X
2)

and pH
ij

= P[X1 = x1

(i)
, X

2 = x2

(j)
]. Thereby, x1

(i)
and x2

(j)
denote the corresponding order
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statistics from samples that describe values of X1 and X2, respectively.
Hence, in our situation, we obtain the permutation matrix

5PH =





0 0 0 1 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1




,

which is characterised by the permutation σH = (4, 1, 2, 3, 5) of {1, ..., 5}, that is,

σH =
�

1 2 3 4 5
σH(1) σH(2) σH(3) σH(4) σH(5)

�

=
�

1 2 3 4 5
4 1 2 3 5

�

.

To illustrate the connection of σH to the data given in Table 3.1, we enumerate the order
of the forecasts for temperature in Berlin and Hamburg. The results can be found in
Table 3.1, too. After having reordered the forecasts following the X1-order, we see that
σH corresponds to the record of X2-order. Moreover, we recall Table 3.1 and observe
that it is possible to compute the permutation σG describing the dependence structure
of the random vector G = (X2

, X
3) without knowing DG

5
or the corresponding matrix,

see Table 3.1, from which we derive that σG = (2, 1, 3, 4, 5).

Remark 3.14: For ordinary bivariate copulas, a product structure can be defined,
compare [6]. Its irreducible discrete counterpart can be specified by the composition of
the corresponding permutations, see [34]. According to [37], the statistical interpreta-
tion is the following one: If σH characterises the dependence structure of the random
vector H = (X1

, X
2), and σG the one of G = (X3

, X
2), then the dependence structure

of Q = (X1
, X

3) is specified by σQ = σH ◦ σG = σ(X1,X2) ◦ σ(X2,X3).

Example 3.15: We continue Example 3.13 and stick to the data and notation employed
therein. By applying Remark 3.14, we obtain that the permutation σQ describing the
dependence structure of Q = (X1

, X
3) is given by

σQ = σH ◦ σG = (4, 1, 2, 3, 5) ◦ (2, 1, 3, 4, 5) = (4, 2, 1, 3, 5).

To understand this result, we recall the orderedX1-sample (289.2,289.4,289.6,289.8.290.4)
and the ordered X3-sample (289.4,289.5,289.7,290.1).
Since σQ(1) = 4, Q should contain the pair (289.2,289.8) in its sample.
Analogously, we derive that due to σQ(2) = 2, σQ(3) = 1, σQ(4) = 3 and σQ(5) = 5,
respectively, Q should also contain the pairs (289.4,289.5), (289.6,289.4), (289.8,289.7)
and (290.4,290.1), respectively, in its sample.
Obviously, the pairs named above exactly correspond to the forecast data introduced in
Table 3.1.
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3.4.5 Interpretation of ECC as a copula approach

We now want to show the relationship between the facts about discrete copulas we col-
lected and our ECC technique.
In the bivariate case, we know that each irreducible discrete copula related to a permu-
tation σ describes the order statistics of x1 and x2 samples that are coupled together,
that is, if x1

(i)
is the j-th order statistic in the x1 sample, then x2

(i)
is the σ(j)-th order

statistic in the x2 sample, compare [37] or Section 4 in [38].
For the L-dimensional case, where L > 2, we employ the following very important and
useful remark, which can be found in section 4 in [38], to demonstrate the connections
between discrete copulas and ECC.

Remark 3.16: DM : IM × · · ·× IM� �� �
L times

→ IM is an irreducible discrete copula if and

only if there are permutations σ1, ...,σL of {1, ...,M} such that the sample

(x1

1, x
2

1, ..., x
L

1 ), (x1

2, x
2

2, ..., x
L

2 ), ..., (x1

M , x
2

M , ..., x
L

M ) or — in short — (xlm)l=1,...,L

m=1,...,M

with distinct values on each fixed coordinate can be written as

(x1

(σ1(1))
, x

2

(σ2(1))
, ..., x

L

(σL(1))
), (x1

(σ1(2))
, x

2

(σ2(2))
, ..., x

L

(σL(2))
), ...,

(x1

(σ1(M))
, x

2

(σ2(M))
, ..., x

L

(σL(M))
) or — in short — (xl

(σl(m))
)l=1,...,L

m=1,...,M
,

where xi
(j)

is the j-th order statistic in the sample from the i-th coordinate.

We now comment on this result with a view to the ECC method.
The remark explains why it is justified to consider ECC as a copula approach because it
establishes a correspondence of the ECC procedure to irreducible discrete copulas. The
second part in Remark 3.16 describes exactly the steps to be done in the ECC approach
if we identify the notation and the elements, respectively, as follows:

• m ∈ {1, ...,M} denotes an ensemble member among the ensemble of size M .

• l = (i, j, k) denotes a combination of i ∈ {1, ..., I}, j ∈ {1, ..., J} and k ∈ {1, ...,K},
where i represents one of I weather variables, j one of J locations and k one of K
prediction horizons.
If L is the number of all possible combinations of i, j and k, we have l ∈ {1, ..., L}.
Hence, L can also be interpreted as the number of univariate statistically postpro-
cessed prediction distributions for a single location, a single weather quantity and
a single look-ahead time in the ECC approach.

• The permutations σ1, ...,σL of {1, ...,M} in terms of ECC are just those generating
the order statistics of the raw ensemble.

• In the ECC method, the sample (xlm)l=1,...,L

m=1,...,M
in Remark 3.16 is just the sample

(x̂lm)l=1,...,L

m=1,...,M
of size M for fixed l from the univariate distribution Fxl obtained by
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state-of-the-art univariate postprocessing methods, using for example the m

M+0.5
-

quantiles, where m ∈ {1, ...,M}.

If Ξl for fixed l ∈ {1, ..., L} denotes the discrete random variable that can take the values
(x̂lm)m=1,...,M = (x̂l

1
, ..., x̂

l

M
) with corresponding distribution function GΞl taking values

in IM , then, according to Sklar’s theorem, we have H defined by

H(u1, ..., uL) := DM (GΞ1(u1), ..., GΞL(uL)) for all (u1, ..., uL) ∈ R̄L

where DM is the irreducible discrete copula on IM from Remark 3.16, as a joint distribu-
tion function with Ran(H)⊆ IM having GΞ1 , ..., GΞL as marginal distribution functions.

Hence, according to Remark 3.16, ECC is clearly linked to irreducible discrete copu-
las, and there is indeed a justification to speak of ECC as a copula approach.

3.4.6 Several properties of discrete copulas in the bivariate case

Finally, for reasons of completeness, we discuss some interesting properties of discrete
copulas in the bivariate situation only, compare [24]. They do not go with our general
ECC approach, but of course they can be employed if ECC is applied in a bivariate case,
for example for the statistical postprocessing of ensemble forecasts for a single weather
quantity and a single prediction horizon at two locations.
Before starting, we recall the definition of a bistochastic matrix from probability theory.

Definition 3.17: A matrix A = (aij)Mi,j=1
is called bistochastic if all its entries are

non-negative and the sum of the entries of every row and every column is equal to 1,

that is, aij ≥ 0 for all i, j and
M�
i=1

aim =
M�
j=1

amj = 1 for all m ∈ {1, ...,M}.

The following theorem deals with the relationship of discrete copulas and bistochas-
tic matrices.

Theorem 3.18: For a function DM : IM × IM → I, the following statements are
equivalent:

1. DM is a discrete copula.

2. There exists a bistochastic matrix A = (aij)Mi,j=1
such that

d
(M)

ij
:= DM

�
i

M
,
j

M

�
= 1
M

i�

r=1

j�

s=1

ars (3.8)

for i, j ∈ {0, 1, 2, ...,M}.

Proof: See the proof of Proposition 2 in [24]. �

Example 3.19:
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1. The bistochastic matrix corresponding to the discrete copula W 2

M
: IM × IM → I,

W
2

M

�
i

M
,
j

M

�
= max

�
i+j−M
M
, 0
�

, where i, j ∈ {0, ...,M}, is given by

A(W 2

M ) =





0 0 . . . 0 1
0 0 . . . 1 0
...

... . . . ...
...

1 0 . . . 0 0




.

2. The bistochastic matrix corresponding to the discrete copula Π2

M
: IM × IM → I,

Π2

M

�
i

M
,
j

M

�
= i

M
· j
M

= ij

M2 , where i, j ∈ {0, ...,M}, is given by

A(Π2

M ) =





1

M

1

M
. . .

1

M
1

M

1

M
. . .

1

M...
... . . . ...

1

M

1

M
. . .

1

M




.

Hence, we have a one-to-one correspondence between the set of all copulas of order M
and the set of all (M ×M)-matrices that are bistochastic.
It is obvious that (3.8) generalises (3.7) in the sense that irreducible discrete copulas are
characterised by bistochastic matrices with values 0 and 1, namely aij = 1{i}(σ(j)) ∈
{0, 1}.
As we have seen before, the product of irreducible discrete copulas is characterised by
the composition of the corresponding permutations. We now extend this notion to all
discrete copulas on IM as proposed in [24].

Definition 3.20: Let D(1)

M
and D(2)

M
be discrete copulas both defined on IM × IM

with values in I and let A1 and A2 be the corresponding (M ×M)-bistochastic matrices
of D(1)

M
and D(2)

M
, respectively. Then, the discrete copula DM that corresponds to the

bistochastic matrix A = A1 · A2 is called the product of D(1)

M
and D(2)

M
, and we write

DM = D(1)

M
∗D(2)

M
.

Remark 3.21:

1. The product of bistochastic matrices is a bistochastic matrix again.

2. "∗" is an associative binary operation, which is not commutative. Its neutral ele-
ment is linked to the identity matrix corresponding to the discrete copula defined
by M2

M

�
i

M
,
j

M

�
= min

�
i

M
,
j

M

�
, or equivalently M2

M
=M2|IM×IM .

Another useful result is that the product of discrete copulas commutes with convex sums.

Theorem 3.22: Let CM =
R�
r=1

crC
(r)

M
and DM =

S�
s=1

dsD
(s)

M
be convex sums of the
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discrete copulas C(1)

M
, ..., C

(R)

M
and D(1)

M
, ...,D

(S)

M
defined on IM × IM ; thus, we have

cr ≥ 0, ds ≥ 0 and
R�
r=1

cr =
S�
s=1

ds = 1 for all r ∈ {1, ..., R} and s ∈ {1, ..., S}. Then,

CM ∗DM =
R�

r=1

S�

s=1

crds(C(r)

M
∗D(s)

M
).

Proof: See the proof of Proposition 3 in [24]. �

Remark 3.23: The class DM of all discrete copulas defined on IM × IM is a con-
vex subclass of IIM×IM . Furthermore, DM is generated by the class BM of irreducible
discrete copulas defined on IM × IM .

Theorem 3.24: DM is the smallest convex set which contains BM , that is DM is
the convex closure of BM .

Proof: See the proof of Proposition 4 in [24]. �

Remark 3.25: According to [24], Theorem 3.24 is responsible for the fact that sev-
eral dependence parameters of discrete bivariate distributions commuting with convex
sums, such as Spearman’s rho, can be computed in a simple way. In such cases, it
suffices to know the values of these indices for irreducible discrete copulas only. Their
computation is rather easy and we finally use the representation of discrete copulas as
convex sums of irreducible discrete copulas.
In addition to this, since Theorems 3.22 and 3.24 hold, we can express the product of
discrete copulas by the convex sum of products of irreducible discrete copulas and hence
by the composition of permutations.

Remark 3.26: In this subsection, we focused on the presentation of concepts and
results for discrete copulas in the bivariate case only. However, an exceedingly interest-
ing question is if it would be possible to generalise the properties discussed before and
extend them to the multivariate situation. In this context, the general concept of an
n-stochastic matrix or a stochastic array A = (ai1...in)i1,...,in , for which ai1...in ≥ 0 and�
il

ai1...in = 1 for i1, ..., il−1, il, ..., in fixed and for all l ∈ {1, ..., n}, might be very useful.

A rigorous development of properties for discrete copulas in the multivariate case, which
could be based upon the notion mentioned before, is an exciting challenge for additional
future work. It would provide an advanced theoretical frame for our novel ECC method
and is therefore of great interest. Hence, it is desirable to make further examinations in
this direction.

3.4.7 Empirical copulas and Spearman’s rho

Another relationship of copulas to our ECC approach is given in the context of Spear-
man’s rho, a measure of concordance we have introduced in Subsection 2.1.6, where we
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studied among other things population versions of Spearman’s rho in terms of copu-
las. We recall that, in the bivariate case, for a vector (X1

, X
2) of continuous random

variables with copula C, we have

ρ(X1, X2) = 12
1�

0

1�

0

C(u, v)du dv − 3 = 12
1�

0

1�

0

(C(u, v)− uv)du dv,

as a population version of Spearman’s rho, compare Theorem 2.68, and a generalisation
for the multivariate situation of (X1

, ...,X
L) is given by

ρn,C = L+ 1
2L − (L+ 1)




2L
1�

0

...

1�

0

C
n(u)du− 1




 , L ≥ 2, u = (u1, ..., uL),

see Remark 2.75. The goal is now to study a sample version of Spearman’s rho that
can be applied to the ECC approach and is expressed in terms of copulas. For this
purpose, we present a special copula, the so-called empirical copula, which will play an
important role in what follows. We limit ourselves to the case of a sample of size M
from a continuous multivariate distribution, that is, we assume that there are no ties.

Definition 3.27: Let (xlm)l=1,...,L

m=1,...,M
denote a sample of size M from a multivariate

continuous distribution. Then, the empirical copula EM is defined by

EM

�
i1

M
, ...,
iL

M

�
=

card({(x1
, ..., x

L) in the sample |x1 ≤ x1

(i1)
, ..., x

L ≤ xL
(iL)
})

M

if il ≥ 1 for l ∈ {1, ..., L} and EM = 0 if il = 0 for at least one l ∈ {1, ..., L},
where x1

(i1)
, ..., x

L

(iL)
for 1 ≤ i1, ..., iL ≤ M are the marginal order statistics from the

sample.

Remark 3.28: Definition 3.27 is a generalisation of the definition of an empirical copula
in the bivariate case as proposed in [40]. Obviously, the empirical copula EM is an irre-
ducible discrete copula by definition because Ran(EM )=IM and Dom(EM )=IM × · · ·× IM� �� �

L times

.

Remark 3.29: An equivalent definition of empirical copulas is the following one which
can be found in Section 4 in [48]. For a sample (xlm)l=1,...,L

m=1,...,M
of size M from a multivari-

ate continuous distribution, we set U l
m,M

:= 1

M
rk(xlm), where rk(xlm) denotes the rank

of xlm in xl
1
, ..., x

l

M
. Then, we define the empirical copula by

EM

�
i1

M
, ...,
iL

M

�
= 1
M

M�

m=1

L�

l=1

1{U lm,M≤il}
,

where 0 ≤ i1, ..., iL ≤M .
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For the bivariate case, we obtain the following sample version of Spearman’s rho.

Theorem 3.30: Let EM be the empirical copula for the sample (xlm)l=1,2

m=1,...,M
. Then, a

sample version of Spearman’s rho is given by

rbi := ρsample, bi = 12
M2 − 1

M�

i=1

M�

j=1

�
EM

�
i

M
,
j

M

�
− i
M
· j
M

�
.

Proof: See [40]. �

Remark 3.31: According to [48], another sample version of Spearman’s rho in terms
of the considerations in Remark 3.29 is given by

r̃bi := 1− 6M
M2 − 1

M�

m=1

(U1

m,M − U2

m,M )2

if there are no ties in the sample.

Finally, we consider the multivariate situation.

Remark 3.32: For the multivariate case, we obtain

rmult := ρsample,mult = L+ 1
2L − (L+ 1)






2L −
1�

0

...

1�

0� �� �
L times

EM (u)du− 1






= L+ 1
2L − (L+ 1)

�
2L
M

M�

m=1

L�

l=1

(1− U lm,M )− 1
�

,

where u = ( i1
M
, ...,

iL
M

) ∈ IM × · · ·× IM� �� �
L times

, as a sample version of Spearman’s rho, compare

[48].
We note that, for L = 2, rmult differs slightly from the expression for r̃bi in Remark
3.31. However, according to [48], it can be verified that rmult ≤ r̃bi for M ∈ N and
lim
M→∞

√
M(rmult− r̃bi) = 0 almost surely. Hence, rmult and r̃bi have the same asymptotic

distribution in the bivariate case.

We recall that only continuous multivariate distributions were considered. For a sample
version of Spearman’s rho in the bivariate case which takes possible ties into account,
we refer to Section 5 in [41].

As we have seen, Spearman’s rho can be expressed in terms of empirical copulas, which
are discrete copulas. Since Spearman’s rho only depends on the empirical copula and the
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ranks, respectively, and the ensemble size, but not on the observation or forecast values
themselves, and ECC is just designed in such a manner that the ECC ensemble inherits
the multivariate rank structure from the raw ensemble, Spearman’s rho obviously has
the same value for both the raw ensemble and the ECC postprocessed ensemble. Hence,
we have another justification to consider ECC as a copula approach.
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Chapter 4

Assessment methods for uni- and

multivariate probabilistic

forecasts

In this chapter, we discuss methods of assessing the predictive performance of probabilis-
tic forecasts for both univariate and multivariate, vector-valued quantities as suggested
by Gneiting et al. [16]. Such techniques are presented for both a discrete forecast en-
semble and a continuous predictive distribution in form of a density forecast. However,
the distinction between ensemble forecasts and density forecasts is artificial because, on
the one hand, we can sample from a predictive density to get a forecast ensemble, and
on the other hand, we might replace a forecast ensemble by a density estimate.
According to [14], the goal of probabilistic forecasting is that the predictive distributions
show maximal sharpness, subject to calibration.
Moreover, so-called proper scoring rules provide summary measures that are employed
to evaluate probabilistic forecasts, see for example [15].
In what follows, we outline the methods proposed in [16] for the assessment of calibra-
tion and sharpness for probabilistic forecasts of multivariate, L-dimensional quantities,
as well as some proper scoring rules for this setting, and establish relationships to the
univariate case of L = 1.
In so doing, we often focus on the case of small dimension, say L = 2, and we remark that
whenever the dimension of the forecast vector is large, attention typically concentrates
on low-dimensional functionals. In this case, the approaches described here can still be
applied.
We limit ourselves to the case of quantities with values in R or RL, respectively. As-
sessment methods for angular variables like wind direction in the univariate case can be
found in Section 2.d in [1].
Some of the methods below are employed for the evaluation of the ECC technique, which
is discussed in Chapter 5.
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Form of the VRH Interpretation
uniform calibrated ensemble
U-shaped underdispersed ensembles,

ensemble ranges are too narrow
hump- or inverse U-shaped overdispersed ensemble
skewed central tendencies are biased

Table 4.1: Interpretation of the form of a VRH

4.1 Assessing calibration

Calibration relates to the statistical consistency between the probabilistic forecasts and
the observations. It is a joint property of both the predictive distributions and the
vector-valued events that occur.
For a univariate predictand, calibration is checked by the so-called Talagrand diagram
or verification rank histogram (VRH). For an ensemble forecast of size M , the ordered
ensemble values partition the real line into M + 1 bins. We find the verification rank,
which is the bin occupied by the verifying observation, namely a number between 1 and
M + 1, repeat over a sizable amount of individual forecast cases and aggregate ranks.
The Talagrand histogram or VRH is the histogram of these ranks.
In a calibrated ensemble, the verifying observation is equally likely to fall into any of
the bins. Therefore, we evaluate calibration by checking for deviations from uniformity
in the VRH.
To quantify this, we look at the discrepancy or reliability index

∆ =
M+1�

m=1

����fm −
1

M + 1

���� , (4.1)

where fm denotes the observed relative frequency of rank m.
From a graphical point of view, the form of the VRH provides information about cali-
bration, which is summarised in Table 4.1.

An analogue of the VRH for ensemble forecasts of a multivariate quantity in RL is
the multivariate rank histogram (MRH), which is introduced in the following.
Let M be the ensemble size and x = (x1, ..., xL) ∈ RL and y = (y1, ..., yL) ∈ RL be two
vectors. We write x ≤ y if and only if xl ≤ yl for all l ∈ {1, ..., L}.

Let {xm ∈ RL|m = 1, ...,M} be a given ensemble forecast and x0 ∈ RL the correspond-
ing verifying observation. Then, the MRH is constructed according to the following
scheme:

1. Standardisation (not necessary, but often useful):
A principal component transform to the pooled set {xm|m = 0, ...,M} is used
in order to get a standardised observation x∗

0
, as well as standardised ensemble

member forecasts x∗m, where m = 1, ...,M .
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2. Assignment of pre-ranks:

For m = 0, ...,M , we find the pre-ranks ρm =
M�
n=0

1{x∗n≤x∗m} of x∗m among the
union of the observation and the ensemble member forecasts, which might be
standardised. We note that ρm is an integer between 1 and M + 1 for each m.

3. Determination of the multivariate rank r:
r is the rank of the observation pre-rank, with ties resolved at random. Let s<

and s= be defined by s< =
M�
m=0

1{ρm<ρ0} and s= =
M�
m=0

1{ρm=ρ0}. Then, r, which
is an integer between 1 and M + 1, is selected from a discrete uniform distribution
on {s< + 1, ..., s< + s=}.

4. Repetition over individual forecast cases

5. Plot of the resulting rank histogram

The multivariate rank is uniform if the ensemble members and the verifying observation
are exchangeable and reduces to the previously discussed univariate verification rank in
the case of L = 1.
From a graphical point of view, the MRH is a plot of the empirical frequency of the
multivariate ranks. The interpretation of the form of the MRH is the same as for the
VRH in dimension L = 1.

There exists another tool to check whether multivariate ensemble forecasts are calibrated
which is similar to the MRH. It is called the minimum spanning tree rank histogram
(MSTRH), is proposed in [56] and obtained by replacing the steps 2 and 3 in the con-
struction of the MRH by 2* and 3* as follows:

2.* Computation of minimum spanning trees:
We find the minimum spanning tree (MST) of {x∗n|n ∈ {0, ...,M} \ {m}} and its
length lm > 0 for m = 0, ...,M .
If we have a set of M points in RL, a spanning tree is a collection of M − 1 edges
such that all points are employed and that with the smallest length is the MST.

3.* Determination of the MST ranks r:
r is the rank of l0 within the pooled sample of MST lengths, with any ties resolved
at random.
If s< and s= are defined by s< =

M�
m=0

1{lm<l0} and s= =
M�
m=0

1{lm=l0}, then r,
which is a number between 1 and M + 1, is selected from a uniform distribution
on {s< + 1, ..., s< + s=}.
For a given ensemble forecast, the MST rank can be found by tallying the length
of the MST, which links the M ensemble members within the combined set of
the M + 1 lengths of the ensemble-only MST to the M MSTs achieved by the
substitution of the observations for each of the ensemble members.
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In the case of exchangeability of the ensemble members and the observation, the lengths
are exchangeable and the MST rank is uniform.
The empirical frequency of the MST ranks is plotted in a rank histogram, which can
be used to check calibration. For an underdispersed or biased ensemble, there is an
overpopulation of the lowest MST ranks and for an overdispersed ensemble, the highest
ranks materialise too often.
The MSTRH cannot be constructed for dimension L = 1.

The two methods for the multivariate case presented above are closely related to tests
for exchangeability. Below, we assume the invariance of the function
F : RL × RL × · · ·× RL� �� �

M times

→ R under permutations of its final M arguments.

For a given ensemble forecast x1, ..,xM ∈ RL and the realizing observation x0 ∈ RL, we
define zm via zm = F (xm; x−m) for m = 0, ...,M , where x−m is the set {x0,x1, ...,xM}\
{xm}. If there exists exchangeability between the observation and the ensemble mem-
bers, the rank of z0, which might be randomised and is calculated with the observation
in the first argument, among {z0, z1, ..., zM} is uniform on {1, ...,M + 1}.
By determining a rank for each individual forecast, collecting them and checking the
corresponding rank histogram for uniformity, we can judge exchangeability.
Special choices of the function F yield the techniques previously introduced as follows.

• If F is a coordinative projection for the first argument, our procedure leads to the
univariate VRH.

• By using standardised values and setting F (xm; x−m) =
M�
n=0

1{xn≤xm}, we obtain
the pre-rank as in the construction of the MRH.

• If the value of F is the length of the MST for the second set-valued argument, we
get the MSTRH.

We now focus on calibration checks for density forecasts.
The MRH and the MSTRH cannot only be used to assess calibration for ensemble fore-
casts, but also for density forecasts if we generate an ensemble forecast by sampling from
the predictive density.
Nevertheless, other techniques depending on the predictive density itself or a function
thereof are available, and we point out some below.
For the univariate case, we can employ the probability integral transform (PIT), which
is the value the predictive CDF attains at the observation. If the predictive distribution
is continuous, and the observation is drawn from it, the PIT is uniformly distributed on
I = [0, 1]. By plotting the histogram of the PIT values, we can check for uniformity and
consequently for calibration. The interpretation is the same as for the VRH.
For the multivariate case, we might look at PIT histograms for projections and scan
for non-uniform directions, but this is not a genuinely multivariate approach. Amongst
other methods, the Box density ordinate transform (BOT) is able to handle calibration
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checks for multivariate density forecasts. Let p denote the predictive density for a future
quantity and x0 be the materialisation. Moreover, let X be a random vector with density
p. Then, a version of the BOT is given by u = 1− P[p(X) ≤ p(x0)].
In this connection, we consider the following example. If X ∼ NL(µ,Σ), then u =
1 − χ2

L
((x0 − µ)tΣ−1(x0 − µ)) equals one minus the CDF of a χ2-distribution with L

degrees of freedom, when evaluated at the standardised observation.
If x0 has density p and p(X) is continuously distributed, then u is standard uniform. In
addition to this, a randomised version of the BOT stays uniform if p(X) has discrete
components. However, its power is diminished.

Under the assumption of exchangeability between the ensemble members and the veri-
fying observation, we expect the empirical distribution of the ensemble values and that
of the realisations to be statistically consistent if compositing over forecast cases in a
steady state. These two empirical distributions can be compared by plotting a so-called
marginal calibration diagram. In so doing, dispersion errors, as well as forecast biases,
can be unmasked.

4.2 Assessing sharpness

Sharpness refers to the concentration of the predictive distribution. The sharper the
probabilistic forecast, the less uncertainty, and the sharper, the better, subject to cali-
bration.
For an ensemble forecast for a univariate quantity, this fact can be expressed as follows:
The smaller the ensemble spread, the sharper, and the sharper, the better, subject to
proper coverage. Ensemble spread is mostly quantified by the ensemble range or the
ensemble standard deviation.
In the multivariate case, a generalisation of the univariate standard deviation as a mea-
sure of spread is given by the determinant sharpness (DS), namely

DS = (det(Σ))1/(2L)
,

where Σ ∈ RL×L is the covariance matrix of an ensemble or density forecast for a variable
in RL. The DS measure can be applied to both ensembles of size M > L and predictive
densities with finite second moments.
However, according to a comment of Jolliffe in [16], the usage of the DS for predictive
distributions with nearly singular covariance matrix Σ may pose problems. A possible
resolution is to reduce the dimension to nearly orthogonal components.
Besides the DS, there exist other tools to quantify sharpness, like for example the volume
of the convex hull or bounding box of an ensemble forecast, see [58] or [22]. Furthermore,
Angulo and Ruiz-Medina suggested to quantify sharpness via entropy criteria, see the
comment in [16].
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4.3 Proper scoring rules as performance measures

A scoring rule is a summary measure for the assessment of probabilistic forecasts in the
sense that a numerical score based on the predictive distribution and on the occurring
event or value is assigned.
As a convention, we consider scoring rules to be negatively orientated penalties s(P,x)
which should be minimised by the forecaster, where P is the predictive distribution
suggested by the forecaster and x ∈ RL the occurring value.
Let s(P,Q) denote the expected value of s(P,X) for the case of X ∼ Q.
An exceedingly important property of scoring rules is propriety, which is defined as
follows. Let the predictive distribution Q be the forecaster’s best judgement. Then, a
scoring rule is called proper if

s(Q,Q) ≤ s(P,Q) (4.2)
for all P and Q. A scoring rule is called strictly proper if (4.2) holds with equality if
and only if P = Q.
According to the definition of propriety, a proper scoring rule causes that the forecaster
has no incentive to predict any P �= Q and encourages him to quote his true belief
P = Q. Propriety ensures that a scoring rule takes account of calibration and sharpness
simultaneously.
A well-known and widely used proper scoring rule for probabilistic forecasts of a uni-
variate scalar quantity is the continuous ranked probability score (CRPS) defined as

crps(P, x) =
∞�

−∞

(F (y)− 1{y≥x})2
dy

� �� �
standard form

= EP [|X − x|]− 1
2EP

�
|X −X �|

�

� �� �
kernel score representation

,

where F denotes the CDF associated with the predictive distribution P , and X and X �
are independent random variables that have distribution P and finite first moment.
A direct generalisation of the CRPS to evaluate probabilistic forecasts of a multivariate
quantity is given by the energy score (ES), which is a proper scoring rule defined by

es(P,x) = EP [||X− x||]− 1
2EP

�
||X−X�||

�
, (4.3)

where ||.|| denotes the Euclidean norm, and X and X� are independent random vectors
with distribution P and EP [||X||] <∞.
If P = Pens is an ensemble forecast comprising M members, the ES can be explicitly
determined as follows. Since the predictive distribution Pens places point mass 1

M
on the

ensemble members x1, ...,xM ∈ RL, inserting in (4.3) yields

es(Pens,x) = 1
M

M�

m=1

||xm − x||− 1
2M2

M�

n=1

M�

m=1

||xn − xm||. (4.4)

For a deterministic forecast, namely if P = δµ is the point measure in µ ∈ RL, the ES
reduces to es(δµ,x) = ||µ− x||.
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Thus, the ES can be applied to both ensemble forecasts and density forecasts and is a
direct way of comparing them by using a single metric.
If the expectations in (4.3) cannot be derived in closed forms, we replace (4.3) by a
computationally efficient Monte Carlo approximation.
Moreover, if the components are incomparable in magnitude, it might be useful or even
necessary to employ a standardisation of both observations and ensemble forecasts, de-
pending on the application we consider. This is due to the fact that the Euclidean
variant of the ES does not make any distinction between the components of the forecast
vector.

Besides the ES, which also holds for ensemble forecasts, there are several other proper
scoring rules for assessing the forecast performance if the predictive distribution P of a
multivariate quantity has a density function p. The most important ones are

• the logarithmic score logs(P,x) = − log p(x),

• the quadratic score qs(P,x) = −2p(x) + ||p||2 and

• the spherical score sphs(P,x) = −p(x)

||p|| ,

see for example [33]. In this context, ||p||2 =
�
p(y)2 dy.

Those three scoring rules can be applied to density forecasts exclusively.
Of course, they are applicable to univariate quantities, too.
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Assessment methods for probabilistic forecasting 
 

Characteristic 
 

Univariate Quantity Multivariate Quantity 

 
 
calibration 
(statistical consistency 
between the probabilistic 
forecasts and the 
observations) 

ensemble forecasts: 

• Talagrand histogram / 
verification rank 
histogram 

 
density forecasts: 

• probability integral 
transform 

ensemble forecasts: 

• multivariate rank 
histogram 

• minimum spanning 
tree rank histogram 

 
density forecasts: 

• Box density ordinate 
transform 

 
sharpness 
(measure of spread) 

• ensemble standard 
deviation 

• ensemble range 

 

• determinant 
sharpness 

 
 
 
proper scoring rules  
(ranking and comparison 
of competing forecast 
methods) 

ensemble forecasts: 

• continuous ranked 
probability score 

 
density forecasts: 

• continuous ranked 
probability score 

• logarithmic score 

• quadratic score 

• spherical score 
 

ensemble forecasts: 

• energy score 
 
density forecasts: 

• energy score 

• logarithmic score 

• quadratic score 

• spherical score 

 

Table 4.2: Assessment methods

4.4 Summary

The tools presented above possess some appealing properties like simplicity, generality
and interpretability. They can be applied in both parametric and non-parametric settings
and do not require models to be nested.
Table 4.2 shows a summary of the most important assessment techniques for probabilistic
forecasts named in this chapter.
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Chapter 5

Practical applications and

assessment of the ECC technique

After having studied of the methodological background and the theoretical development
of the ECC approach in the precedent chapter, we now want to test and illustrate our
novel technique in some practical applications with real data. Moreover, its predictive
performance shall be evaluated and compared to that of other methods.

To be precise, we apply ECC to the 50-member ensemble of the European Centre
for Medium-Range Weather Forecasts (ECMWF). The ECMWF is an international
and intergovernmental organisation located in Reading, England, and established in
1975, which is supported by 32 states and provides operational medium- and extended-
range weather forecasts and a state-of-the-art super-computing facility for scientific re-
search. Furthermore, the ECMWF develops several numerical methods for medium-
range weather forecasting, does scientific and technical research in order to improve
them and collects and stores appropriate meteorological data. In addition, the organ-
isation collaborates with satellite agencies and the European Commission. These and
further facts about the ECMWF can be found on the website http://www.ecmwf.int.

We start with a description of the ECMWF data set and the preliminaries like data
cleaning or data transformation, for instance, that have to be done before accomplishing
the case study, in the first section of this chapter.
The procedural method and some results of the applications of the ECC technique are
the subjects being dealt with in the second section.
This chapter is completed by an evaluation of ECC, as far as calibration and sharpness
of the prediction are concerned, by employing some of the assessment tools presented
in Chapter 4 to our ECC forecasts based on the ECMWF data set and comparing the
predictive performance with that of the unprocessed raw ensemble and other techniques
in the third and final section.
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Berlin Hamburg Frankfurt
(Tegel) (Fuhlsbüttel) (Airport)

identification number 10382 10147 10637
longitude in degrees’minutes 13’19 east 10’00 east 8’35 east
latitude in degrees’minutes 52’34 north 53’37 north 50’02 north
elevation in metres 37 16 113

Table 5.1: Geographical facts about the observation sites Berlin, Hamburg and Frankfurt

5.1 Data set and preliminaries

5.1.1 Observation sites and data set

We start with a description of the ECMWF data set we work with in what follows.

The data consist of observations and ensemble forecasts for the three locations Berlin,
Hamburg and Frankfurt. Before pointing out the details of the composition of our
data set, we comment briefly on the three sites we focus on and collect some interest-
ing geographical and climatological facts about them. Those are mainly taken from
http://en.wikipedia.org or are given in the data set.

Table 5.1 provides geographical information about our three observation sites. Berlin,
Hamburg and Frankfurt are German cities having 3,400,000, 1,800,000 and 672,000 in-
habitants, respectively, and being located in the north temperate zone and the middle
latitudes, respectively, having an oceanic and semi-humid climate, compare the climatic
map on pages 220 and 221 in [59], which means that the climate is strongly influenced
by the sea, there are relatively small variations in temperature, comparably high wind
speeds, moderate temperatures and between six and nine humid months at an average,
where precipitation is greater than evaporation.

In contrast to Hamburg and Frankfurt, Berlin is situated near the transition zone from
the oceanic to the continental climate, which is characterised by great variations of tem-
perature in form of hot summers and cold winters, little precipitation and little influence
of the seas. In Berlin, there are warm summers and cold winters, whereas spring and
autumn are chilly to mild, in general. It is remarkable that in Berlin’s densely built-up
area, temperatures can be much higher than in the surrounding areas because the heat
is stored by the city’s buildings. Moreover, Berlin has a moderate rainfall throughout
the year and only light snowfall, mainly from December through March. In addition, it
can be observed that wind in Berlin mostly comes from northwest and southwest, often
with rather high speed and transporting maritime air. However, wind in Berlin often
comes from southeast and east as well, which is characteristic for high-pressure fronts of
continental air masses.
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Berlin
Mean Temperature (◦C) Mean Total Mean Number

Month Rainfall (mm) of Rain Days
Daily Minimum Daily Maximum

Jan -1.9 2.9 42.3 10.0
Feb -1.5 4.2 33.3 8.0
Mar 1.3 8.5 40.5 9.1
Apr 4.2 13.2 37.1 7.8
May 9.0 18.9 53.8 8.9
Jun 12.3 21.6 68.7 9.8
Jul 14.3 23.7 55.5 8.4
Aug 14.1 23.6 58.2 7.9
Sep 10.6 18.8 45.1 7.8
Oct 6.4 13.4 37.3 7.6
Nov 2.2 7.1 43.6 9.6
Dec -0.4 4.4 55.3 11.4

Table 5.2: Climate data for Berlin

Hamburg in Northern Germany has a mild climate, which is due to the proximity of
the city to coastal areas arousing oceanic influences. Furthermore, Hamburg’s climate is
humid throughout the year, and snowfall is rare. Especially in the winter, wind speeds
can be very high.

Frankfurt is one of the warmest cities in Germany with a very mild climate includ-
ing cool winters and warm summers. Wind in Frankfurt mostly comes from west.

Tables 5.2, 5.3 and 5.4 summarise some facts about the climate in Berlin, Hamburg
and Frankfurt, respectively. They show climatological information based on monthly
averages for the 30-year period from 1971 to 2000 and can be found on the World
Weather Information Service (WWIS) website http://www.worldweather.org, which
is sponsored by the World Meteorological Organization (WMO). We note that the mean
number of rain days corresponds to the mean number of days with at least one millimetre
of rain.

We now go into the structure of our raw data set provided by the ECMWF in detail.
Note that we are given both observations and forecasts for the three locations Berlin,
Hamburg and Frankfurt. However, they partly differ in their representation and form,
which is specified in the following.

Observations are available for Berlin, Hamburg and Frankfurt, respectively,

• from 1 January 1980 to 25 October 2010, every three hours, namely at 0000, 0300,
0600, 0900, 1200, 1500, 1800 and 2100 Coordinated Universal Time (UTC) and
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Hamburg
Mean Temperature (◦C) Mean Total Mean Number

Month Rainfall (mm) of Rain Days
Daily Minimum Daily Maximum

Jan -1.4 3.5 64.4 12.1
Feb -1.2 4.4 42.4 9.2
Mar 1.1 8.0 62.9 11.3
Apr 3.3 12.3 45.6 8.9
May 7.4 17.5 53.7 9.6
Jun 10.5 19.9 76.9 11.3
Jul 12.7 22.1 74.7 11.4
Aug 12.5 22.2 73.0 10.2
Sep 9.6 17.9 68.4 10.8
Oct 6.0 13.0 63.6 10.5
Nov 2.4 7.5 69.4 11.7
Dec 0.0 4.6 77.7 12.4

Table 5.3: Climate data for Hamburg

Frankfurt
Mean Temperature (◦C) Mean Total Mean Number

Month Rainfall (mm) of Rain Days
Daily Minimum Daily Maximum

Jan -1.3 4.0 42.5 9.8
Feb -1.2 5.6 37.1 7.1
Mar 1.9 10.4 47.6 9.3
Apr 4.1 14.5 42.8 8.5
May 8.4 19.5 60.2 9.8
Jun 11.7 22.3 60.6 10.3
Jul 13.7 24.8 64.9 9.3
Aug 13.4 24.8 52.9 7.8
Sep 10.1 20.1 50.0 8.1
Oct 6.0 14.0 54.6 9.3
Nov 2.1 7.7 51.8 9.7
Dec 0.0 5.0 55.7 9.9

Table 5.4: Climate data for Frankfurt
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• for the following weather variables:

– wind direction in degrees,
– wind speed in metres per second,
– temperature TK in Kelvin, where TK = TC + 273.16 if TC denotes the tem-

perature in degrees Celsius,
– precipitation in millimetres over the last six hours and
– sea level pressure in Pascal.

As far as the forecasts at Berlin, Hamburg and Frankfurt, respectively, are concerned, we
have to remark that ECMWF ensemble forecast models run on a regular grid consisting
of longitude and latitude grid points, which, in general, do not correspond exactly to
the observation sites. Hence, bilinear interpolation is employed to obtain the ensemble
forecasts at our three observation sites. This is a method that can be used in order to
determine intermediate values within a two-dimensional regular grid and which is com-
mon in the meteorological community and also in image processing.

Ensemble forecasts are available for Berlin, Hamburg and Frankfurt, respectively,

• in the period from 1 February 2010 to 21 October 2010, that is, for 263 initialisation
days, using initialisations at 0000 UTC on each day,

• made by 50 ensemble members,

• for 49 prediction horizons in steps of three hours and

• for the following weather variables:

– wind vectors, namely the u- and v-components, in metres per second,
– wind speed in metres per second,
– temperature in Kelvin,
– precipitation in metres, cumulative over all prediction horizons, and
– sea level pressure in Pascal.

5.1.2 Data cleaning

Plots of the temporal development of the observations suggest that it might be useful
and convenient to clean the raw observation data in the following way:

• In the original data, missing values are given the value -99. We change all -99-
values to "Not available (NA)"- entries.

• We assign "NA" to all observation values that are greater or less, respectively, than
the maximum or minimum weather records, respectively, of the corresponding
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Weather Quantity Record(s)
wind speed maximum of 103.3 m/s
temperature maximum of 321.15 K

minimum of 215.05 K
precipitation (over 12 hours, tropical cyclone) maximum of 1144 mm
sea level pressure maximum of 108560 Pa

minimum of 85000 Pa

Table 5.5: Weather records

weather quantity. In this connection, we employ the weather records presented in
Table 5.5 being based upon information from http://en.wikipedia.org.
We note that, if the wind speed is bad, we do not trust the wind direction either.
Therefore, we assign "NA" to the observation value of both wind speed and wind
direction in this case.

5.1.3 Data transformation

As mentioned before, the data form of the observations and the forecasts does not
always coincide. To be precise, transformations, as far as wind data and precipitation
are concerned, are obviously necessary in order to obtain a common data frame. In
what follows, we describe the procedure of transformation we employ in the cases of the
weather variables named above.

Wind

We recall that the observations are available for wind direction and wind speed, while
our forecasts are given in the form of wind vectors consisting of u- and v-components.
The relationship between the different variables is explained in the following.

The wind direction θ in degrees, where θ ∈ [0, 360), describes the direction from which
the wind is blowing. It increases clockwise from north, when viewed from above, and
hence, a wind direction of 0, 90, 180 and 270 degrees, respectively, describes a northerly,
easterly, southerly and westerly wind, respectively.

Wind vectors consist of two orthogonal velocity components called u and v, where u
is the zonal velocity, that is, the component of the horizontal wind towards east, and v
the meridional velocity, that is, the component of the horizontal wind towards north.
Hence, positive (negative) values of u imply a horizontal wind component towards east
(west), and positive (negative) values of v imply a horizontal wind component towards
north (south) and the other way round.

Wind data can be expressed either by wind vectors with u- and v-components, as in
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Figure 5.1: Wind: relationship between the variables. Exemplary illustrations for θ ∈ (0, 90)
(black) and θ� ∈ (180, 270) (red)

the case of our ensemble forecasts, or by wind direction θ and wind speed w being a
non-negative weather quantity, as in the case of our observations.
Figure 5.1 illustrates the relationship between the different variables. Elementary ge-
ometrical considerations including vector addition, addition theorems for sine and co-
sine and a case-by-case analysis among other things lead to the fact that the u- and
v-component can be expressed by

u = −w · sin
�
π

180 · θ
�

and v = −w · cos
�
π

180 · θ
�
, (5.1)

respectively, where θ ∈ [0, 360) denotes the wind direction in degrees and w the non-
negative wind speed. Further information about wind vectors can be found online at
http://mst.nerc.ac.uk/wind_vect_convs.html.
Hence, we use the formulas (5.1) to transform the observation data for wind given
by wind direction and wind speed into observation wind vectors consisting of u- and v-
components, while adopting the forecasts which are already given by u- and v-components.
We note that both the u- and the v-component can be assumed to be normally distributed
— a fact which is employed in the applications later on.
Finally, we mention that the wind speed w can be expressed in terms of u- and v-
components via w =

√
u2 + v2. According to Figure 5.1 and Pythagoras’ theorem, this
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Figure 5.2: Precipitation transformation scheme

is obvious.

Precipitation

In the case of precipitation, we proceed as described in the following.
Since the precipitation observations are given over the last six hours, and the forecasts
are cumulative over the prediction horizons, the following transformation is self-evident
and makes sense.
If the notation follows Figure 5.2, we have the correspondences

x1 − x0 ↔ y1,

x2 − x1 ↔ y2,

and so on. In this sense, we implement our precipitation transformations such that we
always consider the precipitation over the last six hours for both forecasts and observa-
tions.
Moreover, we choose millimetres as the unit to be employed and thus have to transform
the forecasts into this order of magnitude as well.
Very occasionally, we obtain transformed precipitation values that are slightly less than
zero, which does not make sense, of course, and is likely due to rounding errors within
the data set. In those cases, the negative values are set to zero.

5.1.4 Overview of dependence structures

After having arranged the data cleaning and transformation as proposed before, we are
ready to apply the ECC method to our data set and see how it performs. Before pre-
senting the results in the next two sections of this chapter, we occupy ourselves with the
correlation structure within our data set first.
To get both an impression and an overview of the dependence structure between the
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Figure 5.3: Local correlations of the ensemble forecasts of pressure
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Figure 5.4: Local correlations of the ensemble forecasts of temperature

105



  

Berlin

-5 0 5 10

-5
0

5
1

0

-5
0

5
1

0

Hamburg

-5 0 5 10 -5 0 5

-5
0

5

Frankfurt

u-component

                 

Figure 5.5: Local correlations of the ensemble forecasts of the u-component 
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Figure 5.6: Local correlations of the ensemble forecasts of the v-component
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Figure 5.7: Local correlations of the ensemble forecasts of precipitation

weather quantities and the locations in our case study, we consider the scatterplot ma-
trices in Figures 5.3 to 5.10. Those are based upon 24 hours-ahead forecasts made by
the 50 ensemble members valid for the period from 14 March 2010 to 22 October 2010
at 0000 UTC on each of the 223 days. Figures 5.3 to 5.7 show the local correlations of
individual weather variables at our three observation sites Berlin, Hamburg and Frank-
furt.
In addition, Figures 5.8, 5.9 and 5.10 illustrate the cross-variate dependence structures
at each location individually.
In a nutshell, sea level pressure and temperature show the strongest local correlation,
which is positive in these cases, among the individual weather quantities. For wind
vectors and precipitation, there are also certain dependence patterns, but those are less
pronounced than in the cases of pressure and temperature. As far as cross-variate cor-
relations at a fixed observation site are concerned, we can observe a negative correlation
between temperature and sea level pressure, for instance.
As a rule, the dependence structures in the case of forecasts with a prediction horizon
of 48 hours look very similar to those for 24 hours-ahead forecasts.
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   Figure 5.8: Cross-variate dependence structures of the ensemble forecasts at Berlin

      
Figure 5.9: Cross-variate dependence structures of the ensemble forecasts at Hamburg
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Figure 5.10: Cross-variate dependence structures of the ensemble forecasts at Frankfurt

5.2 Procedural method and some results

We now apply the ECC approach to the cleaned and transformed data set presented in
the preceding section.
Before showing some results and commenting on them, we recall the procedure of ECC,
compare Section 3.3, and explain how it is realised and implemented in our case study.

We are given the unprocessed raw ensemble forecasts with their corresponding order
statistics by the ECMWF ensemble consisting of 50 members for temperature, sea level
pressure, precipitation and wind vectors in form of u- and v-components at Berlin, Ham-
burg and Frankfurt for 49 prediction horizons. In our examples in this thesis, we confine
ourselves to look-ahead times of 24 and 48 hours, respectively.
First of all, we employ the BMA technique, compare Subsection 2.2.1, to obtain sta-
tistically postprocessed univariate ensemble forecasts for each weather variable at each
location individually, in each case for prediction horizons of 24 and 48 hours, respectively.
In this connection, we employ the R package ensembleBMA to do the computation. Our
test period comprises the 223 days from 14 March 2010 to 22 October 2010 in the case
of 24 hours-ahead forecasts and the 222 days from 16 March 2010 to 23 October 2010 in
the case of 48 hours-ahead forecasts, respectively. We employ a sliding training period
of 40 days in the BMA postprocessing procedure for both prediction horizons. Note that
a 40-day sliding training period consists of the 40 most recent days prior to the forecast
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Figure 5.11: Raw, OQ, RQ and ECC ensemble for 24 hours-ahead forecasts for pressure in
Pascal at Berlin and Hamburg valid at 0000 UTC on 15 June 2010. The verifying observation is
indicated by a blue dot.

for which ensemble output and verifying observations are available. Hence, in terms of
calendar days, this period typically corresponds to more than 40 days. Moreover, we as-
sume that the ensemble members are exchangeable, which means that the BMA weights
are equal for all ensemble members. We recall that the BMA predictive distribution
is modelled by a mixture of normal distributions in the case of temperature, sea level
pressure and u- and v-components and a mixture of gamma distributions with point
mass at zero in the case of precipitation, respectively. Both versions are implemented in
the ensembleBMA package.

In the next step, we have to generate a sample of size 50 from each BMA predictive dis-
tribution. As suggested in the ECC description in Section 3.3, this is achieved by taking
the equally spaced m

50.5
-quantiles, where m runs through all natural numbers from 1 to

50, as samples in each case. Those can be calculated easily by using the corresponding
command in the ensembleBMA package.

Before doing the final ECC postprocessing, we first consider two other postprocessing
approaches. Under the naive assumption of independence, we simply take the quantiles
above of each BMA predictive distribution as the postprocessed multivariate ensem-
ble. In each case, we can either employ the increasing 1

50.5
,

2

50.5
, ...,

50

50.5
-quantiles in this

order or take the 50 different m

50.5
-quantiles, where m ∈ {1, ..., 50}, in an order being

randomly chosen. In what follows, the corresponding ensembles obtained by those two
techniques are called ordered quantiles (OQ) ensemble and random quantiles (RQ) en-
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Figure 5.12: Raw, OQ, RQ and ECC ensemble for 24 hours-ahead forecasts for temperature in
Kelvin at Berlin and Hamburg valid at 0000 UTC on 15 June 2010. The verifying observation is
indicated by a blue dot.

semble, respectively. However, the methods introduced above ignore spatial, temporal
and cross-variate dependencies in the sense that the multivariate rank order of the raw
ensemble is lost, as we will illustrate in our plots later on.

Finally, the last ECC step corrects those shortcomings by rearranging the 50 quantiles
with respect to the raw ensemble ranks, which leads to an inheritance of the multivariate
dependence structure given by the unprocessed original ensemble and a preservation of
the dynamical information from the physical model.

After those preliminary notes, we continue with the presentation of some selected results
now.
Beforehand, we remark that the focus in this section is on the predictive performance of
the ECC technique for certain single days only, whereas that over the whole test period
is assessed in the next section.
The figures presented in what follows consist of four scatterplots in each case. More
precisely, in each figure, we show the plots of the raw ensemble and the postprocessed
OQ, RQ and ECC ensembles. Thereby, we confine ourselves to forecasts for a prediction
horizon of 24 hours.

In Figure 5.11, the different ensemble forecasts for pressure at Berlin and Hamburg
valid at 0000 UTC on 15 June 2010 are illustrated, where the verifying observation is
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Figure 5.13: Raw, OQ, RQ and ECC ensemble for 24 hours-ahead forecasts for the wind vector
u-component in metres per second at Berlin and Hamburg valid at 0000 UTC on 15 June 2010.
The verifying observation is indicated by a blue dot.

indicated by a blue dot. As we can see, the ECC ensemble performs very well in this
case by correcting biases and dispersion errors within the raw ensemble and retaining the
dynamic properties of the original ensemble, whereas the OQ and the RQ ensembles ob-
viously lose the bivariate rank order information from the raw ensemble. Analogously, we
obtain similar results when considering all three locations Berlin, Hamburg and Frank-
furt together for the situation described before.

Of course, scatterplots in the same manner as before can be made for the other weather
variables, too. Exemplarily, we show the four ensemble forecast plots for temperature
and the wind vector u-component, respectively, at Berlin and Hamburg valid at 0000
UTC on 15 June 2010 in Figures 5.12 and 5.13, respectively.

Finally, we consider two examples for cross-variate dependence structures. In Figure
5.14, the four ensembles for forecasts of temperature and pressure at Hamburg valid at
0000 UTC on 15 June 2010 are presented. Figure 5.15 shows the corresponding ensemble
forecasts for the u- and v-wind vector components at Hamburg valid at 0000 UTC on
20 June 2010.
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Figure 5.14: Raw, OQ, RQ and ECC ensemble for 24 hours-ahead forecasts for pressure in
Pascal and temperature in Kelvin at Hamburg valid at 0000 UTC on 15 June 2010. The verifying
observation is indicated by a blue dot.
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Figure 5.15: Raw, OQ, RQ and ECC ensemble for 24 hours-ahead forecasts for the wind vector
u-and v-component in metres per second at Hamburg valid at 0000 UTC on 20 June 2010. The
verifying observation is indicated by a blue dot.
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5.3 Assessment of the ECC approach

In this section, we want to evaluate the predictive performance of our novel ECC tech-
nique over a test period by employing some of the assessment methods for multivariate
probabilistic forecasting proposed by Gneiting et al. in [16] and introduced in Chapter 4.
Moreover, the ECC ensemble performance is compared to that of both the raw ensemble
and the two other postprocessed ensemble versions presented in the preceding section,
namely the OQ and the RQ ensemble.

Before presenting our results, we briefly recall the tools from Chapter 4 that are used in
the following considerations.
Note that the general aim of probabilistic forecasting is to achieve sharpness of the fore-
casts subject to calibration, see [14].
To check calibration, we employ the multivariate rank histogram (MRH) and compute
the MRH discrepancy ∆, which quantifies deviation from uniformity, according to equa-
tion (4.1).
As an overall performance measure for multivariate forecasting techniques, we use the
negatively orientated energy score (ES). Since we deal with ensemble forecasts, we em-
ploy the ensemble version of the ES given by equation (4.4) in our case study. In
this context, note that we have to standardise both the observations and the ensemble
forecasts whenever quantities which are incomparable in magnitude are involved in the
computation of the ES. This is done as follows: For a fixed prediction horizon — as is
the case in our examples later, where we consider 24 hours- and 48 hours-ahead forecasts
—, we calculate the empirical mean

µ
ij = 1
D

D�

d=1

y
ij

d

and the empirical standard deviation

σ
ij =

���� 1
D − 1

D�

d=1

(yij
d
− µij)2

for each weather quantity i ∈ {1, ..., I} at each location j ∈ {1, ..., J} and transform each
observation yij and each forecast xijm of ensemble member m into the standardised ver-
sions ỹij and x̃ijm by setting ỹij := y

ij−µij
σij

and x̃ijm := x
ijm−µij
σij

, respectively, on each
day d ∈ {1, ...,D}. As a consequence, the ES has no unit when employing standardised
values. However, if we determine the ES for a single weather variable at different loca-
tions, for instance, we need not standardise, and the unit of the ES is the same as that
of the corresponding quantity in those cases.

Now we are ready to start with the discussion of our assessment results. Recall that in
our case study, we focus on prediction horizons of 24 and 48 hours, respectively. The
corresponding test periods comprise the 223 days from 14 March 2010 to 22 October
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2010 in the case of 24 hours-ahead forecasts and the 222 days from 16 March 2010 to
23 October 2010 in the case of 48 hours-ahead forecasts, respectively. Remember that
the sliding training period employed in the univariate ensemble postprocessing via BMA
consists of 40 days for both prediction horizons.

Of course, there is a variety of possible scenarios for our case study by examining dif-
ferent combinations of weather quantities and/or locations. In this thesis, we confine
ourselves to several exemplary situations, which might be particularly interesting. A
summarising discussion of the results is given for each scenario.
Thereby, note that for the RQ ensemble, the ES values are an average over 100 runs in
what follows.

Scenario 1

We assess the predictive performance of 24 hours-ahead and 48 hours-ahead forecasts
for each weather variable separately for different combinations of our locations Berlin,
Hamburg and Frankfurt. Hence, we are faced with two- and three-dimensional forecasts,
respectively, here.
Selected MRHs for several cases and the corresponding discrepancies are presented in
Figures 5.16 to 5.25 and Tables 5.6 and 5.7, respectively.
Tables 5.8 and 5.9 summarise the values for the ES in these situations.

For prediction horizons of both 24 and 48 hours, we observe that the ECC ensemble
is much better calibrated than the unprocessed raw ensemble and the OQ ensemble in
each of the cases we consider in this scenario. As a rule, as far as calibration is con-
cerned, ECC also slightly outperforms the RQ ensemble. Especially in case of pressure,
the ECC calibration performance turns out to be very nice compared to that of the other
methods.
However, we have to be conscious of the fact that due to the random component in the
development of the MRH, it is rather difficult to extract minor differences in the cali-
bration of our different approaches. Therefore, for a deeper analysis, it might be better
to take an average of for example 100 MRH simulations in each case as final MRH in
order to diminish the random component. Furthermore, it would be helpful if we were
able to apply our approaches to an extended data set consisting of longer test periods of
for example a whole year in order to improve both the expressiveness of our results and
the ECC calibration performance once again. Thereby, note that at the moment, we
have 51 possible multivariate ranks, but "only" 222 and 223 days, respectively., to make
the assessment. Nevertheless, the ECC calibration results presented in this scenario as
a first step are convincing, and we look forward to future and additional case studies.

As far as the average ES as an overall performance measure over our test periods is
concerned, ECC always outperforms both the raw and the OQ ensemble when dealing
with pressure, temperature and wind vectors.
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Ensemble Pressure Temperature u-component v-component Precipitation
Raw 1.79 0.75 0.93 0.85 0.66
OQ 0.55 0.80 0.77 0.75 0.52
RQ 0.56 0.41 0.39 0.38 0.44

ECC 0.30 0.40 0.36 0.36 0.43

Table 5.6: Discrepancies ∆ for prediction horizons of 24 hours for each weather variable sepa-
rately for the three locations Berlin, Hamburg and Frankfurt together. The values correspond
to the MRHs in Figures 5.16 to 5.20.

Ensemble Pressure Temperature u-component v-component Precipitation
Raw 1.77 0.63 0.96 0.83 0.63
OQ 0.56 0.72 0.78 0.71 0.54
RQ 0.49 0.46 0.39 0.41 0.35

ECC 0.36 0.44 0.36 0.33 0.38

Table 5.7: Discrepancies ∆ for prediction horizons of 48 hours for each weather variable sepa-
rately for the three locations Berlin, Hamburg and Frankfurt together. The values correspond
to the MRHs in Figures 5.21 to 5.25.

However, in the scenarios involving precipitation, ECC unfortunately fails to have a bet-
ter ES than the raw ensemble, although it predominantly performs better than the OQ
and RQ ensemble. Hence, it is obvious that this shortcoming arises from the univariate
ensemble postprocessing made by the BMA method. Indeed, a detailed analysis of this
circumstance shows that already the univariate BMA technique performs worse than
the raw ensemble for the locations of Hamburg and Frankfurt in case of 24 hours-ahead
forecasts and for all three observation sites in case of 48 hours-ahead forecasts, as far
as the average continuous ranked probability score (CRPS), which is just the univariate
variant of the ES, is concerned. In particular, it seems that BMA leads to bad results for
days on which the verifying precipitation amount is rather high, while in the surrounding
period of those days no or rather little precipitation occurs, among other possible error
sources. Thus, the employment of an alternative univariate ensemble postprocessing
method might yield results that are more satisfactory for the case of precipitation.
As a rule, ECC has a lower and thus a better ES than the RQ ensemble when con-
sidering pressure and temperature, while in case of wind vectors, that is, for u- and
v-components, there are situations in which the ES of the RQ ensemble is lower than
that of the ECC ensemble. As we have seen in Subsection 5.1.4, the spatial correlation
structure for pressure and temperature at our three observation sites is rather strong,
while that for both the u- and the v-component is less pronounced. Hence, we might
conclude that the stronger the dependence pattern is the better ECC performs, and
the full potential of our novel ECC technique is realised best in cases involving high
correlation structures.
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Figure 5.16: MRHs for 24 hours-ahead forecasts for pressure at Berlin, Hamburg and Frankfurt
valid at 0000 UTC during the period from 14 March 2010 to 22 October 2010 comprising 223
days
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Figure 5.17: MRHs for 24 hours-ahead forecasts for temperature at Berlin, Hamburg and Frank-
furt valid at 0000 UTC during the period from 14 March 2010 to 22 October 2010 comprising
223 days
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      Figure 5.18: MRHs for 24 hours-ahead forecasts for the wind vector u-component at Berlin,
Hamburg and Frankfurt valid at 0000 UTC during the period from 14 March 2010 to 22 October
2010 comprising 223 days
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      Figure 5.19: MRHs for 24 hours-ahead forecasts for the wind vector v-component at Berlin,
Hamburg and Frankfurt valid at 0000 UTC during the period from 14 March 2010 to 22 October
2010 comprising 223 days
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Figure 5.20: MRHs for 24 hours-ahead forecasts for precipitation at Berlin, Hamburg and Frank-
furt valid at 0000 UTC during the period from 14 March 2010 to 22 October 2010 comprising
223 days
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Figure 5.21: MRHs for 48 hours-ahead forecasts for pressure at Berlin, Hamburg and Frankfurt
valid at 0000 UTC during the period from 16 March 2010 to 23 October 2010 comprising 222
days
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Figure 5.22: MRHs for 48 hours-ahead forecasts for temperature at Berlin, Hamburg and Frank-
furt valid at 0000 UTC during the period from 16 March 2010 to 23 October 2010 comprising
222 days

 
Raw Ensemble

Multivariate Rank

F
re

q
u

e
n

c
y

0 10 20 30 40 50

0
2

0
4

0
6

0
8

0

OQ Ensemble

Multivariate Rank

F
re

q
u

e
n

c
y

0 10 20 30 40 50

0
2

0
4

0
6

0
8

0

RQ Ensemble

Multivariate Rank

F
re

q
u

e
n

c
y

0 10 20 30 40 50

0
2

0
4

0
6

0
8

0

ECC Ensemble

Multivariate Rank

F
re

q
u

e
n

c
y

0 10 20 30 40 50

0
2

0
4

0
6

0
8

0

     Figure 5.23: MRHs for 48 hours-ahead forecasts for the wind vector u-component at Berlin,
Hamburg and Frankfurt valid at 0000 UTC during the period from 16 March 2010 to 23 October
2010 comprising 222 days
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Figure 5.24: MRHs for 48 hours-ahead forecasts for the wind vector v-component at Berlin,
Hamburg and Frankfurt valid at 0000 UTC during the period from 16 March 2010 to 23 October
2010 comprising 222 days
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    Figure 5.25: MRHs for 48 hours-ahead forecasts for precipitation at Berlin, Hamburg and Frank-
furt valid at 0000 UTC during the period from 16 March 2010 to 23 October 2010 comprising
222 days

121



Berlin, Hamburg and Frankfurt
Ensemble Pressure Temperature u-component v-component Precipitation

(Pa) (K) (m/s) (m/s) (mm)
Raw 1271.6 2.183 1.710 1.813 1.139
OQ 76.5 1.735 1.371 1.566 1.241
RQ 76.7 1.638 1.288 1.486 1.205

ECC 74.6 1.636 1.292 1.489 1.206

Hamburg and Frankfurt
Ensemble Pressure Temperature u-component v-component Precipitation

(Pa) (K) (m/s) (m/s) (mm)
Raw 1232.3 1.630 1.407 1.535 0.952
OQ 60.8 1.260 1.039 1.344 1.043
RQ 60.6 1.212 0.980 1.299 1.028

ECC 59.6 1.210 0.980 1.297 1.028

Hamburg and Berlin
Ensemble Pressure Temperature u-component v-component Precipitation

(Pa) (K) (m/s) (m/s) (mm)
Raw 334.4 1.702 1.233 1.183 0.715
OQ 57.6 1.316 1.081 0.974 0.777
RQ 58.6 1.264 1.046 0.923 0.773

ECC 56.8 1.262 1.047 0.928 0.764

Berlin and Frankfurt
Ensemble Pressure Temperature u-component v-component Precipitation

(Pa) (K) (m/s) (m/s) (mm)
Raw 1278.9 1.845 1.414 1.556 0.769
OQ 63.0 1.438 1.056 1.292 0.788
RQ 62.4 1.361 0.997 1.245 0.777

ECC 61.5 1.362 0.999 1.247 0.776

Table 5.8: Average energy scores for prediction horizons of 24 hours for each weather variable
separately for different combinations of locations
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Berlin, Hamburg and Frankfurt
Ensemble Pressure Temperature u-component v-component Precipitation

(Pa) (K) (m/s) (m/s) (mm)
Raw 1229.3 2.216 1.644 1.753 1.204
OQ 127.4 1.939 1.467 1.678 1.297
RQ 129.8 1.850 1.392 1.586 1.266

ECC 125.4 1.846 1.392 1.588 1.267

Hamburg and Frankfurt
Ensemble Pressure Temperature u-component v-component Precipitation

(Pa) (K) (m/s) (m/s) (mm)
Raw 1194.2 1.661 1.356 1.493 1.031
OQ 100.7 1.426 1.112 1.432 1.085
RQ 101.6 1.380 1.054 1.377 1.074

ECC 99.5 1.375 1.056 1.377 1.073

Berlin and Hamburg
Ensemble Pressure Temperature u-component v-component Precipitation

(Pa) (K) (m/s) (m/s) (mm)
Raw 323.7 1.768 1.242 1.150 0.743
OQ 97.7 1.517 1.200 1.065 0.806
RQ 100.8 1.470 1.170 1.013 0.801

ECC 97.1 1.466 1.165 1.016 0.796

Berlin and Frankfurt
Ensemble Pressure Temperature u-component v-component Precipitation

(Pa) (K) (m/s) (m/s) (mm)
Raw 1240.8 1.833 1.308 1.494 0.796
OQ 104.3 1.570 1.087 1.371 0.839
RQ 104.5 1.4 1.036 1.316 0.826

ECC 102.4 1.499 1.040 1.318 0.825

Table 5.9: Average ES values for prediction horizons of 48 hours for each weather variable
separately for different combinations of locations
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Ensemble Ber Ham Fra Ber+Ham Ber+Fra Ham+Fra Ber+Ham
+Fra

Raw 0.5739 0.2466 2.2337 0.6263 2.2134 2.1439 2.2106
OQ 0.1874 0.1685 0.2078 0.2767 0.3089 0.2935 0.3723
RQ 0.1772 0.1614 0.1972 0.2590 0.2863 0.2751 0.3453

ECC 0.1766 0.1617 0.1970 0.2581 0.2858 0.2746 0.3447

Table 5.10: Average (standardised) ES values for prediction horizons of 24 hours when consider-
ing pressure and temperature for different combinations of the locations Berlin (Ber), Hamburg
(Ham) and Frankfurt (Fra)

Ensemble Ber Ham Fra Ber+Ham Ber+Fra Ham+Fra Ber+Ham
+Fra

Raw 0.5523 0.2739 2.1116 0.6222 2.1559 2.0872 2.1483
OQ 0.2399 0.2286 0.2539 0.3551 0.3768 0.3674 0.4613
RQ 0.2248 0.2146 0.2372 0.3320 0.3493 0.3425 0.4285

ECC 0.2246 0.2140 0.2365 0.3296 0.3477 0.3406 0.4258

Table 5.11: Average (standardised) ES values for prediction horizons of 48 hours when consider-
ing pressure and temperature for different combinations of the locations Berlin (Ber), Hamburg
(Ham) and Frankfurt (Fra)

Scenario 2

Now we consider examples, in which both cross-variate and inter-locational dependence
structures are involved. We examine the predictive performances in case of pressure
and temperature on the one hand and u- and v-wind vector components on the other
hand for several combinations of our three locations, which leads to two-, four-, or six-
dimensional forecasts, respectively.

Scenario 2a — Pressure and temperature

On the basis of Tables 5.10 and 5.11, we recognise that whenever considering pres-
sure and temperature simultaneously for different combinations of locations, ECC has
the best ES values in those situations nearly throughout, for prediction horizons of both
24 and 48 hours. In particular, it is apparent that the ECC ensemble outperforms the
raw ensemble to a great extent, and thus, the improvement of the forecasts obtained
by the ECC approach with respect to the ES is remarkable. Note that in those exam-
ples, we quasi deal with a kind of "maximal" correlation structure within our data set,
that is, we consider those weather quantities showing the strongest cross-variate and
inter-locational dependence patterns.
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Ensemble 24 hours-ahead 48 hours-ahead
Raw 0.88 0.84
OQ 1.13 1.09
RQ 0.45 0.37

ECC 0.35 0.39

Table 5.12: Discrepancies ∆ for prediction horizons of 24 and 48 hours, respectively, when
considering pressure and temperature at all the three locations Berlin, Hamburg and Frankfurt
simultaneously. The values belong to the MRHs in Figures 5.26 and 5.27.

Ensemble 24 hours-ahead 48 hours-ahead
Raw 1.17 1.01
OQ 0.96 1.03
RQ 0.36 0.47

ECC 0.34 0.39

Table 5.13: Discrepancies ∆ for prediction horizons of 24 and 48 hours, respectively, when
considering pressure and temperature at the locations Berlin and Hamburg simultaneously. The
values belong to the MRHs in Figures 5.28 and 5.29.

Ensemble 24 hours-ahead 48 hours-ahead
Raw 1.18 1.17
OQ 1.06 1.02
RQ 0.43 0.40

ECC 0.37 0.34

Table 5.14: Discrepancies ∆ for prediction horizons of 24 and 48 hours, respectively, when
considering pressure and temperature at the locations Berlin and Frankfurt simultaneously. The
values belong to the MRHs in Figures 5.30 and 5.31.

To illustrate the calibration performance of our different ensembles, we take a look at
the MRHs in Figures 5.26 to 5.31, which show exemplary results for selected situations.
The corresponding discrepancies can be found in Tables 5.12 to 5.14. It can be seen that
the convincing performance of the ECC method is corroborated by the MRH plots such
that, in a nutshell, the results in this scenario are especially nice.

125



  
Raw Ensemble

Multivariate Rank

F
re

q
u

e
n

c
y

0 10 20 30 40 50
0

1
0

2
0

3
0

4
0

5
0

6
0

OQ Ensemble

Multivariate Rank

F
re

q
u

e
n

c
y

0 10 20 30 40 50

0
1

0
2

0
3

0
4

0
5

0
6

0

RQ Ensemble

Multivariate Rank

F
re

q
u

e
n

c
y

0 10 20 30 40 50

0
1

0
2

0
3

0
4

0
5

0
6

0

ECC Ensemble

Multivariate Rank

F
re

q
u

e
n

c
y

0 10 20 30 40 50
0

1
0

2
0

3
0

4
0

5
0

6
0

    
Figure 5.26: MRHs for 24 hours-ahead forecasts for pressure and temperature at Berlin, Ham-
burg and Frankfurt valid at 0000 UTC during the period from 14 March 2010 to 22 October
2010 comprising 223 days
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Figure 5.27: MRHs for 48 hours-ahead forecasts for pressure and temperature at Berlin, Ham-
burg and Frankfurt valid at 0000 UTC during the period from 16 March 2010 to 23 October
2010 comprising 222 days
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      Figure 5.28: MRHs for 24 hours-ahead forecasts for pressure and temperature at Berlin and
Hamburg valid at 0000 UTC during the period from 14 March 2010 to 22 October 2010 comprising
223 days

 
Raw Ensemble

Multivariate Rank

F
re

q
u

e
n

c
y

0 10 20 30 40 50

0
1

0
2

0
3

0
4

0
5

0

OQ Ensemble

Multivariate Rank

F
re

q
u

e
n

c
y

0 10 20 30 40 50

0
1

0
2

0
3

0
4

0
5

0

RQ Ensemble

Multivariate Rank

F
re

q
u

e
n

c
y

0 10 20 30 40 50

0
1

0
2

0
3

0
4

0
5

0
6

0

ECC Ensemble

Multivariate Rank

F
re

q
u

e
n

c
y

0 10 20 30 40 50

0
1

0
2

0
3

0
4

0
5

0
6

0

    
Figure 5.29: MRHs for 48 hours-ahead forecasts for pressure and temperature at Berlin and
Hamburg valid at 0000 UTC during the period from 16 March 2010 to 23 October 2010 comprising
222 days
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Figure 5.30: MRHs for 24 hours-ahead forecasts for pressure and temperature at Berlin and
Frankfurt valid at 0000 UTC during the period from 14 March 2010 to 22 October 2010 com-
prising 223 days
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Figure 5.31: MRHs for 48 hours-ahead forecasts for pressure and temperature at Berlin and
Frankfurt valid at 0000 UTC during the period from 16 March 2010 to 23 October 2010 com-
prising 222 days
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Ensemble Ham Ham+Fra Ber+Ham+Fra
Raw 0.538 1.088 1.289
OQ 0.472 0.882 1.063
RQ 0.447 0.826 0.988

ECC 0.450 0.830 0.992

Table 5.15: Average (standardised) ES values for prediction horizons of 24 hours when consid-
ering u- and v-wind vector components for different combinations of the locations Berlin (Ber),
Hamburg (Ham) and Frankfurt (Fra)

Ensemble Ham Ham+Fra Ber+Ham+Fra
Raw 0.548 1.068 1.257
OQ 0.533 0.947 1.146
RQ 0.502 0.886 1.065

ECC 0.505 0.890 1.070

Table 5.16: Average (standardised) ES values for prediction horizons of 48 hours when consid-
ering u- and v-wind vector components for different combinations of the locations Berlin (Ber),
Hamburg (Ham) and Frankfurt (Fra)

Scenario 2b — u- and v-wind vector components

In contrast to the preceding Scenario 2a in which we dealt with pressure and tempera-
ture involving rather strong dependence structures, we now consider wind vectors, that
is, u- and v-components, which show correlation patterns being not that pronounced
according to the plots in Subsection 5.1.4.
Thereby, we concentrate on three examples, namely wind vectors at Hamburg only, Ham-
burg and Frankfurt together and Hamburg, Berlin and Frankfurt together, for prediction
horizons of both 24 and 48 hours.

The ES values of this scenario, which are given in Tables 5.15 and 5.16, turn out to
be as expected: The ECC ensemble outperforms both the raw and the OQ ensemble,
but has a slightly higher ES than the RQ ensemble in all the examples.

In addition, we also obtain reasonable results as far as calibration is concerned, where
we only focus on wind vectors at all the three observation sites together here, compare
Figures 5.32 and 5.33 and the corresponding discrepancies in Table 5.17.
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   Figure 5.32: MRHs for 24 hours-ahead forecasts for u- and v-wind vector components at Berlin,
Hamburg and Frankfurt valid at 0000 UTC during the period from 14 March 2010 to 22 October
2010 comprising 223 days
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Figure 5.33: MRHs for 48 hours-ahead forecasts for u- and v-wind vector components at Berlin,
Hamburg and Frankfurt valid at 0000 UTC during the period from 16 March 2010 to 23 October
2010 comprising 222 days
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Ensemble 24 hours-ahead 48 hours-ahead
Raw 0.57 0.46
OQ 1.16 1.15
RQ 0.43 0.37

ECC 0.35 0.35

Table 5.17: Discrepancies ∆ for prediction horizons of 24 and 48 hours, respectively, when
considering u- and v-wind vector components at all the three locations Berlin, Hamburg and
Frankfurt simultaneously. The values belong to the MRHs in Figures 5.32 and 5.33.

Ensemble 24 hours-ahead 48 hours-ahead
Raw 2.73 2.63
OQ 1.48 1.58
RQ 1.38 1.47

ECC 1.39 1.48

Table 5.18: Average (standardised) ES values for prediction horizons of 24 and 48 hours, re-
spectively, when considering all weather variables and all the three locations Berlin, Hamburg
and Frankfurt simultaneously.

Ensemble 24 hours-ahead 48 hours-ahead
Raw 0.32 0.45
OQ 1.41 1.43
RQ 0.34 0.33

ECC 0.40 0.40

Table 5.19: Discrepancies ∆ for prediction horizons of 24 and 48 hours, respectively, when
considering all weather variables and all the three locations Berlin, Hamburg and Frankfurt
simultaneously. The values belong to the MRHs in Figures 5.34 and 5.35.

Scenario 3

We close our evaluation examples with the examination of the different ensemble pre-
dictive performances when considering all three locations and all five weather variables
together, which means that we deal with 15-dimensional forecasts in this case.
The corresponding ES values for this scenario are shown in Table 5.18, while the MRHs
and the corresponding discrepancies are presented in Figures 5.34 and 5.35 and in Table
5.19, respectively.

With regard to the average ES over our test periods for prediction horizons of 24 and 48
hours, respectively, we obtain reasonable results. The ECC ensemble performs substan-
tially better than both the unprocessed raw ensemble and the OQ ensemble. Due to the
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fact that the cross-variate dependence structures are rather weak when considering all
weather quantities simultaneously, compare Subsection 5.1.4, the ES of the RQ ensemble
is slightly lower than that of the ECC ensemble.

In contrast to the expected results with respect to the ES, the calibration performances
illustrated by the MRHs are not really that nice in this scenario. The OQ ensemble turns
out to be extremely uncalibrated, while the calibration of the unprocessed raw ensemble,
the RQ and the ECC ensemble is essentially very similar. However, this seems unreason-
able because in all the situations we considered in the lower-dimensional scenarios before,
the raw ensemble was calibrated worst, and ECC generally performed best. Hence, it is
not obvious that the raw ensemble performs that well in our scenario here. Generally,
we observe that the higher the considered dimension of the forecasts is the worse the
OQ ensemble is calibrated and the more the distinction between the calibration of the
raw, RQ and ECC ensembles, respectively, vanishes. Perhaps, the MRH is inadequate
to assess calibration when sufficiently high dimensions are involved and should only be
employed in lower-dimensional situations. Thus, when applying the MRH concept, it is
advisable to focus on preferably few dimensions which are especially of interest depend-
ing on the situation we consider. For the stated reasons, the development of alternative
multivariate calibration evaluation tools is required to a great extent.
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Figure 5.34: MRHs for 24 hours-ahead forecasts for all weather variables at Berlin, Hamburg
and Frankfurt valid at 0000 UTC during the period from 14 March 2010 to 22 October 2010
comprising 223 days
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Figure 5.35: MRHs for 48 hours-ahead forecasts for all weather variables at Berlin, Hamburg
and Frankfurt valid at 0000 UTC during the period from 16 March 2010 to 23 October 2010
comprising 222 days
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Chapter 6

Summary, discussion and

annotations

In this final chapter, we want to summarise the main aspects in the context of the novel
ECC approach introduced in the thesis on hand, discuss our results and provide both
an overview of topics and an outlook on possible future work connected to ECC. In
particular, we state several proposals for further contributions to the ECC method, that
might lead to an improvement and advancement by solving problems ECC is not yet
able to handle.

The motivation to develop multivariate ensemble postprocessing methods for probabilis-
tic weather forecasting is due to the fact that state-of-the-art ensemble postprocessing
techniques like BMA or EMOS, compare Section 2.2, can be applied to a single weather
quantity, at a single location and for a single prediction horizon only, which means that
spatial, temporal and cross-variate dependencies cannot be handled by those methods.
However, dependence structures are exceedingly important in a wide range of applica-
tions, and thus, there is a critical need of techniques addressing them.

There exist several techniques being able to take account of spatial dependencies.
In [10], Gel et al. propose the geostatistical output perturbation (GOP) method to
obtain calibrated probabilistic mesoscale weather field forecasts. In a nutshell, GOP
dresses a single deterministic weather field prediction with Gaussian error fields which
are produced by geostatistical methods in order to get statistical ensembles of weather
fields respecting spatial correlations. However, this method does not apply to an ensem-
ble of weather field forecasts.
In [2], Berrocal et al. introduce the so-called spatial BMA approach, which combines
the GOP technique with the BMA approach described in Subsection 2.2.1 in this thesis.
Since spatial BMA adopts the advantages of both the GOP and the BMA methods, it ap-
plies to a dynamical ensemble of weather field forecasts and honours the flow-dependent
information contained therein, while taking account of spatial correlations.
In the case of quantitative precipitation, the two-stage spatial model, which is proposed
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by Berrocal et al. in [3], provides a useful tool producing correlated probabilistic fore-
casts of precipitation accumulation at multiple sites simultaneously.
However, all those approaches fail to take temporal or cross-variate dependencies into
account, which is very unfortunate.

In this thesis, the challenge of physically coherent spatio-temporal probabilistic fore-
casting has been solved by introducing a novel tool called ECC, which essentially con-
sists of two steps. In the ECC approach, we begin with the employment of well-known
univariate ensemble postprocessing techniques to obtain calibrated and sharp predictive
distributions for each weather quantity, at each location and for for each look-ahead time
separately. Then, in a second step, we generate as many samples from each of the predic-
tive distributions in the first step as there are ensemble members, which can be done by
taking the m

M+0.5
-quantiles, whereM denotes the ensemble size and m passes all natural

numbers from 1 to M in each case, and rearrange them in the order of the original raw
ensemble forecasts. Hence, the multivariate rank structure of the raw ensemble and thus
the dynamic information from the physical model are kept by the postprocessed ECC
ensemble.

Moreover, we have shown that ECC — as suggested by the name — can indeed be
considered as a copula approach by pointing out its relationships to discrete copulas.
Consequently, ECC joins the long list of methods based on the concept of copulas,
which is employed in a wealth of applications, not only in meteorology and climatology,
but also in hydrology, extreme value theory, engineering and mainly in economics and
mathematical finance. One reason for the popularity of copulas is that they capture the
dependence structure among the quantities involved, which are described by random
variables, as is the case in our ECC method. Hence, the adoption of a copula often
replaces the assumption of independence, which is unjustified in the majority of cases.
Since the field of copulas has rapidly developed over the last years and is of immense
interest in current research, affecting both theoretical and practical aspects, this notion
will be likely to yield further interesting and useful stuff in the future, and there might
be some new application areas of copulas to discover as well.
We recommend [52] for a brief overview of purely mathematical aspects of copulas with
predominantly recent research results.

In this thesis, the ECC approach has been applied for 24 and 48 hours-ahead forecasts
in a case study to the ECMWF ensemble consisting of 50 members over test periods in
the year 2010, and we have illustrated the results in several scatterplots clarifying the
general idea of ECC. Furthermore, the predictive performance of our novel tool has been
assessed by employing some of the multivariate verification methods proposed in [16] and
compared to that of the raw ensemble and other postprocessed ensembles, namely the
ordered quantiles (OQ) and random quantiles (RQ) ensemble as introduced in Chapter
5.
The ECC ensemble turned out to be much better calibrated than both the raw and the
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OQ ensemble in each case if we consider scenarios in rather low dimensions, for which
the multivariate rank histogram (MRH) is an adequate assessment tool to check devia-
tion from uniformity. In general, the calibration of our ECC approach was also slightly
better than that of the RQ ensemble in the situations we considered in this thesis. Es-
pecially in case of pressure, the ECC calibration performance was very nice. However,
note that due to the random component involved in the MRH, it is difficult to extract
minor differences in calibration between the techniques. The random component might
be diminished by taking the average of many histogram simulations as final MRH.
Moreover, as far as the average energy score (ES) over our test periods are concerned,
ECC remarkably outperformed both the raw and the OQ ensemble in each scenario deal-
ing with pressure, temperature and/or wind vectors. However, in case of precipitation,
ECC unfortunately failed to have a better ES than the raw ensemble, but note that
in this situation, already the univariate postprocessed ensemble obtained by the BMA
technique partly performed worse than the raw ensemble if we consider the average con-
tinuous ranked probability score (CRPS), which is just the univariate variant of the ES.
The employment of a different univariate ensemble postprocessing method might correct
this shortcoming in our case study. In addition, as a rule, ECC performed better than
the RQ ensemble when considering combinations with pressure and temperature, the
weather variables which show the strongest dependence structure, while in case of wind
vectors, for which the dependence patterns are not that pronounced, there were scenar-
ios in which the ES of the RQ ensemble was lower than or equal to that of the ECC
ensemble. In general, we observed that the stronger the correlation structure among the
ensemble members is the better ECC performed in our case study.
In a nutshell, ECC showed a convincing performance in our case study and provided an
improvements of the forecasts.
However, note that we employed a sliding training period of 40 days for our computations
without exceptions, which need not be the optimal choice in each scenario. Varying the
training period with respect to the considered weather quantity, for example, could lead
to an improvement of the BMA and ECC predictive performance, respectively. More-
over, in order to intensify the expressiveness of our results, it is convenient to extend the
data set to the period of a whole year covering all seasons, for instance, which cannot
be done in this thesis, but is a task for the future.

Against the backdrop of the fact that there are already R packages like ensembleBMA
or ensembleMOS, for instance, doing the computation of the univariate predictive distri-
butions needed in the ECC technique, another merit of our novel method, besides the
nice properties mentioned above, is that it can be implemented easily. Due to the sim-
plicity and clarity of the ECC notion, the R code of the multivariate copula step itself
is straightforward and comparably short. Note that there is no general computational
limit for the ECC procedure as far as high forecast dimensions and/or ensemble sizes
are concerned.

The design of ECC allows using this tool for problems, in which the physical consistency
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of spatio-temporal predictive distributions plays a decisive role. Typical applications
may include air traffic management or ship routeing, as well as flood management in the
case of quantitative precipitation forecasts. In addition, it is conceivable to employ the
ECC approach in the context of event planning, agricultural issues and energy recovery
and supply, respectively. Perhaps, the basic idea of ECC might be useful in other fields
apart from weather forecasting, too.

Obviously, ECC offers a simple, but very useful technique for multivariate probabilistic
forecasting and multivariate ensemble postprocessing, respectively.
Since parameters are only estimated for the univariate distributions in the first ECC
step, but not in the crucial multivariate copula step itself, our novel tool can be consid-
ered as a non-parametric multivariate approach.
While ECC only takes account of dependencies within the ensemble forecasts by focus-
ing on the rank structure and not of past observation dependence patterns, for instance,
methods with other priorities to address the challenge of multivariate probabilistic fore-
casting are developing, too. In this context, the construction of multivariate predictive
distributions for weather variables incorporating dependencies in a parametric technique,
which is surely more complex than the clear ECC notion, is a current research topic.
A first approach to estimate the joint multivariate CDF of several weather quantities
might be to employ a Gaussian copula model.
Moreover, it is very promising to use the concept of so-called graphical models in order
to model spatial, temporal and cross-variate dependencies in weather patterns. Hence,
this is also of great interest in topical research. For an introduction to the interesting
and useful field of graphical models, we refer to [7] or [32].
All in all, there are various multivariate probabilistic forecasting approaches differing in
basic concepts and complexity, as we have pointed out.

Despite of the numerous positive and nice properties of the ECC approach named before,
there are still some open questions in that context.
At the end of this chapter, we discuss several additional issues and suggestions for
possible improvement, as far as the ECC technique and its methodological frame are
concerned, in what follows.
From a theoretical point of view, it is a very interesting task to evolve the theory of
discrete copulas, which is strongly connected to the ECC notion as we have seen, by
studying the possibility to generalise at least some of the results presented in Subsection
3.4.5 for the bivariate case to similar ones in the multivariate situation. A first step in
this direction might be to employ the frame of n-stochastic matrices or stochastic arrays,
compare Remark 3.26, in order to extend the theory to the multivariate case. However,
the details would still have to be worked out carefully. A rigorous mathematical treat-
ment of this open question would contribute to an advanced theoretical frame for the
novel ECC technique and is therefore of great interest.
Another issue, which is of both theoretical and practical interest, is the development of
further assessment methods for probabilistic forecasts of multivariate quantities which go
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beyond those presented in [16]. Unfortunately, the latter are not appropriate to handle
problems of sufficiently high dimensions, as may be the case in many applications ECC
is confronted with, and hence, there is a need of further research in this field. In our case
study, for example, the MRH is likely to be inadequate to assess the calibration of the
ECC technique and does not yield plausible and satisfactory results if we consider all
five weather variables at all three locations for a fixed look-ahead time simultaneously,
that is, if we operate with fifteen dimensions.
Furthermore, the ECC tool in its present version introduced in this thesis is applicable
to exchangeable ensemble members only. Hence, the development of a modified ECC
technique for the case of non-exchangeability provides material for further work.
In addition, our state-of-the-art ECC approach might not be appropriate if we are faced
with very high forecast dimensions, that is, with a great amount of weather quantities,
locations and prediction horizons, while the number M of ensemble members is rather
small. In those high-dimensional cases, it might be unsatisfactory to sample only M
times from the corresponding univariate predictive distributions, and hence, we would
have a problem if the desired ensemble size after the ensemble postprocessing exceeded
that of the raw ensemble, which requires the development of an alternative procedure
being able to handle this shortcoming.

All in all, ECC represents a well-performing multivariate ensemble postprocessing method,
which mainly impresses with its simplicity and clarity. However, there are still various
proposals for contributions in order to improve, modify and supplement, respectively,
the ECC technique as well as related aspects and topics, both from a theoretical and a
practical point of view.
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