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Zusammenfassung

Through the advent of ensemble forecasts, weather prediction experienced a systematic shift
from the traditional deterministic view to a modern probabilistic approach. These ensembles,
multiple runs of one or more mathematical models, however are often underdispersive, as only
some of the uncertainties involved in numerical weather prediction are captured. Therefore
statistical postprocessing methods were developed to transform discrete ensemble output
into calibrated and sharp predictive distributions. So far these techniques only applied to
one-dimensional weather quantities like temperature, air pressure or precipitation. In this
thesis, we present a bivariate approach to address ensemble forecasts of two-dimensional
wind vectors, extending the well-established EMOS method. We preserve its essential benefits
and model the correlation between the vector components as a trigonometric function of the
predicted wind direction. Additionally, our new method is tested against other forecasting
techniques, using the UWME ensemble over the North American Pacific Northwest.

Zusammenfassung

Durch das Aufkommen von Ensemblevorhersagen hat die Wettervorhersage einen systemati-
schen Wandel weg vom traditionell deterministischen und hin zu einem modernen probabilisti-
schen Ansatz erlebt. Diese Ensembles, mehrere Durchléufe eines oder mehrerer mathematischer
Modelle, sind jedoch oft unterdispersiv, weil nur einige der Unsicherheiten, die mit numerischer
Wettervorhersage einhergehen, beriicksichtigt werden. Daher wurden statistische Aufberei-
tungsmethoden entwickelt, um den diskreten Ensembleoutput in kalibrierte und scharfe
Wahrscheinlichkeitsverteilungen umzuwandeln. Bisher lielen sich diese Verfahren jedoch nur
auf eindimensionale Wettergroflen wie Temperatur, Luftdruck oder Niederschlag anwenden.
In dieser Arbeit stellen wir eine bivariate Herangehensweise vor, die die bekannte EMOS
Methode erweitert und sich mit Ensemblevorhersagen fiir zweidimensionale Windvektoren
beschéaftigt. Dabei behalten wir die grundlegenden Eigenschaften des univariaten Verfahrens
bei und modellieren die Korrelation zwischen den Vektorkomponenten als eine trigonometrische
Funktion der vorhergesagten Windrichtung. Des Weiteren fithren wir eine Fallstudie fiir das
UWME Ensemble iiber dem nordamerikanischen Pazifischen Nordwesten durch und testen
unsere neue Methode gegen andere Vorhersageverfahren.
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Chapter 1

Introduction

Prediction is very difficult, especially about the future.

Often attributed to Nobel laureate Niels Bohr (1885-1962)

Although predicting the future might be difficult, modern forecasting is perceived as a matter
of great importance. In the process of making statements and inferences about the things to
come, we draw on experiences from the past, often in form of statistics. Over the last decades,
major aims of statistical analysis have become not only to make forecasts, but also to measure
the associated uncertainty. Therefore, they should be expressed as probability distributions
(Dawid 1984).

Many forecasts, however, are of deterministic nature, may it be for reasons of communication
or decision making (Gneiting 2011). Still, a transition to probabilistic forecasts is in progress
and statisticians function as a driving force (Gneiting 2008). The goal is not to eliminate, but
to assess and evaluate uncertainty.

In meteorology, the probability of precipitation has been an integral part of most weather
forecasts for a number of years. Yet, people often don’t understand how to interpret such a
percentage (Gigerenzer et al. 2005). But especially in this field, the probabilistic approach

is very effective for a number of practical applications. Probabilities of exceeding a certain
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threshold are used for issuing severe weather warnings, maintaining air and shipping traffic
regulations, or for efficient agriculture as the risk of freezing temperatures. Palmer (2002)
points out that weather and climate predictions have an enormous potential economic value:
Financial profit can be traded off against the probability of heavy losses due to e.g. extreme
weather.

Customers often have the choice between multiple forecasting products. But how do we
rank rivalling forecasters? How can the “best” prediction be determined? Gneiting et al. (2007)
proposed the principle of maximising the sharpness of a probabilistic forecast subject to its
calibration. Calibration refers to the reliability of the forecast, i.e. the statistical consistency
between the predictive probability distribution and the actually occurring observations. Sharp-
ness quantifies the concentration of the distribution; under the condition that all forecasts are
calibrated, we define the sharpest forecast to be the best.

Numerical weather prediction (NWP) simplified the process of incorporating probabilistic
methods into traditional weather forecasting. The grid-based NWP models consist of a
number of dynamical partial differential equations which are discretised and integrated forward
to obtain future states of the atmosphere. The current state is assimilated from actual
observations and provides the initial and lateral boundary conditions for these models.

Until the 1990s, one mathematical model was supplied with the one set of input data, which
was deemed best to represent the current atmosphere (Gneiting and Raftery 2005). Chaos
theory, however, implies that little deviations in the initial conditions can lead to significant
forecast errors, as the observations are subject to a certain degree of imprecision. One reason
for this is that observational locations are irregularly placed, and there are many areas with
only sparse observational data, especially over the oceans. Interpolation to the grid structure
therefore causes inherent uncertainties, which again limits the predictability, however skillful
the model might be (Grimit 2001).

NWP models, on the other hand, became more and more accurate over time. In order to
capture small-scale processes, the grid resolution was increased constantly. For instance, the
COSMO-DE model of the German Weather Service (DWD), operational since 2007, has a
horizontal spacing of 2.8 km (Baldauf et al. 2011). Despite the latest developments, however,

there are limitations to the computer resources which are needed for such models.
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Today, numerical weather prediction has changed from being a deterministic matter to
the probabilistic approach of ensemble forecasting (see e.g. Leutbecher and Palmer 2008).
Ensembles consist of multiple point forecasts, named ensemble members, generated by NWP

models and can be ordered into three groups:

o Multianalysis ensembles:
One numerical model is run multiple times, using slightly different sets of initial condi-

tions.

o Multimodel ensembles:

Multiple numerical models are run with a single set of initial conditions.

e Multimodel multianalysis ensembles:
As a combination of the previous ones, multiple sets of initial conditions are used to run

multiple numerical models.

In this way, the two major uncertainty sources are addressed: the imperfections in the
initial conditions and the inadequacies of the mathematical models. Ensemble prediction
system have been implemented for both short-range (0-48 hours) and medium-range (2-10
days) weather forecasting (Eckel and Mass 2005), in the form of regional and global NWP
models, respectively. Figure 1.1 shows a schematic representation of an exemplary multimodel
multianalysis ensemble with two models and eight ensemble members. The ensemble pictured
in Figure 1.2 is the multianalysis University of Washington Mesoscale Ensemble (UWME), as
operational in 2008. A full description can be found in Section 5.1.

The context of ensemble forecasts provides the possibility of combining a point forecast,
say the ensemble mean, with an estimation of its accuracy, through for instance the root mean
squared error. On average, the ensemble mean outperforms each of the individual ensemble
members, in that it is the best estimate for the verifying state of the atmosphere (Grimit and
Mass 2002).

Another important aspect is the so called spread-error correlation or spread-skill relationship
of the ensemble. Often there exists a link between the a priori known ensemble spread (or

ensemble variance) and the observed error of the ensemble mean forecast. Whitaker and
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Model 1 %
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Figure 1.1: Diagram of an exemplary multimodel multianalysis ensemble forecast; every set
of initial and lateral boundary conditions IC/LBC 1 - IC/LBC 4 is integrated forward through
the two numerical models, resulting in eight ensemble members E 1 - E 8

Loughe (1998) and Grimit (2001) noticed that especially extremely large or small spread is a
good estimator for the eventual forecast skill.

Despite this desirable property, ensemble predictions were found to be uncalibrated (see
e.g. Hamill and Colucci 1997), in that they are underdispersive. This means that the ensemble
spread is on average too small and the observation lies too often outside of the ensemble range.
Raftery et al. (2005) reason that ensembles only capture some of the uncertainties involved in
numerical weather forecasting, and those only partially. Moreover, many weather variables are
continuous quantities and should be expressed in terms of continuous probability distributions

instead of discrete ensembles of a finite size (Gneiting et al. 2005).

10
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AVN AVN-MM5
CMCG CMCG-MM5
ETA ETA-MM5
GASP GASP-MM5

\ MM5 Model /

JMA JMA-MM5
NGPS / \ NGPS-MM5
TCWB TCWB-MMS5
UKMO UKMO-MM5

Figure 1.2: Diagram of the UWME; eight different sets of initial and boundary conditions (on
the left) are integrated forward using the MM5 numerical model, resulting in eight ensemble
members (on the right)

All these problems, as well as model biases and different spatial resolutions of forecast grid
and observations, can be addressed with statistical postprocessing (Gneiting and Raftery 2005).
Several such methods have been suggested, with ensemble model output statistics (EMOS) and
Bayesian model averaging (BMA) being the most prominent. EMOS, elaborately discussed
in the next chapter, is based on multiple linear regression and fits a normal distribution to
the ensemble member forecasts. BMA assigns probability density functions to the individual
ensemble members and generates a weighted average of these densities, where the weights
reflect the forecasting skill of the respective ensemble members. More information about BMA
can be found in Raftery et al. (2005), Sloughter et al. (2007), Sloughter et al. (2010) and Bao
et al. (2010).

11
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Both methods apply to a number of different weather variables like temperature, air
pressure or wind speed, however these are only univariate quantities. Surface wind, in contrast,
is measured in two dimensions, either as zonal and meridional vector components or as wind
speed and wind direction. The application of wind vector forecasts ranges over many different
fields: Air traffic control relies on short-ranged local and regional forecasts, not only to warn
of extreme weather, but also to optimise the coordination of runways. For ship routeing,
especially probabilistic wind forecasts have a huge economic value, as it can avoid delays
and save fuel. Finally, one of the most important purposes is the production of wind energy;
here, the combination of wind speed forecasts, to estimate the production amount, and wind
direction forecasts, to adjust the turbines, plays a significant role.

So far, those two variables were always addressed separately (Bao et al. 2010; Sloughter
et al. 2010; Thorarinsdottir and Gneiting 2010), not taking into account a possible relationship.
For the above mentioned applications, particularly the correlation structure might be of crucial
consequence. Therefore we propose a new approach to postprocess ensemble forecasts of
wind vectors jointly, so that spatial properties are inherited from the underlying numerical
models. We base our method on the aforementioned EMOS and extend it to bivariate weather
quantities, where the correlation between the two vector components is estimated from historic
data.

Current research relating to wind vectors includes a two-dimensional variant of BMA
(Sloughter 2009) and a technique to adaptively calibrate wind vector ensembles (Pinson
2011). The Ensemble Copula Coupling approach by Schefzik (2011) refers to multidimensional

forecasts in general and can easily be adapted to our task of postprocessing wind vectors.

The new EMOS method will be described and tested as follows:

In Chapter 2, we present several methods to assess the predictive skill of both univariate
and multivariate probabilistic forecasts, whether in the form of ensembles or probability
distributions. These tools will not only be used to compare performances of forecasts, but
are also a part of the parameter estimation, and make sure that the resulting probabilistic
forecasts are calibrated and sharp. Here, we refer to Gneiting et al. (2008), where these

multidimensional assessment tools were described.

12
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In Chapter 3, the conventional EMOS postprocessing method is discussed in detail. We show
all its adaptations and applications and point out the special characteristics and key elements,
which will later be incorporated into the bivariate approach.

In Chapter 4, we develop the new bivariate method, beginning with an empirical analysis of
data provided by the UWME ensemble (see Section 5.1). We then propose a model for the
bivariate predictive distribution and split the parameter estimation into three parts, thereby
predicting forecast mean, correlation and spread successively.

In Chapter 5, several other forecasting and postprocessing techniques suitable for wind vectors
are reviewed and we compare the results in form of a case study. The performance of these
methods is assessed for the North American Pacific Northwest in 2008, using the tools from
Chapter 2. For implementing the methods described in this thesis and in order to create the
graphics, the R environment for statistical computing is employed. More information can be
found in R Development Core Team (2011).

Finally, in Chapter 6, we provide a summary of the new EMOS method for bivariate wind
vector forecasts and discuss the results of the case study. Also, future prospects are shown,

especially in terms of wind field forecasting.

13






Chapter 2
Assessing Forecast Skill

In this chapter, we will present several tools that can be used to assess the forecast skill of the
new EMOS method and of the rivalling forecasting techniques described in Section 5.3. In
Gneiting et al. (2008), it was established how multivariate ensemble or density forecasts can
be evaluated, so this article will function as a guideline for choosing which tools to use. Often
there exists a multidimensional extension to well-known one-dimensional methods, and we
will discuss both univariate and multivariate assessment.

Due to the fact that the thesis at hand concerns wind vectors, we will here focus on forecast
assessment in two dimensions. Furthermore, as the new EMOS method will also be used to
produce wind speed forecasts (Section 5.5), the univariate tools are employed in the case study
as well.

Additional to the purpose of assessing forecast skill, so called proper scoring rules are a key
element of the EMOS postprocessing method itself. As mentioned in the preceding chapter, the
goal of probabilistic forecasting is to maximise the sharpness subject to calibration (Gneiting
et al. 2007). Proper scoring rules, elaborately discussed in Gneiting and Raftery (2007), provide
a way to address both of these properties simultaneously, so a natural conclusion would be to
involve them in the parameter estimation. Minimum CRPS estimation, for instance, is used
for the so far known univariate EMOS methods, and we want to find a similar approach for
the bivariate method.

Probabilistic forecasts occur in the form of discrete ensembles or probability densities

and there are tools that apply to one or the other. However, it does not pose difficulties to

15
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draw samples from a predictive distribution and thus create a forecast ensemble, or to fit an
appropriate distribution to given ensemble forecasts. In this manner, both types of forecasts
can easily be transformed into one another. More details are to be found in Section 5.3.5.
First we take a look at tools to check the calibration of probabilistic forecasts, then the
quantification of sharpness will be addressed. In the final section we will introduce several
proper scoring rules, which again will later be used to determine the parameters of the EMOS

predictive distribution.

2.1 Assessing Calibration

Calibration, sometimes referred to as reliability, is a measure for the statistical consistency
between the probabilistic forecast and the verifying observation. Simply said, this means that
if some event is predicted to occur with a certain probability, say 40%, on average it should
happen in about 40% of all times. Thus it is not only a property of the probabilistic forecasts,
but also of the verifying observations.

In order to assess the calibration of a forecast, a probability integral transform (PIT) his-
togram is usually employed for predictive distributions, while its ensemble forecast counterpart

is called verification rank histogram (VRH).

2.1.1 Univariate Histograms

The preferred tool for univariate forecast distributions, the PIT histogram (Dawid 1984;
Diebold et al. 1998), is based on the assumption that an observed value x can be perceived
as randomly sampled from a “true” distribution G' (Gneiting et al. 2007). If the predicted
distribution F'is indeed identical to this true distribution, the value of the predictive cumulative

distribution function (CDF) at = has a uniform distribution
p=F(x)~U[0,1].

Therefore, for all forecasts available, the PIT values p are computed, sorted into bins

and then formed into a histogram. In this histogram, deviations from uniformity are easy to

16
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Underdispersive Forecast Overdispersive Forecast

Relative Frequency
Relative Frequency

PIT / Observation Rank PIT / Observation Rank

Biased Forecast Calibrated Forecast

Relative Frequency
Relative Frequency

PIT / Observation Rank PIT / Observation Rank

Figure 2.1: Examples for different shapes of the PIT or verification rank histogram

recognise and one can interpret these deviations. An U-shaped histogram indicates that the
spread of the underlying predictive distribution is too small, it is underdispersed. On the other
side, an overdispersed distribution reveals itself in a hump-shaped diagram, with too many
observations in the center of the distribution. Biases can result in a skewed or triangle-shaped
histogram, while a nearly flat histogram suggests calibration.

Hamill (2001) however proved that the latter case can be misleading: Although a uniform
PIT (or rank histogram, for that matter) is required for a probabilistic forecast to be calibrated,
it is not sufficient. To address this issue, Gneiting et al. (2007) proposed the principle of
maximising the sharpness subject to calibration, so that the performance of several forecasts
can be evaluated by comparing the respective sharpness measures, under the condition of

them being calibrated.

17
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In the context of a discrete ensemble forecast, the verification rank histogram or Talagrand
diagram (Anderson 1996; Hamill and Colucci 1997; Talagrand et al. 1997) takes the role of
the PIT histogram. It relies on the assumption that for a calibrated ensemble of size M,
the observation has the same probability to occupy any rank between 1 and M + 1 when
pooled with the ordered ensemble members. This means, for each time and location, we order
the ensemble forecasts and observation, find the rank of the observation and finally plot the
histogram of the aggregated ranks. As before, a U-like shape implies underdispersion, while
the opposite holds for a hump-like shape. Skewed histograms indicate a certain bias and
calibrated ensembles produce a flat histogram. In Figure 2.1, four exemplary histograms are
shown.

For comparing different forecasting techniques, it can be useful to quantify the calibration.
This is possible with the so-called discrepancy or reliability index A (Delle Monache et al.
2006; Berrocal et al. 2007), which is gathered from the respective histograms,

M+1 1
A: i .
; U v

It measures the deviation between the observed relative frequency f; for bin ¢ and the desired
value ﬁ, accumulated over all bins.

2.1.2 Multivariate Rank Histogram

A natural generalisation of the VRH to multiple dimensions is the multivariate rank histogram
(MRH), the only challenge lies in defining a multivariate rank order. For simplicity reasons,
the description below is given for two dimensions, it is however easily applicable to ensemble
forecasts of any dimension.

First, we write for two vectors (21, 22)" and (y1,s)"

n =< h if and only if 21 < y; and x5 < yo.
T2 Y2

If we consider the ensemble forecast {x; € R*: j=1,..., M} and its respective verifying

observation xy € R?, we proceed according to the following steps:

18
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1. Standardise:
It is often useful to apply a principal component transformation to the set
{x;: j=0,..., M}, which contains forecasts and observation, thus resulting
in standardised values {x}k 27=0,.... M } In the current context, we refrain

from doing so.

2. Assign pre-ranks:
In the next step, we determine pre-ranks p; for the possibly standardised values
xj and all j =0,..., M. The pre-rank is defined as

where I denotes the indicator function. In this way, we find, for each vector
from the combined set of ensemble member forecasts and observation, the
number of vectors from the same set which are smaller or equal in each vector

component. The pre-ranks therefore are integers between 1 and M + 1.

3. Obtain the multivariate rank of the observation:
For the multivariate rank r, we note the rank of the observation pre-rank, while

possible ties are resolved at random. We write

M M
sS=>T{pj<po} and s~ => I{p;=po}
=0 =0

as the number of pre-ranks that are smaller than the pre-rank of the observation
and the number of those that are equal to it. Then r is chosen randomly as
any integer between s< 4 1 and s< + s~, or more specifically, from a discrete
uniform distribution on {s<+1,...,s< 4 s~}. Again, r can range from 1 to
M +1.

4. Aggregate ranks and plot histogram:
For the final step, we aggregate the multivariate ranks over all forecast dates

and locations available and plot the histogram of these ranks. To reduce random

19
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variability caused by sampling the multivariate rank, the histogram intensities

are averaged over 100 runs.

Figure 2.2 illustrates the process of determining first the pre-ranks and then the multivariate
observation rank. Four ensemble member forecasts lie to the lower left of the observation
vector, i.e. are smaller in each of the vector components. The observed value therefore has
the pre-rank 5, the same as two other ensemble members. The pre-ranks of five vectors
are smaller than that of the observation, so we sample the multivariate rank from the set
{s<+1,...,s5+s7} ={6,7,8}. In this case, r was chosen to be 6.

The multivariate rank histogram can be interpreted in the same manner as its univariate
counterpart. We will use this tool for assessing both ensemble and density forecasts, where
predictive PDFs will be converted to discrete ensembles as described in Section 5.3.5. The
reliability index A provides a measure for the deviation from uniformity, in the same manner

as for the univariate histograms.

2.1.3 Marginal Calibration Diagram

Gneiting et al. (2007) refer to marginal calibration as the equality of forecast climate and
observed climate. If the forecast and the observation can be assumed compatible, their
respective empirical distributions, aggregated over a number of cases in a steady state, should
be statistically consistent.

In the context of the thesis at hand, we check this property by a location-specific diagram.
For each observational location, the empirical distributions of the raw ensemble, the EMOS
method and the observations are plotted over the course of one calendar year. To represent
the respective empirical distributions of the forecasts, for each date one random ensemble
member and one random vector from the EMOS predictive distribution are drawn.

We then say that a forecast is marginally calibrated if the pattern created by the wind
vector observations is approximately reproduced by the distribution of the forecast. The use
of this so-called marginal calibration diagram can reveal forecast biases or dispersion errors

and especially address the possible influence of local terrain and surroundings.
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Figure 2.2: Example of how to determine the pre-ranks and the multivariate rank for the
MRH; pictured is an ensemble forecast for wind vectors, created by sampling 8 vectors from
the EMOS predictive distribution for Sea-Tac airport valid on 23 January 2008, and the
respective verifying observation, indicated by the star; for each vector, the pre-rank is given as
the number next to it; the forecast itself is described in chapters 4 and 5

2.2 Assessing Sharpness

After confirming that they are calibrated, it is necessary to measure the sharpness of competing
forecasts so that their quality can be compared. While calibration provides information about
the reliability of a probabilistic forecast, sharpness refers to its concentration and is therefore
a property of the forecast only. The sharper a calibrated predictive distribution, the less the

amount of uncertainty and the better the performance.
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For univariate quantities, the sharpness measure of our choice is the standard deviation
of both predictive PDFs and ensemble forecasts. In the two-dimensional case, we employ a

generalisation of the standard deviation, the determinant sharpness (DS)

DS = (det )"

— (o2 (1= %)™,

2
07 pPO102

with 3 = being the variance-covariance matrix of the forecast. This tool is

2
pPO102 g5
also applicable to discrete ensembles, where the matrix is generated by the empirical variances

and correlation of the ensemble.

However, the determinant sharpness has a major disadvantage, which was brought up by
Jolliffe (2008). For nearly singular matrices, such as in the case of highly correlated variables, it
becomes very small, although the individual variances may be large. Therefore it is possible for
such forecasts to seem sharper than those with smaller spread and correlation. This problem

indeed arises in our case study and is discussed in Section 5.4.3.2.

2.3 Proper Scoring Rules

Additional to measuring the sharpness and calibration, the performance of a forecast can be
evaluated by assigning a numerical score. For this we introduce a function s (P, x), where P is
the predictive distribution and x the observed vector or value. This function, called scoring
rule, is negatively oriented and can be taken as a penalty. If we assume x to be drawn from a
distribution @), the expected value is written as s (P, )). The idea of proper scoring rules and
the mathematical background are discussed in Gneiting and Raftery (2007).

Naturally, the intention of a forecaster should be to minimise the penalty by issuing the
best forecast he is able to make (Savage 1971; Brocker and Smith 2007). Thus the score
becomes the smallest when the true distribution is predicted. We say that a scoring rule is
proper if

5(Q.Q) < s(P.Q)
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holds for all P and @), and strictly proper with equality if and only if P = (). This property
is very important for the assessment of our forecasts, meaning that a proper scoring rule
addresses calibration and sharpness simultaneously by giving a measure for the overall skill
(Winkler 1977, 1996).

In practical applications, the reported values are typically averaged over a period of time
or for a specific location. We note these mean scores as

Sn = S(Piaxi)a

1

SRS

n
1=

where P; and x; range over all forecast cases i =1,...,n.

2.3.1 Univariate Forecasts

One of the scoring rules coming into use in the new EMOS method is the widely known
logarithmic or ignorance score (Good 1952; Bernardo 1979). It can be applied to univariate as
well as multivariate density forecasts. For a predictive distribution P with density function p

and the observed vector or value x, the ignorance score is defined as

logs (P,x) = —logp (x).

However, this proper scoring rule can assign infinite penalties, which poses problems in
practice. The so-called continuous ranked probability score (CRPS), proposed in Matheson and
Winkler (1976), is more robust and also more versatile as it applies to density and ensemble
forecasts. Gneiting and Raftery (2007) showed that the following two representations of the

CRPS are equal, conditional on P having finite first moment:

crps (P, x) = / (F(2) - T{y > })? dy (2.1)
_Ep|X — 2| — ;EP|X _ X (2.2)
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Here, F' denotes the cumulative distribution function of P, while X and X’ are independent
random variables with distribution P. In contrast to the ignorance score, the observation x
may only be a number rather than a multidimensional vector. The CRPS is reported in the
same unit as the observation which simplifies interpretability.

If we consider deterministic instead of probabilistic forecasts, we are interested in the
predictive skill of an ensemble or a predictive distribution when issuing a point forecast p.
According to Gneiting (2011), the most effective way of producing point forecasts is to specify
a scoring rule in advance and then choose the optimal point predictor for the scoring rule at
hand, i.e. the Bayes rule. In the situation above, P can be taken as a point measure ¢, and
the CRPS reduces to the absolute error

ae (P, x) = |p— x|.

The respective Bayes rule for the absolute error is the median of the predictive distribution,
medp. We will use the mean absolute error (MAE) of the forecast median and the mean CRPS
mainly for testing the skill of the new EMOS method for wind vectors when transformed into

wind speed forecasts (Section 5.5).

2.3.2 Multivariate Forecasts

The direct generalisation of the CRPS to multiple dimensions is called the energy score (ES),
introduced by Gneiting and Raftery (2007). It derives from the kernel score representation

(2.2) and uses the Euclidean norm ||-|| instead of the absolute value:
1 /
es(P,x) =Ep|X — x| — §Ep |X — X',

where X and X’ are independent random vectors distributed with P and x is the observation
vector.
For ensemble forecasts, where the predictive distribution P, places a point mass of ﬁ on

the ensemble members x;,...,x € R?, the energy score can easily be evaluated as
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1 M 1 M M
eS(Pensyx) = MZHXJ'_XH - M2 ZZHXi_xjH'
j=1

i=1j=1

However, for most densities this proper scoring rule is not straightforward to compute. As
we use bivariate normal distributions, a Monte Carlo approximation can replace the usual
form of the energy score, reducing the computational effort notably. The energy score then

becomes
R 1 k 1 k-1
6 (P,x) = %; lIx; — x| — m ; 1% — Xiq1 ]|,

where X1,...,Xy is a simple random sample of size k£ = 10,000, drawn from the predictive
distribution P.

Again, deterministic forecasts can also be assessed by this scoring rule. As in the case of
the CRPS, we set P to be the point measure J,,. The resulting score is called the Fuclidean

error (EE) and is the generalisation of the absolute error:
ce (P,x) = [l —x|.

As point forecast p, we choose the appropriate Bayes rule, the spatial median medp. Consid-
ering an ensemble forecast, it is defined as the vector that minimises the sum of the Euclidean

distances to the ensemble members,

M
> lmedp — x4 -
i=1

This vector can only be determined numerically, e.g. using the algorithm described in Vardi
and Zhang (2000) and implemented in the R package ICSNP.

In this chapter different tools for the assessment of both ensemble and density forecasts were
introduced. These tools will be used in Chapter 5 to analyse and compare the performance
of several competing forecasting and postprocessing techniques. The univariate and the
multivariate rank histograms and the PIT histogram help us to test forecasts for calibration,

while the marginal calibration diagram unmasks local biases and dispersion errors. As to the
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sharpness, the determinant sharpness provides a way to quantify the spread of multivariate
distributions. Proper scoring rules are able to assess calibration and sharpness simultaneously
and therefore can be employed for the parameter estimation. The conventional EMOS method
for univariate weather quantities, for instance, described in the following chapter, relies on

minimum CRPS estimation.
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Chapter 3

EMOS for Univariate Weather

Quantities

In Chapter 1, we already mentioned the well-established statistical postprocessing method
EMOS, also called non-homogeneous Gaussian regression, and stated that such techniques can
improve the quality and accuracy of weather forecasts significantly. EMOS was first proposed
by Gneiting et al. (2005) and then developed further in Thorarinsdottir and Gneiting (2010)
and Thorarinsdottir and Johnson (2011). Our goal is to find a two-dimensional extension
which applies to wind vectors by capturing the essential properties of the one-dimensional
variant. The idea and concept behind EMOS is the subject of this chapter.

3.1 General Idea

Standard model output statistics (MOS) techniques profit from determining a statistical
relationship between the predictive weather quantity and the output variables of a numerical
model (Glahn and Lowry 1972; Wilks 1995). For instance, the prediction of wind speed can
correlate strongly with the wind vector forecast or with past wind speed observations. These
are then combined as predictors in a multiple linear regression equation.

EMOS is a form of MOS or multiple linear regression; here, the ensemble members function

as predictors. By fitting a normal distribution with the regression estimate as predictive
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mean, and the mean squared prediction error of the training data as predictive variance, a
full probability distribution can be gained from a regression equation. This straightforward
way, however, does not take account of a potential relationship between ensemble spread
and forecast skill (Whitaker and Loughe 1998). Therefore, the EMOS method models the
predictive variance as an affine function of the ensemble variance.

This simple concept addresses forecast biases and dispersion errors on one hand and benefits
from the skill of the underlying numerical models on the other. It therefore combines statistical

and numerical weather prediction, while being very parsimonious and easy to implement.

3.2 Standard EMOS

In this section, we discuss EMOS as it was originally described by Gneiting et al. (2005). It
applies to any weather quantity Y, whose distribution, conditional on the ensemble member
forecasts X1, ..., Xy, can be modelled with a normal distribution; such quantities are surface
temperature, sea level pressure, or wind vector components (see Section 5.3.3).

For the predictive mean, the authors suggest a linear regression equation with the ensemble

members as predictors and the observation Y as predictand,
Y:a+b1X1—|—+bMXM—|—5

. . . 2 2 1 M =\2 .
The error term ¢ has distribution N (0,c+ dS?), where 52 = 2332, (XZ- - X) is the
empirical variance of the ensemble and X = ﬁ Zf‘il X, the ensemble mean. The variance
term corrects the underdispersion of the ensemble, while taking account of the spread-error

correlation. Thus, the full predictive distribution for Y is denoted as
Y | Xl,...,XM NN(a+b1X1++bMXM,C+dSZ) .

The coefficients by, ..., by can be interpreted as the performance of the individual ensemble
member models over the training period, relative to the other members. Additionally, highly
correlated ensemble members can be identified, as typically the most skillful of them receives

a substantial coefficient estimate, while the estimates of the others are nearly zero.
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The spread parameters ¢ and d reflect the relationship between the ensemble spread and
the forecast error in the training data. If there is a significant correlation between these two,
d tends to be larger and ¢ smaller. On the other hand, when there is no information to be
gained by the ensemble variance, d will be negligibly small and ¢ very large.

For estimating the parameters a, by,...,by, ¢, and d, Gneiting et al. (2005) employ
minimum score or minimum contrast estimation: They choose a proper scoring rule, write the
score for the training data as a function of the parameters to estimate and numerically minimise
this function. The results can be interpreted as the coefficients for which this particular score
would have been minimal, when summed up over the training data. Picking a proper scoring
rule ensures that calibration and sharpness are addressed simultaneously (Section 2.3).

In this context, the CRPS proves suitable, and Gneiting and Raftery (2007) have shown
that it is more robust than e.g. the logarithmic score. Therefore, this estimation method is
referred to as minimum CRPS estimation. Modelling Y with a normal distribution has the
advantage of simplifying the computing of the CRPS, as a closed form can be obtained using

repeated partial integration:

s (¥ () 1) = o { 2 20 (22 < () - L,

where @ (-) and ¢ () denote the CDF and the PDF of the standard normal distribution,

respectively.

The variance coefficients ¢ and d should be non-negative to make certain that the variance
is positive and we have a valid probability distribution. Gneiting et al. (2005) set d = 62,
optimise the CRPS over § and in this way enforce the non-negativity; here, it is not an issue
for the parameter ¢, but generally one can proceed in the same manner as for d.

When expressing the CRPS in terms of the parameters, the average score over all k£ pairs

of forecasts and observations contained in the training data set is noted,
1 & 1
. e _ 2 Q2 . - ) —
F(a,bl,...,bM,c,(S)—kE e+ 02S; {MZP(I)(Mz) 1}+230(M2) \/E}’

i=1

where
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¢+ 02 5?

is the standardised forecast error for the ith forecast in the training data set. Using the

M; =

Broyden-Fletcher-Goldfarb-Shanno algorithm, as it is implemented in the R function optim,
the authors determine the minimum of the CRPS numerically. Reaching a global minimum
can not be ensured, so the initial values have to be chosen carefully. The best way to do so is
to take starting values based on past experiences, e.g. the estimated parameters from the day

before.

3.2.1 EMOS”

In the previously described method for estimating the EMOS parameters, no constraints were
assumed on the ensemble member coefficients by, ..., by;. However, in the context of ensemble
forecasts and statistical postprocessing, it is hard to explain negative values, as these parameters
can be interpreted as weights, reflecting the relative usefulness of the particular ensemble
member model. Such negative coefficients might be caused by highly correlated ensemble
forecasts, e.g. because the initial and boundary conditions for the underlying numerical models
are provided by the same operational weather centre.

To solve this issue, Gneiting et al. (2005) proposed an extended technique, called EMOS™,
producing only non-negative EMOS weights. At first, the usual estimation is executed, with
no constraint on by, ..., by. Then all ensemble member forecasts with negative coefficients are
removed from the training data and their respective coefficients are set to zero. The ensemble
mean X and variance S? need to be recomputed, both for the training data and the forecast,
using only the remaining ensemble members. This process is iterated until there are only
non-negative regression parameters left.

The described approach can easily be interpreted as a form of model selection, where
the most useful of the ensemble member models are chosen. Highly correlated models are
often eliminated, and only the most skillful of them is left in the regression equation. Usually,

EMOST yields similar results in comparison to EMOS, but improves interpretability.
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3.3 EMOS for Wind Speed

The standard EMOS method, however, is not appropriate for any weather variable of interest.
Unlike temperature or air pressure, wind speed can not be described with a normal distribution,
as it is a non-negative quantity. Therefore, Thorarinsdottir and Gneiting (2010) suggested the

use of a truncated normal distribution with a cut-off at zero,
Y| X1, X~ N (o).

The modelling of the distribution characteristics stays unchanged, the mean is a linear function

of the ensemble member forecasts,
p=a+b X3+ ...+ byXun,
and the variance an affine function of the ensemble spread,
o =c+dS>

For a truncated normal distribution, the density function can be expressed in terms of the

density and distribution functions of a standard normal distribution, ¢ and &:

rw=ze(55)/*()

when y > 0 and f° (y) = 0 otherwise.

As before, the authors restrict the spread parameters to be non-negative, just as the
ensemble member coefficients by, . .., bys. In this context, however, they write by = 57,... by =
B2, ¢ =% and d = ¢%, instead of employing EMOS™'. The parameters a, 51, ..., 8y, 7,
and ¢ are unconstrained real values and are again obtained by minimum CRPS estimation
over a training data set. The CRPS, as defined in Section 2.3, has a closed form for the
truncated normal distribution; expressed in terms of the training data and as a function of

the parameters to estimate, it becomes
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(i Buiid) = LB O M () [20 (08 + 2 (V) ~

+20 ()0 (N) - -8 (VEN)},

where

yi — (a + Bi X + ... + B3 Xin) and N‘_G+B%Xi1+~-+ﬁﬁ4X¢M
VA2 + 8252 Z VA2 + 6252 '

M; =

Once more, the actual numerical optimisation, i.e. finding the parameter values which minimise
the CRPS for the training data, rests on the Broyden-Fletcher-Goldfarb-Shanno algorithm.
The initial values for this algorithm are the estimated parameters of the previous day, to

enhance the probability of finding a global minimum.

3.4 EMOS for Wind Gust

The forecasting of wind gust is challenging, as it is typically not an output of numerical
weather prediction models. There seems to be a direct relation to wind speed, though, namely
through a gust factor 7, the ratio between the maximum gust speed and the sustained wind
speed. Thorarinsdottir and Johnson (2011) developed a forecasting method depending on the
previously described EMOS method for wind speed. It consists of three components which

have to be predicted:

1. Daily mazimum wind speed:
For the daily maximum wind speed, the EMOS model defined above is employed to
postprocess the ensemble forecasts and obtain a full predictive distribution. In a first step,

the parameters a, by, ..., by, ¢, and d are estimated with minimum CRPS estimation.

2. Probability of gust:
The gust speed Z can be assumed to have a multiplicative relationship to the wind speed
Y,
Z=71Y, T12>1.
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Then the conditional predictive distribution for Z becomes
Z| X1, X~ N (s, (r0)?)

with ¢ and 02 denoting the mean and variance estimates for the wind speed.

In the context of the article, using observations from the Automated Surface Observing
System (ASOS) network (National Weather Service 1998), gust is observed if the gust
speed, determined under certain conditions, is at least 14 knots. The authors introduce
two separate gust factors, 77 for the probability of gust and 7 for the conditional gust
speed forecast. Thus, in the former case, they draw on the predictive distribution for 7

and express this probability in terms of 7y:

P(Z>14]Xy,..., Xy) = {1—@<W)]/¢(5).

T

This parameter can also be estimated by minimum score estimation, using the Brier skill
score for categorical events (e.g. Gneiting and Raftery 2007). The task is to find the

value for 7; which minimises

['(r) = lizk: <{1 - (M)] o (g:)_l — I {Z; observed })

i=1 T10;

2

over the training set, where 1{Z; observed } is 1 if gust is observed for the ith forecast

case (according to the definition in National Weather Service (1998)), and zero otherwise.

. Daily mazimum gust speed, conditional on gust being observed:
Subsequently, the gust speed, conditional on gust being observed, needs to be addressed.
Its predictive distribution can be modelled employing a truncated normal distribution,

as with the wind speed, however now the cut-off is at 14. With the second gust factor

/= ()

79, the predictive density becomes

P = [ o (22

ToO ToO
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for z > 14 and f'* (z) = 0 otherwise. Following the usual technique, CRPS minimisation
is applied over training data to find the optimal value for 5. For this distribution, the
CRPS can be determined as

crps (N14 Tol, ToO ,z)

To0 A (Toft, T20) —2 {Z — 2 A (Topt, T207) [2@ (Z — Tg'u) + A (Top, To0) — 2}
ToO ToO
Z— T 1 14 — 7
+2¢p ( 2:“) )\(7'2,[1,,7'20') ﬁ [1—@<\/§T20_2M>}}7

where A (a,b) =1—® (MT’“) and z > 14. Here, the observations z are the gust speed
observations, and the parameters p and o originate from the estimation of the wind

speed forecast.

All numerical optimisation is done using the Broyden-Fletcher-Goldfarb-Shanno algorithm.
With this method, it is possible to obtain full predictive densities for a weather variable which
normally is not included in numerical weather prediction models. It can, however, also be

applied as a statistical postprocessing method for ensemble forecasts of gust speed.

The EMOS approach was developed to produce calibrated and sharp predictive distributions
from underdispersed discrete ensemble forecasts. It has proved to be a very versatile method,
being applicable to several weather variables such as temperature, air pressure, wind speed
and wind gust. To adapt to local circumstances, the normal distribution can be substituted
by a more adequate distribution, e.g. the Student’s t distribution.

In the next chapter we will propose a bivariate variant that incorporates the correlation
between two components into the model. More information about the different univariate
EMOS methods, as well as results in form of case studies, can be found in the respective

articles.
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Chapter 4

Extending EMOS to Wind Vector

Forecasts

In this chapter, a new method based on the conventional univariate EMOS postprocessing
technique is designed, where ensemble forecasts of two weather quantities are addressed
jointly. EMOS is a very useful and easy to implement way to improve the performance of
wind speed forecasts (Thorarinsdottir and Gneiting 2010); there is also a variant of Bayesian
Model Averaging for the direction of surface wind, developed by Bao et al. (2010). It is
quite conceivable that especially EMOS can be applied to the latitudinal and longitudinal
wind components individually. In this case, however, we do not make use of dependencies
between the components. Therefore, we will introduce a method that employs a bivariate
joint distribution and thus takes account of the correlation structure.

At first we have to become accustomed to the different properties of wind vectors, before
we move on to examining some data and decide which bivariate distribution is best used. In
the then following sections, it will be established how the model characteristics can be written
in terms of the ensemble forecasts. Compared to the univariate EMOS technique, we will make
some changes to the process of parameter estimation in that we will split it in three parts
and use historic data to estimate the correlation structure. Still, the essential ideas stay the
same: EMOS for wind vectors is based on linear regression, takes account of the spread-error

relationship contained in the ensemble and produces calibrated and sharp forecasts.
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4.1 Properties of Wind Vectors

Before we can define a model for the bivariate predictive distribution of wind vectors, we
have to take a look at their properties and how they are measured. For this, consider Figure
4.1, where the green arrow represents the surface wind vector. It is the sum of a zonal and a
meridional component, respectively named U and V. They therefore correspond to the parts
of the wind flowing in west/east and north/south direction. For the creation of weather maps,
the vectors are often illustrated as wind barbs, using shafts of a fixed length with different
kinds of barbs and flags for different wind speeds.

Wind vectors indicate wind speed and wind direction simultaneously through the length
and the angle of the vector. While the angle 6 is measured in degrees (clockwise from north),
the wind is always named after the direction where it originates from, so for example an angle
of 90° means easterly wind, 225° southwesterly wind and so on. The wind speed w can be

computed from the wind components U and V', using the euclidean norm:
w=vVU?+ V2

Surface wind is typically quantified in meters per second or in knots, where 1 knot
approximately equals 0.514m/s. Our new method will be applied to instantaneous 10 m wind,
which means that the wind observations are averaged over the last 2 minutes of the hour and
measured at 10m above ground (see also Thorarinsdottir and Gneiting (2010), where the
daily maximum wind speed was used). In practice, instead of the wind components, the wind
direction f and wind speed w are observed and then transformed into vectors.

Next, we will develop a two-dimensional model for the joint distribution of U and V.
Our goal is to take advantage of a possible correlation between the two components and so
capture dependencies and account for local terrain characteristics. We begin with a short data
analysis where we use ensemble forecasts from the UWME ensemble for the Pacific Northwest
of the USA and parts of Canada, as well as the corresponding verifying observations. Further

information on the data can be found in Section 5.1.
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Figure 4.1: Wind vector, wind components U and V' and wind direction

4.2 EMOS for Wind Vectors

To modify the conventional EMOS postprocessing method so that it can be applied to wind
vectors, we begin by finding a bivariate distribution which represents the empirical distribution
of wind vector observations as closely as possible and which is easy to work with. Again, we
look at the conditional distribution of the observations given the forecasts.

In the two-dimensional case, we at first restrict the following analysis to the ensemble mean
forecast, as compared to the full ensemble in the univariate case. This approach naturally
applies only to ensembles with exchangeable members, but is done here because of simplicity
reasons. Exchangeable members are ensemble member forecasts that only differ in random
perturbations, and are therefore indistinguishable. The UWME ensemble does not consist of
exchangeable members, but we will see that the performance of the new method is not very
sensitive to the use of the ensemble mean only. On the contrary, it reduces the amount of

parameters to estimate and helps simplifying the model.
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Figure 4.2: The R? plane, divided into nine sections

4.2.1 Data Analysis

In the univariate EMOS method, it was established that the predictive distribution of the
weather quantity of interest, conditional on the ensemble forecasts, can be modeled with a
normal distribution. For the two-dimensional wind vectors, we hope to employ a bivariate
normal distribution, but we first have to test if this conjecture is justified.

To examine the wind vector distribution empirically, we use data provided by the UWME,
consisting of the ensemble forecasts and the corresponding verifying observations. For this
purpose, we divide the plane of real numbers into nine sections (according to Figure 4.2) and,
for each section, we plot the observations conditional on the corresponding ensemble mean
forecast falling into this section. So, for the predictive distribution to be bivariate normal,
these scatterplots should roughly have the shape of a circle or an ellipse, depending on the
correlation between the vector components. To create these plots, data from the years 2007

and 2008 at 79 stations is used. All values are given in m/s.
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Figure 4.3: Scatterplot of the distribution of wind vector observations over the Pacific
Northwest in 2007, conditional on the mean of the UWME forecast falling in the same section
of the plane; the section division and arrangement are given in Figure 4.2
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Figure 4.4: Scatterplot of the distribution of wind vector observations over the Pacific
Northwest in 2008, conditional on the mean of the UWME forecast falling in the same section
of the plane; the section division and arrangement are given in Figure 4.2
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The circle surrounding section 1 has a radius of 2 m/s and the numbers of the other sections
are assigned clockwise, starting at 360°. In Figure 4.3 it can be seen that the observations
indeed seem to be bivariate normally distributed, with the majority of points in the centre of
each plot, decreasing towards the outer edges. Especially the plots for sections 4, 5, 8 and 9
show a substantial correlation between the two wind components in northwestern/southeastern
direction.

If we compare the plots from the years 2007 and 2008 (Figures 4.3 and 4.4), it is obvious
that the wind patterns don’t seem to change very much over the years, which we will use later
when estimating the predictive correlation coefficient in Section 4.2.4. Also, it can be noted
that the observational data has been discretised due to the rounding of wind speed to whole

knots (compare Section 5.1).

4.2.2 Modelling the predictive distribution

In this section, we will determine how the characteristics of the predictive distribution can be
modelled with regard to the univariate EMOS method. The bivariate normal distribution has

five characteristic values:
e the mean value for each component, uy and py
o the variance for each component, o7 and o3
« the correlation coefficient between the two components, p

As we will make forecasts for all observational stations and every single day, these values

depend on the location s and the time ¢:

° MU(Svt)7 MV(Svt)

* U?J(Sa t), 012/(37 t)

° p(57 t)
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We then denote the wind vector distribution, conditional on the ensemble mean vector, as

(U(Sat)) ~ Ny (u(s,t),2(s,1))

_ N (( (s, 1) ) | ( ot (s,1) p(s. 1) our(s,1) oy (s, 1) )) |
fiv (s, t) p(s,t)ou(s,t) ov(s,t) ot (s,t)
which means that the vector of wind observations at location s and time ¢ is bivariate normally
distributed with the mean vector u(s,t) and variance-covariance matrix 3(s, t) that are valid
for this time and location.

Now, we need to describe these distribution characteristics in terms of the ensemble
forecasts. If we follow the method developed in Gneiting et al. (2005) and Thorarinsdottir
and Gneiting (2010) closely, we have to employ a proper scoring rule, which we minimise to
estimate the parameters of the predictive distribution. The preferred scoring rule so far has
been the CRPS, which is a robust score and has a closed form for the normal distribution. A
natural generalisation to multiple dimensions is the energy score, so a straightforward way
would be to optimise this score for the predictive distribution defined above.

However, as there is no integral representation for the energy score but only one that
uses the expected value of the distribution, we are not aware of a closed form for this score
and minimisation could only be done numerically. This would lead to an immense increase
of computational costs for this otherwise very parsimonious method (compared to BMA for
example, where a mixture of several probability densities is used; see Raftery et al. (2005)).

Instead, we will separate the estimation process into three parts and use three different
methods to obtain the parameters. We will use linear regression for the mean vector and
maximum likelihood estimation for the variances. Finding a way to compute the correlation
coefficient is challenging, as it strongly depends on the wind direction, which again follows
certain patterns for different locations.

Here we will introduce a technique where a specific correlation function is estimated from
the previous year’s observations and is used for the forecasts of a whole year. Later we will

establish that this rather complex way of determining p is worth the effort compared to a
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naive approach where we estimate the two wind components separately with no correlation at
all (Section 5.3.3).

The eventual parameter estimation will therefore be executed following these three steps:

1. Estimate the predictive means by performing linear regression

on the ensemble means.

2. Compute the predictive correlation of the wind components
with help of the previously estimated correlation function and

the predictive ensemble means from the first step.

3. Insert the results from steps 1 and 2 into the log-likelihood func-
tion for the predictive distribution and estimate the remaining

variances.

In the following sections, the modelling of the predictive distribution characteristics and the

different ways of estimation will be presented.

4.2.3 The Mean Vector and Linear Regression

The analysis of the UWME data yielded that the distribution of wind vector observations
conditional on the ensemble mean is approximately bivariate normal. Therefore we suggest
the ensemble mean as sole predictor for the EMOS mean, in order to reduce the number
of parameters to estimate and to avoid a possible overparameterisation. Of course, this
supposition again only holds for ensembles with exchangeable members, which is not the case
for the UWME. This will be discussed further in Section 5.2.1.1 and we will examine if a

Table 4.1: Estimated parameters for the predictive mean at station KSEA
valid on 23 January 2008

ay bU ay bV

—0.69 0.86 —0.42 1.08
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Figure 4.5: Parameter estimation of the predictive mean vector for the 48-hour-ahead
forecasts at Sea-Tac Airport, valid on 23 January 2008; pictured are the scatterplots of the
ensemble means and the verifying observations contained in the training data set, as well as
the respective fitted linear functions, for (a) the U component and (b) the V' component

model using multiple linear regression with the initial ensemble forecasts as predictors shows
better results for this ensemble.

So, with respect to the univariate method, we write the predictive means as linear functions
of the ensemble means Ul(s,t) = - >M Ui(s,t) and V(s t) = & 7, Vi(s, ¢):

po(s,t) = ay+by-U(s,t)

MV(Sut) = va—l-bv'V(S,t)-

Because only the four parameters ay, ay, by, and by (valid at station s and time t) are
determined in this step, the best way to do so is using standard linear regression, for each

component separately. Therefore we assume that we have a linear relationship between the
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Figure 4.6: Relationship between the wind direction and the correlation based on the
observations at all stations in 2007; for each section, the point represents its average wind
direction while the number refers to the observation count

ensemble means and the observations and that there are error terms €y and ey, which have a

univariate normal distribution with mean zero:

U(s,t) = ay+by-U(s,t)+eu

V(s,t) = ay+by-V(s,t)+ey,

where (s,t) are the pairs of locations and dates contained in the training data. To actually
compute the parameters, we use ordinary least squares, as implemented in the R function 1lm.

Now we take a look at an example where we make a forecast for the EMOS predictive
mean vector at Sea-Tac Airport (station KSEA) on 23 January 2008. The training data for
the linear regression consists of the 40 most recent pairs of ensemble means and verifying
observations at this location, and the resulting estimates for the parameters are given in

Table 4.1. In Figure 4.5 we can see the observations plotted over the ensemble means and the
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Figure 4.7: Relationship between the wind direction and the correlation based on the
observations at station KSEA in 2007; for each section, the point represents its average wind
direction while the number refers to the observation count

respective fitted linear functions. The ensemble mean vector for this day is (0.51, —O.Ol)T, SO
the parameter estimation results in the predictive mean vector (—0.25, —0.44)T.

4.2.4 The Correlation Coefficient and the Wind Direction

Our next step in the estimation process is to develop a method in order to model the correlation
coefficient of the predictive normal distribution. In Section 4.2.1, we looked at scatter plots of
wind vector observations in different sections of the two-dimensional plane and established
that there seems to be a substantial correlation in several of them. This suggests that there is
a strong connection between the direction of the forecast mean vector and the correlation of
the two observation components U and V.

Further analysis of the data (Figures 4.6 and 4.7) will yield that the correlation in fact
changes with a period of about 180°. The data used for this analysis is from 2007; we will

also use it for the estimation of the correlation curve. For Figure 4.6, the correlation between
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the observations for eight of the nine sections was computed and then plotted against the
respective wind direction, with the numbers referring to the actual observation count in each
section. We will not use section 1, the circle around zero, as it can not be associated with one
single direction.
To obtain the actual predictive wind direction 6 (in degrees) from the mean vector

components py and py (as in Figure 4.1), the two-argument arctangent function is employed:

360°

0 = — -atan2(—uy, —
o (—pw, —pv)
LU

arctan 7= py <0

arctanﬁ—‘vf+7r py <0, py >0

360° | arctan Z—"i - py >0, puy <0
2

g ILLU<O7ILLV:0
-3 py >0, py =0
0 po = pv = 0.

As this function ranges from —180° to 180°, we add 360° to negative values and therefore get
results between 0° and 360°.

The shape of the resulting curve resembles that of a trigonometric function, so we can
make a first guess for modelling the correlation. A cosine function with four parameters seems
reasonable:

p(s,t) =r-cos(k-0(s,t)+ ) +p,

where (s, t) is the wind direction of the predictive mean vector obtained in step 1. We have to

constrain the period to be an integer so that the consistency between the values at e.g. 0° and

2 2
360°° 360°°

Furthermore, considering the same plot but with data from only one station, Figure 4.7 shows

360° is retained, thus k£ has to be an integral multiple of Figure 4.6 suggests k = 2 -
that the wind direction/correlation relationship can vary locally. Due to lack of data, this
station-specific curve however potentially changes over time.

An appropriate way to estimate the parameters r, ¢, and p is non-linear least squares

regression, while k£ has to be determined empirically because of the constraint mentioned
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Figure 4.8: Empirical (solid line) and estimated (dashed line) correlation functions, based
on all available observations in the Pacific Northwest in 2007

above. A special wind pattern at a certain location can cause few or no observations in a
section, resulting in correlations of 1 or —1. The number of observations in each section will
serve as weights, therefore taking account of this unreasonable extremal values when there is
only little data available for a certain direction.

So, for estimating this trigonometric correlation function, we use the built-in R function

nls with the relative frequency of observations as weights. If we use the data from all stations,

we get
47
, 1) =0.20 - — - f(s,t —1.08)—0.15,
p(s,1) cos (s - 0l5.)
which is shown in Figure 4.8. For the example where data from only one station is used, the
weighted regression yields the curve in Figure 4.9; we chose a period of 360°, that is k = %.

The individual empirical and estimated correlation curves for all 79 stations and the respective
choices for the parameter k£ can be found in Appendix A.
With this function we have found a way to describe and measure the relationship between

the wind direction and the correlation of the predictive distribution. It was established earlier
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Figure 4.9: Empirical (solid line) and estimated (dashed line) correlation functions, based
on all available observations at Sea-Tac Airport in 2007

that the specific wind patterns don’t seem to vary much from year to year, so that we will
use the curves estimated with the 2007 data for issuing out-of-sample predictions in 2008. In
continuing the example from the previous section, we take the bias-corrected predictive mean
(—0.25, —0.44)T, compute the predicted wind direction 6 = 30.24° and with this the predictive
correlation p = 0.07. Here we use the location-specific correlation function for Sea-Tac Airport.

This brings the characterization of step 2 of the parameter estimation to an end, all that
remains is to employ the maximum likelihood technique and estimate the predictive variances

2 2
o and oy

4.2.5 The Variances and Maximum Likelihood

In this section, we return to the conventional EMOS method and optimise a proper scoring
rule to estimate the remaining parameters. Also, we want to model the predictive variances o3

and 0% as affine functions of the ensemble variances according to the one-dimensional variant:
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o5(s,t) = cy+dy-SE(s,t)
J%,(s,t) = ¢y +dy - S%,(S,t) ,

where SZ(s,t) = L M, (Ui(s,t) - U(s,t))Q and S%(s,t) = LM, (V;(s,t) —V(s,t))2 are
the respective variances of the ensemble forecasts at location s and time ¢. These quantities
can be interpreted as the variances of the error terms ¢y and ey introduced in Section 4.2.3
and they take account of the relationship between the ensemble spread and the forecast error
often observed in ensemble forecasts.

The parameters ¢y, cy, dy, and dy need to be non-negative to ensure that the variances
are always positive and that by applying this method the spread is enlarged, as we wish
to correct the underdispersion of the ensemble. Thus we employ the approach suggested in

Thorarinsdottir and Gneiting (2010), writing cyy = 73, ¢y = &, dy = 6%, dy = 6%, and

0l2](57t) = 7[2]4_5(2]‘5%(570
ov(s,t) = 7+ 0y - Sp(s,t).

To obtain these parameters, we will use the classical method of maximum likelihood estimation.
It corresponds to finding the values for the parameters under which the probability that the
training data would have been observed is maximal. This probability is expressed by the

likelihood function

L(n)=1]f&mp3n)
(s:)

with f (x,p,3,n) being the density of the bivariate normal predictive distribution and
n = (v, ou, 5V)T the vector of parameters to estimate. Here x = (U, V)T is the vector

of verifying observations, g the mean vector and ¥ the variance-covariance matrix for all

Table 4.2: Estimated parameters for the predictive variance at station KSEA valid on 23
January 2008

Cuy dU Cy dv

2.29 2.67 5.01 0.00
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forecasts contained in the training set (s,t). In practice it is often easier to maximise the
logarithm of the likelihood function, the log-likelihood function ! (n), for reasons of algebraic

simplicity and numerical stability (Raftery et al. 2005). Thus our function to optimise becomes

L(n) = log<H f(xm&n))
(1)
1 1 -
= log ((g) /Aot S " eXp <—2 (x—p) B(x— H)))
— Tlog [wim exp (3 - u>T2<x—u>)]

(s,t)

- 5 |s (sres) 3w B0 )

_ Z log 1 _1 U—puy oy pPoyoy U—py
(s.t) 2m\Jotod (1 — p?) 2\ V—py poyoy oy V —py

= > |log !

(s:) 2m\ /7% + 07 - SE (s, 1% + 0% - SE(s,1)\/1 — p2(s.1)

_ U (s, t) — pu(s, )]
2[1 = p?(s, )| NG + 6t - Sp(s, 1))

[V (s, t) = pv (s, 1))
2[1 = p*(s,0)] [0 + 03 - St (s,1)]

p(s, 1) [U(s,t) — pu(s, )] [V (s, t) — puv (s, 1)]
(1= p*(s,)] 06 + 05 - St (s, ) [ + 6% - St (5, 1))

The values of the mean vector and the correlation coefficient don’t depend on n and are
previously computed in step 1 and step 2. Of course, this function can only be applied if we

assume that the forecast errors are independent of time and location. This assumption usually
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doesn’t hold, but as in Raftery et al. (2005) and Gneiting et al. (2005), possible dependencies
won’t have a large effect on the predictions because we only make forecasts for one time and
one location simultaneously.

The actual numerical maximisation is done with the optim function in R using the Broyden-
Fletcher-Goldfarb-Shanno algorithm. Maximum likelihood estimation can be perceived as
optimising the ignorance score (compare Section 2.3), so this method is equivalent to optimising
a proper scoring rule, similar to the univariate case. As initial values for the algorithm, we use
the results of the previous day’s estimation. This method does not necessarily find a global
maximum, but in this case we found the maximisation to be relatively insensitive to the choice
of starting values.

For our example, Sea-Tac Airport on 23 January 2008, the estimated variance parameters
are shown in Table 4.2. The ensemble variances S7 and S3 are 0.19 and 0.69, respectively, so
the estimation results are the predictive variances o7 = 2.79 and o = 5.01. Larger values
for dyy or dy represent a high spread-error correlation in the training data, whereas on days
where there seems to be no spread-error correlation at all, the corresponding values will be

very small or even zero, like for the V' component in our example.

In this manner, we conclude the description of our new EMOS postprocessing method,
which is applicable to wind vectors, and proposes a way to extend the usual parameter
estimation to multiple dimensions. The major changes compared to the univariate case is that
we split the process into three parts and estimate the correlation coefficient with a trigonometric
function of the predicted wind direction. In Section 5.4 we will see that this procedure results
in a better performance than other approaches such as error dressing, separate postprocessing
for the individual wind vector components or the Ensemble Copula Coupling approach, where

we take account of the dependency structure of the ensemble.
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Chapter 5

Case Study and Predictive

Performance

After developing a bivariate EMOS method in the previous chapter, we now analyse its
out-of-sample predictive performance by conducting a case study for wind vector forecasts
over the North American Pacific Northwest. This particular ensemble prediction system
was also used to test the skill of the univariate EMOS variants described in Chapter 3. We
compare two-dimensional EMOS to the unprocessed ensemble and a number of other forecasts
taking the form of ensembles or densities. They include a climatological forecast based on
past observations, an ensemble dressing technique adding past errors to the ensemble mean, a
combination of univariate EMOS predictive distributions for the individual vector components,
and a multivariate postprocessing method using copulas. Finally, we examine if the bivariate
method also creates calibrated and sharp wind speed forecasts and we assess its performance

relative to the original EMOS method for wind speed.

5.1 The University of Washington Mesoscale Ensemble

In order to test the skill of the new EMOS postprocessing technique, we use data provided by the
UWME ensemble (as described in Eckel and Mass (2005)), for the period between 1 January
2008 and 31 December 2008. During this time the eight-member multianalysis ensemble
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Table 5.1: The UWME members and the sources of the different initial and lateral boundary

conditions.

No Member IC / LBC Source Operational Centre
Name
AVN- USA National Centers for

1 MM5 Global Forecast System Environmental Prediction
CMCG-  Global-Environmental . :

2 MM5 Multi-Seale Model Canadian Meteorological Centre

3 ETA- ETA Limited-Area Mesoscale USA National Centers for
MM5 Model Environmental Prediction
GASP- Global Analysis and Prediction :

4 MM5 Model Australian Bureau of Meteorology
JMA- .

5 MM5 Global Spectral Model Japanese Meteorological Agency

6 NGPS- Navy Operational Global Fleet Numerical Meteorological and
MM5 Atmospheric Prediction System  Oceanographic Center

7 g/[(;/};/B_ Global Forecast System Taiwan Central Weather Bureau
UKMO- .

8 MM5 Unified Model UK Met Office

consisted of multiple runs of the Fifth-Generation Penn State/NCAR Mesoscale Model (MMS5)

with initial and lateral boundary conditions from eight different operational centres around

the world. The ensemble members and the corresponding sources of initialisations are shown

in Table 5.1.

The region covered by the UWME is the Pacific Northwest of the USA and Canada. An

inner nest roughly consists of the US states Washington, Oregon and Idaho, as well as the

southern part of the Canadian province British Columbia; the forecasts were made on a 12

km grid. The outer domain covers the western part of North America and large parts of

the eastern Pacific Ocean, having a horizontal grid spacing of 36 km. We use 48-h-ahead

forecasts that were issued for observational stations and bilinearly interpolated from the four
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surrounding grid points. Additionally, they were rotated to match the northern direction at
each station.

Observation data is provided by weather observation stations that are part of the Automated
Surface Observing System network (National Weather Service 1998). Our new method is
applied to horizontal instantaneous surface wind, where “instantaneous” means that the wind
is measured and averaged over the last two minutes before the valid time at 00 UTC (see also
Gneiting et al. (2008), where a similar data set was used). To obtain verifying wind vector
observations, the observed wind direction 6 and wind speed w were transformed into vectors,

using the following relationships (see Figure 4.1 for reference):

2T

— _w-si .9>
U w - sin (3600
2T

V w - oS <3600 )

While being recorded in knots, the wind speed observations are rounded to the nearest whole
knot, and values below 1 knot are recorded as 0. Therefore the wind vector observations are
discretised, which is easily recognisable in Figures 4.3 and 4.4. Quality control procedures,
described in Baars (2005), were applied, removing dates and locations with missing forecasts
or observations from the data set.

For the time period considered, 19,282 pairs of ensemble forecasts and observations were
available, corresponding to 291 forecast days. There are 79 observation locations, whose
distribution is pictured in Figure 5.1. Additional data from the years 2006 and 2007 is
required in order to provide an appropriate training period for all days of 2008, to estimate
the predictive correlation functions and to establish the optimal length of the rolling training
periods. Further information about the UWME, now using the WRF mesoscale model, as
well as real time forecasts and observations can be found at http://www.atmos.washington.

edu/~ens/uwme.cgi.
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Figure 5.1: Observation locations contained in the data set

5.2 Regional and Local EMOS Technique

In concordance with the univariate EMOS technique for calibrated forecasts of wind speed
(Thorarinsdottir and Gneiting 2010), we will present two techniques which differ in the choice
of data to use in the training set. Furthermore, for each of these techniques, we will determine
the optimal length m of the rolling training period.

Naturally, the parameters have less statistical variability when there is more data contained
in the training set. However, if a long period is chosen, the model is also less adaptive to e.g.
seasonal changes and varying relative performances of the underlying models. Hence, there is

a trade-off between choosing the training period to be as short as possible, and making sure
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that, at the same time, calibrated and sharp predictive distributions are produced. To obtain
the best choice, we apply the bivariate EMOS method to data from the calendar year 2007,
using additional data from 2006 to provide full training periods for all dates. This data is
not used for evaluating the performance of the new EMOS method. In this experiment, we
computed the out-of-sample energy score and the Euclidean error, averaged over all dates
and locations, considering various training period lengths. Therefore the optimal training
period length is where these scores are minimised, as proper scoring rules assess calibration

and sharpness simultaneously.

5.2.1 Regional EMOS

For the regional EMOS technique, on each day only one set of parameters is estimated and
used to produce forecast for all stations. The training set consists of all available data from
the 79 stations and the last m days prior to the forecast being made. Should data be missing
at certain dates or stations, these are omitted from the training set. For example, if we assume
a training period length of 40 days, and make forecast for day 183, issued on day 181, all
forecasts and observations from dates 142 to 181 are included in the training set. As for the
correlation curve, all forecasts and observations of the previous calendar year, i.e. 2007, are
employed to estimate one correlation function (see Figure 4.8).

This technique allows us to produce forecasts for any location in our area of interest
for which ensemble forecasts are available, even if there should be no training data at this
particular station. It also has the advantage of being very parsimonious, as only very few
parameters have to be computed. Thus we can think about extending the parameter estimation

so that we make use of the ensemble forecasts themselves.

5.2.1.1 Using Multiple Linear Regression to Estimate the Predictive Mean

As suggested before (Section 4.2.3), we consider two different kinds of estimation for the
predictive mean. Initially only the ensemble mean was used as predictor for the linear regression.
However, as the regional EMOS technique comes with a large amount of training data, it
is possible to fit more parameters and we can also estimate the predictive mean as a linear

function of the original ensemble member forecasts:
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Figure 5.2: Number of non-zero EMOS™ coefficients when estimating the predictive mean
for all dates in the data set: (a) U wind component and (b) V' wind component

pu(s,t) = ay+bys-Ui(s,t) +...+bys - Us(s,t)
pv(s,t) = ay+byy-Vi(s,t) +...+bys- Vs(s,t).

Again, we obtain the parameters ay,by1,...,bys and ay,by,...,bys by performing two
separate linear regressions before the correlation coefficient and variances are estimated as
usual. To improve interpretability, the coefficients by 1, ...,bys and by;,...,bys must be
non-negative. In order to ensure this, we use a variant of the EMOS™ technique proposed
by Gneiting et al. (2005). As the coefficients are estimated using a linear regression model,
we proceed the following way. After determining the regular regression estimates, we remove
those ensemble members with non-negative parameters from the training set and set their
coefficients to zero, then estimate again. This is repeated until there are only non-negative
coefficients left. For the remainder of the parameter estimation, i.e. the computing of the

predictive correlation and the maximum likelihood estimation, we use the ensemble variance
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recomputed from the reduced ensemble. In Figure 5.2, the number of non-zero coefficients
is pictured over time. We can see that on most days there are 5 or 6 ensemble members left
to generate the forecast. Whether this extended method provides better results than the
simple linear regression, which relies on the unjustified assumption of exchangeable ensemble

members, is discussed in Section 5.4.3.1.

5.2.1.2 Length of Training Period

We established above that our choice for the size of m, which determines the amount of
data contained in the training set, should be as small as possible without lack of calibration.
Therefore we computed the mean energy score and Euclidean error depending on the length
of the training period, using data from the year 2007, for both the simple regression and the
multiple regression variant. The results are shown in Figures 5.3 and 5.4, respectively.

In the case of the simple linear regression, the variation of the training period length causes
only little change in the mean value of the scores. Both the energy score and the Euclidean
error reach their respective minimum around 30, which appears to be a good choice. However,
any number between 20 and 40 days is acceptable.

For the multiple linear regression, more parameters have to be estimated, which is why
the training set has to contain more data as for the simple regression. Looking at the mean
scores in Figure 5.4 suggests a value between 40 and 50 days, and so, in order to be flexible to

changing circumstances, we chose a sliding training period of 40 days.

5.2.2 Local EMOS

The local EMOS method provides a localised approach, which can be useful at sites where
more specific forecasts are required, e.g. because local biases or dispersion errors need to be
addressed. Here we only use training data from the station at hand and thus obtain a set of
parameters for each station at every single day. The training period consists of the m most
recent days where forecasts and observations were available, so that we always have m pairs
of data contained in the training set. As this is significantly less data than for the regional
technique, it seems not reasonable to apply multiple linear regression. In the example above,

we make a forecast for day 183, issued on day 181. If no data is missing, the training period
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Figure 5.3: Mean energy score (a) and mean euclidean error (b) for the Pacific Northwest
in 2007, as a function of the rolling training period length for the regional EMOS technique
using simple linear regression

again stretches from day 142 to 181, for a length of 40 days. However, should there be 2 days
with missing data at this particular station, the training set is extended and now includes all
forecasts and observations for days 140 to 181.

As the correlation structure can vary locally, due to different terrains and surroundings, we
produce local correlation functions for each station. They are estimated in the same manner
as the regional version, but only using the location specific observations. For reference, all 79
empirical curves and the results of the estimation are shown in Appendix A.

We use the previous day’s results as initial values (Section 4.2.5) for the estimation of the
variance parameters. In the local approach, however, sometimes the coefficients dyy and dy are
zero, as there is no spread-error correlation for the ensemble forecasts in the training data.
When this happens, we set the starting parameters dy and 6y for the following day to two.
This assures that, in the next step, the estimation algorithm can converge to values far from

the boundary.
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Figure 5.4: Mean energy score (a) and mean euclidean error (b) for the Pacific Northwest in
2007, as a function of the rolling training period length for the regional EMOS™ technique
using multiple linear regression

5.2.2.1 Length of Training Period

Following the example in Thorarinsdottir and Gneiting (2010), we only use the 30 observational
locations in the US state of Washington in order to determine the local training period
length and examine the mean energy score and mean euclidean error for each station. For
comparability, at each station the values are divided by the respective mean over all period
lengths. Figure 5.5 summarises the outcome of this analysis.

On the basis of this plot, any value between 40 and 60 days appears to be a good choice
for the length of the training period. For this case study, m = 40 days was selected, as the
training period should be as short as possible, increasing the ability to adapt to seasonal

changes.
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Figure 5.5: Relative mean energy score (a) and relative mean euclidean error (b) for the 30
observation stations in Washington State in 2007, as a function of the rolling training period
length for the local EMOS technique; the points indicate the lowest score for each station

5.3 Competing Forecasts

Additional to EMOS and the raw ensemble, there are several other methods to predict wind
vectors, which are introduced and described in this section. Their performance will be assessed
and compared in Section 5.4. The climatological ensemble is a forecasting technique using
weather observations, whereas the other methods are postprocessing techniques trying to

obtain calibrated and sharp forecasts from the UWME ensemble.

5.3.1 Climatological Ensemble

At first, we want to introduce a climatological forecast, which means perceiving past weather
observations as predictions for the future. In the context of this thesis, the climatological

forecast is obtained from the training data used to determine the EMOS predictive distribution.
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From the wind vector observations contained in this data, m vectors are randomly sampled,
yielding an ensemble of the same size as the length of the EMOS rolling training period. Again
we have a regional and a local technique, so that all forecasting methods can be compared
directly. The regional technique uses observations from all locations available, and the local
only from the station at hand.

As the observations are rounded and include many values equaling zero, the ensemble size
is larger as compared to the UWME to avoid numerical problems on one hand and to improve

the fitting of a normal distribution (as described in Section 5.3.5) on the other.

5.3.2 Error Dressing Ensemble

In Gneiting et al. (2008), a postprocessing method called error dressing was discussed, producing
well-performing forecasts. It uses the raw ensemble’s own statistical errors to generate a
new ensemble that is corrected for biases and dispersion errors. The general approach was
first proposed in Roulston and Smith (2003), where it is called “dressing” and applied to
each member of the ensemble. Here we will content ourselves with creating an error dressing
ensemble from the UWME mean forecast and the corresponding verifying observation. The
data used are again the respective training sets for the regional and local EMOS methods.

First we compute the ensemble mean errors,

where (s,t) ranges over all stations and dates contained in the training data set. From this

€Uy, ---,€UmM

empirical error distribution, m errors are sampled and then added to the

€viy .-, €Vm
UWME mean for the current forecast day and location. This results in the new error dressing

ensemble with m ensemble members:
U + €yl U + €Um
Ve )\ e )
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In contrast to Gneiting et al. (2008), we only make use of past errors to simplify compara-
bility of all postprocessing and forecasting methods. For the same reason, both regional and

local forecasts are provided.

5.3.3 EMOS for Wind Vector Components

As the wind vector data is given in form of its meridional and longitudinal components, the idea
comes to mind that the conventional one-dimensional EMOS method could be applied to the
two components separately. Recall that in Section 4.2.1 it was established that wind vectors
seem to be normally distributed. Therefore, the resulting univariate predictive distributions
can be joined to a bivariate normal distribution, assuming that U and V' are independent and
hence especially are not correlated.

To propose such an approach, we can follow the method as it was described in Gneiting
et al. (2005) and Section 3.2 and model the predictive distribution of a wind component Y at

location s and time t, conditional on ensemble forecasts X1, ..., X, accordingly:
Y(s,8) | Xi(s,8) ... Xar(s,8) ~ N (u(s,1),0%(s,1)) .
The EMOS mean p is a linear function of the ensemble members,

(s, t) =a+ 0 Xi(s,t) + ...+ by Xn(s, t),

2

and the predictive variance o an affine function of the ensemble variance S?,

(s, t) =c+d- S*(s,t).

For the parameter estimation, we return to the method of CRPS minimisation and estimate
all parameters simultaneously. The only difference compared to Gneiting et al. (2005) is
that we do not use the method introduced as EMOS™ to ensure non-negative values for
b1, ..., by, but rather the one by Thorarinsdottir and Gneiting (2010), where these coefficients
are written as 87,..., 32,, additional to ¢ = 72 and d = 2. Then the estimation is performed,

unconstrained, over a, 81, ..., By, 7, and 9.
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After the described method is applied to both U and V forecasts, we combine the results,

namely juy, py, 05, and 0%, to obtain a bivariate probability distribution:

U(s,t) py(s,t) ot(s,t) 0
~ N , :
(s ) e (e 78 )

This distribution can be assessed in the same way as the one generated by the bivariate
method taking the correlation into account. The comparison of these two distributions tells
us if a two-dimensional approach to wind vectors is justified at all, or if it suffices to address
the vector components individually. As before, we produce regional as well as local forecasts,
using the same length of training period as in Sections 5.2.1 and 5.2.2. In the following, this
method is referred to as EMOSYV .

5.3.4 ECC Ensemble

The fourth technique we want to compare our EMOS method to, is called Ensemble Copula
Coupling (ECC). It was developed to combine already postprocessed forecasts, so that multiple
weather quantities, locations or forecast horizons can be addressed together. In this manner,
multivariate dependence structures are inherited from the ensemble. More information about
ECC can be found in Schefzik (2011).

In the current framework, we plan to apply this approach to the univariate EMOSYY
forecasts produced by the method described in the preceding section. Thus we obtain a
two-dimensional ensemble that takes account of the correlation structure between the wind
components, instead of just assuming that they are independent.

We proceed as follows:

1. Employ univariate statistical postprocessing:

SUV' postprocessing method for

At first, we apply the aforementioned EMO
wind components to the ensemble forecasts Uy, ..., Ug and Vi,...,Vg. In this
way, we obtain calibrated and sharp univariate predictive distributions for U

and V.
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2. Draw random samples:
We draw samples Uy, ..., Ug and Vi, ..., Vs from the EMOSUY predictive dis-
tributions of both U and V' wind components. Here, random samples are used,

as compared to equally spaced quantiles in Schefzik (2011).

3. Arrange according to the multivariate structure:
In order to copy the multivariate structure of the ensemble, we determine the
order statistics of the unprocessed ensemble members for each wind compo-
nent, where ties are resolved at random. By this procedure, our ensemble
becomes Uy (1), ..., Usw) and V), ..., V) with the respective order statistics

o(1),...,0(8) and p(1),..., 1 (8). Then the accordingly ordered samples

( Ustr ) ( Usts )
V) Vi)

constitute the ECC ensemble, which has inherited the dependence structure from

the raw ensemble, although relying only on one-dimensional postprocessing.

In the general ECC approach, a sample of the magnitude of the ensemble size is generated and
ordered; we follow this in the computation of the Euclidean error, the determinant sharpness
and the multivariate rank histogram. For computing the energy score, however, a sample size
of 10,000 is required (refer to Section 2.3.2). Thus we repeat the last two steps 1,250 times,
thereby creating a total of 10,000 vectors.

5.3.5 Converting Ensemble and Density Forecasts

In order to compare all forecasts in this case study, we use the assessment tools introduced
in Chapter 2. Some of the tools only apply to one form of probabilistic forecasts, either
ensembles or probability distributions. Therefore, we have to convert the forecasts to assess
their performance with these methods.

Sampling from a predictive distribution yields a discrete ensemble of any desired size.

Gneiting et al. (2005) proposed taking quantiles at levels #ﬂ? forve=1,..., M. However,
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bivariate quantiles are hard to determine, which is why we use random samples to obtain the
ensemble vectors.

For a given ensemble forecast, we replace it by a bivariate normal density estimate.
The distribution characteristics are directly gained from the ensemble, with the ensemble
means as mean vector, and the empirical ensemble variances and correlation generating the

variance-covariance matrix of the new full predictive distribution.

5.4 Predictive Performance for Wind Vector Forecasts

At this point, we begin describing the predictive performance of the new bivariate EMOS
method as well as of the other forecasting and postprocessing techniques introduced in the
previous section. First, we recapture the example from Chapter 4, where we considered
forecasts for the 23 January 2008 at Sea-Tac Airport. Then the performance of the local
techniques at this station is discussed, by means of the forecasts for the calendar year 2008.
Finally, we present our findings aggregated over all locations for both regional and local

forecasts.

5.4.1 Results for Sea-Tac Airport, 23 January 2008

To illustrate EMOS in practice, we consider one date at one location, where we produce
local and regional postprocessed forecasts. In Chapter 4, it was explained how we obtain
the parameter estimates for the predictive distribution using linear regression for the mean
vector, weighted non-linear regression for the correlation coefficient and maximum likelihood
estimation for the variances. This estimation procedure was conducted for predictions at
Sea-Tac Airport, valid on 23 January 2008.

Table 5.2 shows the parameter estimates for the local and the regional technique. For
comparability reasons, we choose the regional EMOS forecast which uses simple linear regression
on the ensemble mean. Correspondingly, the characteristics of the predictive distributions,
as well as the ensemble means, ensemble variances and verifying observation are specified in

Table 5.3.
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Table 5.2: Parameter estimates at station KSEA, valid on 23 January 2008, for the local
and regional EMOS techniques both using simple linear regression

Method ay bU Cy dU ay bV Cy dV
local EMOS —-0.69 0.86 2.29 267 -—-042 1.08 5.01 0.00
regional EMOS —0.56 0.55 3.19 0.86 0.04 0.60 4.44 1.10

Table 5.3: Local and regional EMOS means, variances and correlation, as well as ensemble
means, ensemble variances and the verifying observation for station KSEA, valid on 23 January
2008

Method J7ts; Ly of  ob )

local EMOS —-0.25 —-0.43 279 5.01 0.07
regional EMOS —0.28 0.03 335 519 -0.29

v vV s s U Vv
0.51 —0.01 0.19 069 —1.34 0.77

Both methods roughly agree on the parameters for the predictive mean of the U component,
while there is a significant difference in the other dimension. The local method suspects a large
negative bias for V| and therefore corrects the mean in the wrong direction. In the case of the
variance parameters, regional EMOS detects a relatively weak spread-skill relationship in both
dimensions, with dy; and dy being around one. Using only the location-specific training data
even yielded that, for V', ensemble spread and forecast error are not correlated at all, resulting
in a large value for ¢y and a dy equalling zero. In this way, the variances of the underdispersive
ensemble are substantially enlarged. Also, by means of the correlation estimates, one can see
the effects of using different predictive correlation functions for the two techniques.

Figures 5.6 and 5.7 let us compare the forecasts graphically. The regional EMOS mean is
a better point forecast for the observation than the local EMOS mean. Their dispersion is
very similar, apart from the differing correlations. For the local method, the observation lies

just outside the 25% ellipse, while it lies well within for the regional method. Both plots show
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-2

-4

Figure 5.6: Contour plot of the local EMOS and the UWME forecasts; the green, blue and
red asterisks represent the EMOS mean, the ensemble mean and the verifying observation,
respectively; the green ellipses are the 25%, 50%, 75% and 90% EMOS prediction ellipses,
while the blue one is the 90% prediction ellipse of the fitted UWME distribution

clearly that the spread of the UWME is far too small, with the observation way outside of the
ensemble range and the 90% prediction ellipse.

When we visualise the predictive distributions with a perspective plot (Figures 5.8 and
5.9), the underdispersion becomes even more obvious, as the fitted UWME density is much
more concentrated. Additionally, in Figure 5.8, the observation is positioned near the centre
of the density, whereas in Figure 5.9 it lies in the outer margins, indicating the skill of the

EMOS mean as point forecast.
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-2

-4

90%

-6

Figure 5.7: Contour plot of the regional EMOS and the UWME forecasts; the green, blue
and red asterisks represent the EMOS mean, the ensemble mean and the verifying observation,
respectively; the green ellipses are the 25%, 50%, 75% and 90% EMOS prediction ellipses,
while the blue one is the 90% prediction ellipse of the fitted UWME distribution

Quantifying the performance using the energy score and the Euclidean error (Table 5.4),
we find that, as expected, the regional method has the smallest scores, with local EMOS being
slightly higher. The UWME is by far the least skillful predictor, in terms of both probabilistic

and deterministic forecasts.

70



CHAPTER 5. Case Study and Predictive Performance

Table 5.4: Energy score and Euclidean error for local EMOS; regional EMOS, and UWME

forecasts at station KSEA, valid on 23 January 2008

Method ES EE

Local EMOS 1.122  1.557

Regional EMOS 1.008 1.269
1.690 2.116

Raw ensemble
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Figure 5.8: Three-dimensional perspective plot of the local EMOS predictive density; the

dot indicates the verifying observation
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Figure 5.9: Three-dimensional perspective plot of the predictive density fitted to the ensemble
forecast; the dot indicates the verifying observation

5.4.2 Results for Sea-Tac Airport, 1 January - 31 December 2008

In this section, we are interested in the performance of location-specific forecasts, as they can
be crucial in order to predict local weather patterns that are not captured by the regional
variant. Therefore, we want to compare our local technique to the local climatological forecast
and a second postprocessing method, local error dressing. All forecasts use the same training
period, that is the last 40 days where data was available. To ensure numerical stability when
fitting normal distributions, the climatological and error dressing ensembles have an increased
size of 40.
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Table 5.5: Comparison of the three local forecasting techniques and the raw ensemble in
terms of proper scoring rules, calibration and sharpness, averaged over all dates in 2008 at
Sea-Tac Airport

Method ES EE A DS

Local EMOS 1.944 2743 0.069 1.990
Local climatology 2.553 3.610 0.028 2.574
Local error dressing 1.984 2.754 0.008 2.126
Raw ensemble 2.253 2767 0.537 0.757

First we take a look at the estimated EMOS parameters for this station. In Figure 5.10, we
see the development of each parameter over time, for both U and V' components. Generally,
the coefficients for V' seem a little higher than the ones for U. The relationship between
coefficients ay and by, and between ay and by is anti-cyclical, in that b becomes large when a
becomes small and vice versa. Via the variance parameters, we can gather information about
the spread-error correlation of the ensemble. For U, the parameter d decreases at first, while ¢
increases. This implies a weakening relationship between ensemble spread and forecast error.
Towards the end of the test period, ¢ becomes very small, a sign for an improved ensemble
skill. Conversely, for the V' component, d is around zero for the last 50 days, whereas ¢ has
substantial values throughout the year. The somewhat high variance parameters reveal yet
again that the ensemble spread is much too small and has to be enlarged.

Figure 5.11 shows the multivariate rank histograms for the three mentioned forecasts
and the unprocessed ensemble, aggregated over all dates in 2008 at station KSEA. While
the raw ensemble is underdispersive, indicated by the U-like shape, the other forecasts seem
reasonably well calibrated, considering the fact that there are only 291 forecast cases. As a
measure for calibration, the reliability index A in Table 5.5 quantifies and confirms the results
of the histograms. Although the EMOS histogram looks more uniform than the one for the
climatological forecast, it has actually a higher reliability index. This inconsistency originates
in the fact that the size of the climatological (and the error dressing) ensemble is not an

integral multiple of the UWME’s size. So, by creating histograms with an equal number of

74



CHAPTER 5. Case Study and Predictive Performance

(a) Local EMOS (b) Raw Ensemble
3 8- 3 &
o °© & ©
> >
o _| o _ I
o e
L L
3 o | e 2 2 |
g © £ ©
(0] (0]
o — o _ I
o o
o 4 o
o I T T T 1 o I T T T 1
0 2 4 6 8 0 2 4 6 8
Multivariate Rank Multivariate Rank
(c) Local Climatology (d) Local Error Dressing
5 . | 5 L |
5 S - § S -
> o =} o
o (on
o _ o _
L ] - L
2 8 | | 2 o [T
8 o & o
(0] (0]
o _ o _
o o
o o
o I T T T 1 o I T T T 1
0 10 20 30 40 0 10 20 30 40
Multivariate Rank Multivariate Rank

Figure 5.11: Multivariate rank histograms for location-specific forecasts at Sea-Tac Airport
in 2008: (a) local EMOS forecast, (b) raw ensemble forecast, (c) local climatological forecast,
and (d) local error dressing forecast
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cells, the actual grade of calibration can become distorted. This applies to all climatology and

error dressing histograms in the case study.

Local EMOS is, apart from the uncalibrated raw ensemble, the sharpest forecast, with the
climatological ensemble the least sharp. The Euclidean error shows that the EMOS predictive
median yields the best point forecast, being slightly better than the error dressing ensemble.
Finally, in terms of the energy score, which addresses calibration and sharpness simultaneously,
EMOS has the best overall predictive skill, closely followed by the local error dressing approach.
The climatological forecast is not competitive, as it is too widely spread and has an even
higher energy score than the raw ensemble.

In order to check EMOS for marginal calibration, we consider the marginal calibration
diagram in Figure 5.12. As the verifying observations are discretised, we added a small
random noise to each observed vector to simulate the undiscretised distribution and to improve
interpretability. Comparing the empirical distributions, we see that, apart from some outliers,
the local EMOS forecast reproduces the observation pattern. Although the UWME has no
recognisable biases, it fails to predict the observations in the lower right and upper left and is
too concentrated. So, it can be said that the local EMOS method is marginally calibrated for

this station, while the spread of the ensemble is once more not large enough.

5.4.3 Results for the Pacific Northwest, 1 January - 31 December
2008

After examining the performance for one location, we now turn to the results aggregated over

all stations in the Pacific Northwest. First we will address the issue of using only the ensemble

mean or all ensemble members as predictors for the EMOS mean, as described in 5.2.1.1.

Then our new method will successively be compared to the competing forecasts introduced

earlier in this chapter.

5.4.3.1 Comparing Simple and Multiple Linear Regression

For the regional EMOS technique, we proposed to employ multiple linear regression based on the

ensemble member forecasts in order to estimate the predictive mean. To ensure interpretable
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member weights by, ..., bys and by, ..., bys, we employ a variant of EMOS™, and eliminate
predictors from the regression equation until there are only non-negative coefficients left.

When we take a look at these coefficients in Figures 5.13 and 5.14, the predictive skill of the
individual member models can directly be compared. For both components, the AVN-MMb5
and JMA-MMb5 forecasts received the highest weights, which corresponds well with the results
in Thorarinsdottir and Gneiting (2010), obtained over the same test period. The forecasts
generated using the initial conditions by the Australian Bureau of Meteorology, GASP, and by
the Taiwan Central Weather Bureau, TCWB, had the lowest weights throughout the year,
being zero most of the time. Interestingly, the NGPS-MM5 member shows almost no skill
for the U component, but gets rather solid weights for V. Although the AVN-MM5 and the
ETA-MMS5 forecasts are obtained with initial data from the same source, the National Centers
for Environmental Prediction, their coefficient estimates are both substantial over the whole
test period, which indicates that they are not highly correlated.

In Figures 5.15 and 5.16, we see the estimated parameters for the intercept and the
predictive variances. We notice that, in comparison to the local parameters in Figure 5.10,
dy and dy never vanish. This increased stability is due to the higher amount of training
data available for the regional technique. The ensemble for the V' component shows a much
more prominent spread-error correlation than the one for the U component, as the values
for ¢y are very small, while dy tends to be large. Again, the coefficients ¢y and dy exhibit
an anti-cyclical behaviour, suggesting a varying relationship between ensemble spread and
forecast skill.

Considering the scores in Table 5.6, for both simple and multiple regression techniques, and
the multivariate rank histograms in Figure 5.17, we notice a small improvement in performance
when using all ensemble members to predict the EMOS mean. Not only implies the lower
Euclidean error a more accurate deterministic forecast, but the EMOS™ version is also better
calibrated and sharper, leading to a lower energy score. The results show that the assumption
of exchangeable ensemble members does not apply to the UWME, although it apparently causes
only a minor loss in predictive skill to use the ensemble mean as sole predictor. Therefore, it
seems worthwhile to keep simple linear regression for the local approach, where we have less

training data, and adopt multiple linear regression for the regional technique.
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Figure 5.15: Parameter estimates for the regional EMOS™' method using multiple linear
regression, over the Pacific Northwest in 2008: (a) intercept ars, (b) and (c) variance coefficients
cy and dy

5.4.3.2 Results for Regional Forecasts

In this section, we assess the performance of the regional EMOS™ method as compared to
other regional forecasting techniques and the unprocessed UWME ensemble. We concentrate
on the multiple regression version and give results in terms of the energy score, Euclidean
error, multivariate rank histogram and determinant sharpness.

Looking at the histograms in Figures 5.17 and 5.18, we find that the bivariate EMOS™,
climatological and error dressing forecasts, as well as the ECC ensemble, generated using the
regional EMOSYV distributions, are nearly calibrated, while the regional EMOSY" method itself
is overdispersive. The latter is however not surprising, as this technique predicts independent
vector components and the respective variances are estimated individually. Therefore, in
order to capture outlying observations, the spread is enlarged in both dimensions, and by
that overestimated. The multivariate histogram for the UWME in Figure 5.20 shows the raw

ensemble’s underdispersion clearly, as seen before when we considered only one station.
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Figure 5.16: Parameter estimates for the regional EMOS™' method using multiple linear
regression, over the Pacific Northwest in 2008: (a) intercept ay, (b) and (c) variance coefficients

cy and dy

Our findings are confirmed by looking at Table 5.6. The calibrated forecasts have a similar
reliability index and can be ranked by their sharpness, according to the principle of maximising
the sharpness subject to calibration. EMOSY" has, as surmised, the by far highest determinant
sharpness value, while the UWME ensemble has the lowest of all. However, these forecasts are
not calibrated and their overall performance in terms of the energy score is not competitive.
Of the calibrated methods, ECC is the sharpest, followed by EMOS™ and the error dressing
ensemble, while the climatological forecast is much more spread out.

When we look at the skill of the respective bivariate medians as deterministic forecasts,
EMOS™ has the lowest Euclidean error. Although EMOSYY is uncalibrated, it produces a very
good point forecast, almost equalling the best score. ECC and error dressing perform about
similarly well, but the climatological ensemble is even worse than the raw ensemble, which

might explain the very high energy score. Apart from this issue, the uncalibrated UWME and
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Figure 5.17: Multivariate rank histograms for regional forecasts over the Pacific Northwest
in 2008: (a) regional EMOS™ forecast using multiple linear regression, (b) regional EMOS
forecast using simple linear regression, (c) regional climatological forecast, and (d) regional

error dressing forecast
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Table 5.6: Comparison of the regional forecasting techniques and the raw ensemble in terms
of proper scoring rules, calibration and sharpness, averaged over the Pacific Northwest in 2008

Method ES EE A DS
Regional EMOS™ 2.005 2.792 0.020 2.254
Regional EMOS 2.011 2.802 0.026 2.272

Regional climatology 2.677 3.632 0.019 2.924
Regional error dressing 2.181 3.002 0.023 2.380

ECC ensemble 2.325 2.998 0.024 1.859
Regional EMOSYY 2432 2.798 0.365 4.701
Raw ensemble 2.467 3.006 0.528 0.819

EMOSYY expectedly receive the largest energy score values. The bivariate EMOS™ method

clearly performs better than the other techniques.

Surprisingly, the ECC ensemble has a relatively high energy score, though being calibrated
and the sharpest forecast of all. In Section 2.2, we mentioned that the determinant sharpness
tends to overly reward strongly calibrated forecasts, although the variances might be large.
Figure 5.19 pictures the predictive correlation of the regional EMOS™ method and the empirical
correlation for the ECC ensemble at one station. This graphical comparison shows that ECC
predicts correlations ranging from —1 to 1, while the EMOS™ correlation always lies between
—0.4 and 0.1. We can conclude that these high correlations estimates distort the actual spread
of the ECC approach and the true performance relative to EMOS™ reveals itself in the energy
score. Possibly, this effect is caused by the relatively small ensemble size of eight; in order to
compute the determinant sharpness, we fit a normal distribution to the ensembles using the
empirical variances and correlation. However, when applied to a large ensemble, the empirical
correlation can be estimated more accurately.

Summing up, we notice that the two-dimensional EMOS™* method clearly outperforms

SUV overestimates the

the other regional forecasting and postprocessing techniques. EMO
bivariate spread, and when additionally combined with the ECC approach, overestimates the

correlation. Our way of predicting the correlation depending on the predicted wind direction
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Figure 5.19: Predicted correlation at Sea-Tac Airport in 2008, the green dots represent the
regional EMOS™ and the magenta asterisks the ECC method

seems to be essential for the good performance of EMOS™. Though the climatological forecast
is calibrated, its median is a poor deterministic forecast and on average, the prediction ellipses
are too wide. The error dressing method produces good results, but is still not as sharp as

EMOS™ and therefore has a higher energy score.

5.4.3.3 Results for Local Forecasts

After having seen results for the predictive skill of the local EMOS technique at Sea-Tac
Airport, we now want to assess the performance for all 79 stations in the Pacific Northwest.
In Figures 5.18 and 5.20, the multivariate histograms for the different local approaches are
provided. Although the local EMOSYY technique seems a little more calibrated than the

regional version, it is still overdispersive, due to the lack of correlation between the vector
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Figure 5.20: Multivariate rank histograms for different forecasts over the Pacific Northwest
in 2008: (a) local EMOS forecast, (b) UWME forecast, (c) local climatological forecast, and

(d) local error dressing forecast
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Table 5.7: Comparison of the local forecasting techniques and the UWME in terms of proper
scoring rules, calibration and sharpness, averaged over the Pacific Northwest in 2008

Method ES EE A DS

Local EMOS 1.875 2.608 0.025 1.906
Local climatology 2.404 3.361 0.023 2.421
Local error dressing 2.064 2.863 0.025 2.185
Local EMOSYY 2.279 2612 0.213 3.716
Raw ensemble 2.467 3.006 0.528 0.819

components. Again, EMOS, the climatological ensemble and the error dressing ensemble
are calibrated, as can also be seen by means of the reliability index given in Table 5.7. We
have established before that the UWME forecast is underdispersive, i.e uncalibrated, and
even though its determinant sharpness is minimal, this results in a high energy score. Being
overdispersed, EMOSYY also is the least sharp forecast and not competitive in terms of the
energy score, although its median has a very high deterministic forecast skill.

Only considering the calibrated methods, EMOS is sharper than error dressing and both
are sharper than the climatological forecast. Therefore, EMOS also has by far the lowest
energy score, followed by error dressing and climatology. As could be expected, all local
methods perform better than the regional ones, especially in terms of sharpness. Looking at the
Euclidean error, we find that the climatological forecast again seems to have no deterministic
forecast skill, being even worse than the raw ensemble. The error dressing ensemble is somewhat
worse than EMOS, which again produces the best point forecasts.

As with the regional method, we can conclude that EMOS performs better than all other
forecasting and postprocessing methods, in terms of the energy score, the Euclidean error and
the determinant sharpness. The localised approach resulted in an energy score improvement
of 6.5% and an increase in sharpness of 15%. Though the climatological and error dressing
ensembles are calibrated, they are not as sharp as EMOS and therefore have higher energy
scores. EMOSYV is again overdispersed and has too wide prediction ellipses, but shows some

predictive skill as deterministic forecast.
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Table 5.8: Mean CRPS and MAE for the different EMOS methods, averaged over the Pacific
Northwest in 2008

Method CRPS MAE

Regional EMOS, univariate 1.172 1.638
Regional EMOS, bivariate 1.219  1.692
Local EMOS, univariate 1.133  1.564
Regional EMOS bivariate 1.134  1.577

Figures 5.21 and 5.22 provide a graphical comparison between regional and local forecasts
at different locations. Generally, the difference between the spread of the U and V' components
seems to be larger in the local technique, as the ellipses are more stretched. Also, regional
EMOS tends to predict negative correlation more often than local EMOS. The wind direction
of the EMOS mean does not differ much for the two techniques and the performance at
individual stations is very similar. Furthermore, we notice that the prediction ellipses of the
local technique are on average smaller than those of the regional technique, confirming that

the former is sharper than the latter.

5.5 Predictive Performance for Wind Speed Forecasts

The new bivariate EMOS method not only produces calibrated and sharp forecasts for wind
vectors, it also provides a way to predict wind speed through the length of the vectors. In
this section, we show how we can generate wind speed forecasts from bivariate predictive
distributions and compare their performance to the univariate EMOS method for wind speed
described in Section 3.3 and Thorarinsdottir and Gneiting (2010). As our wind vectors
represent instantaneous wind, we have to apply the univariate method to instantaneous wind
speed, as compared to maximum wind speed in the article. Also, we will give our results in m/s
rather than in knots. To ensure comparability, we restrict the analysis to dates and locations

where both wind speed and wind vector forecasts and observations were available.
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Figure 5.21: Map of the US states of Washington, Oregon and Idaho, showing the UWME
means in blue, the regional EMOS means and 80% prediction ellipses in green, and the
verifying observations in red, for a selection of 30 observational locations, valid on 23 January
2008
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Figure 5.22: Map of the US states of Washington, Oregon and Idaho, showing the UWME
means in blue, the local EMOS means and 80% prediction ellipses in green, and the verifying
observations in red, for a selection of 30 observational locations, valid on 23 January 2008
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First, we compute the univariate EMOS predictive distributions for the regional and the
local techniques, following the suggestion of 20 and 40 days training period length, respectively.
Then, in order to convert wind vectors into wind speed, we sample from the bivariate predictive
distributions 100 times and apply the Euclidean norm to each vector, obtaining the vector
length and therefore an ensemble of wind speed forecasts.

For assessing the predictive skill, the mean CRPS, mean MAE, PIT histogram and
verification rank histogram are employed, in the way they are described in Chapter 2. In
Figure 5.23, we see the four histograms for the individual techniques. At first sight, they
don’t seem to be calibrated and rather show a large spike at zero, which means that both
approaches fail to predict very low wind speed. Probably this is caused by the discretisation
of the wind speed observations (Section 5.1), especially as values smaller than 1 knot are
recorded as 0. For maximum wind speed, this was only the case for 30 observations, whereas
for instantaneous wind speed there are more than 2,700 observations equal to 0, i.e. in 14% of
all forecast cases.

However, this problem only arises in the PIT and rank histograms. When we look at the
results of the proper scoring rules, we see that, in terms of the CRPS, both univariate and
bivariate methods perform equally well for the local technique, while the univariate EMOS
median is a better deterministic forecast than the median of the ensemble created from the
bivariate EMOS distribution. The difference is quite large for the regional techniques, where
the univariate method outperforms the bivariate, in terms of both the CRPS and the MAE.

We can summarise that the two EMOS methods seem to have a certain bias, although
this impression is probably due to discretisation of the observational data. The univariate
technique has the higher predictive skill for probabilistic and point forecasts, although they
perform equally well in the localised case. This is only natural, as it was specifically designed
and optimised for wind speed, while the bivariate approach issues wind speed forecasts only

as a byproduct.

Concluding this chapter, we note that the new bivariate EMOS method is a very efficient
and successful way to postprocess ensemble forecasts for wind vectors. It corrects the un-

derdispersion of the raw ensemble in order to produce calibrated bivariate distributions. An
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Figure 5.23: Calibration assessment for wind speed forecasts over the Pacific Northwest
in 2008: (a) PIT histogram for the univariate regional EMOS method, (b) verification rank
histogram for the bivariate regional EMOS™ method, (¢) PIT histogram for the univariate
local EMOS method, and (d) verification rank histogram for the bivariate local EMOS method
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important feature is the estimation of the correlation factor using the predicted wind direction,
which results in a low determinant sharpness. In terms of proper scoring rules, EMOS received
both the lowest energy score and Euclidean error. Although it might be slightly uncalibrated,
the wind speed forecasts created by applying the Euclidean norm are almost as skillful as for
the specialist univariate EMOS method.

94



Chapter 6
Summary and Discussion

In the introduction, we established that there is a huge need for probabilistic forecasts in
the form of calibrated and sharp full predictive distributions. They can be obtained by
statistical postprocessing of ensemble forecasts, which are generated by numerical weather
prediction models and represent possible future states of the atmosphere. Most ensembles
are underdispersive and don’t account for all uncertainties involved in numerical weather
prediction. Postprocessing techniques like EMOS or BMA yield very good results, as they
improve the predictive performance of the unprocessed ensemble substantially.

So far, these methods were applied to univariate weather variables like temperature, air
pressure or precipitation. When considering surface wind, one has only the possibility to
address one-dimensional features like wind speed, wind direction or one of the zonal and
meridional wind components. However, by employing univariate postprocessing, essential
characteristics may not be captured. Therefore we proposed a bivariate variant of EMOS, which
applies to the wind components jointly rather than separately and thus creates two-dimensional
wind vector forecasts.

Empirical analysis of wind component data yielded that the observations, conditional
on the ensemble forecasts, can be modelled with a bivariate normal distribution, thereby
allowing for a similar approach as with univariate EMOS. A straightforward way to express
the predictive mean vector in terms of the ensemble is to write the individual means as linear
regression equations, with the ensemble mean or the ensemble member forecasts as predictors.

The parameters are estimated on a sliding training period, typically of 30 or 40 days. In
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order to make use of a possible spread-skill relationship, we employ an affine function of the
ensemble spreads for the predictive variances. Here, maximum likelihood estimation ensures
that calibration and sharpness of the predictive distribution are addressed simultaneously.

The main novelty of our approach lies in the prediction of the spatial correlation between
the U and V' wind components. During the above mentioned data analysis, we noticed that
the empirical correlation of the observation vectors relates strongly to the predicted wind
direction. Further examination yielded that this relationship approximately takes the form
of a trigonometric curve, which we estimate with historic data, using weighted non-linear
regression. In order to determine the predictive correlation for each forecast, this function is
evaluated at the wind direction predicted by the bias-corrected mean.

We tested the performance of the new EMOS method for the University of Washington
Mesoscale Ensemble, creating 48-h ahead forecasts over the Pacific Northwest. The resulting
predictive distributions turned out to be calibrated and sharp, for both a regional and a local
technique. We found that EMOS corrects the biases and the underdispersion of the ensemble,
which results in a significantly improved forecast skill. Moreover, when compared to other
well-calibrated forecasting techniques like the climatological and error dressing ensembles,
EMOS proves to be the sharpest forecast and to have the lowest energy scores, indicating the
best overall performance. Generally, the local technique is sharper than the regional technique
and, as both are calibrated, receives the smaller energy score.

In order to assess the benefits of estimating the correlation coefficient by means of the wind
direction, we applied univariate standard EMOS to the separate wind vector components and
combined the results to a bivariate distribution under the assumption of independence. This
approach however yields overdispersed forecasts, both in the regional and the local context.
To include information gained from the raw ensemble, the ECC approach was employed. It
performs best in terms of the determinant sharpness, but still EMOS has a substantially lower
energy score. After examining the predicted and fitted correlation coefficients of EMOS and
ECC, we noticed that this inconsistency is caused by the fact that the determinant sharpness
overly rewards highly correlated forecasts. For ensembles with more members and therefore
less statistical variability in the fitting of the variance-covariance matrix, ECC might produce

better results.
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For all techniques, the respective bivariate median was computed and its skill as a point
forecast was assessed. Again, two-dimensional EMOS had the lowest Euclidean error, although
the univariate EMOSYY performed equally well.

As wind vector forecasts can easily be transformed into wind speed forecasts using the
Euclidean norm, we tested the bivariate EMOS method against the specialist univariate
method for instantaneous wind speed. Surprisingly, both techniques seem to be uncalibrated
and fail to predict very low wind speed, which can be traced back to the discretisation of wind
speed observations. In terms of the CRPS, the regional univariate method shows a better
predictive performance than the bivariate one, but both local techniques are equally skillful.
Considering the MAE, however, it becomes obvious that the univariate approach yields the
best deterministic forecasts.

We conclude that the statistical postprocessing of wind vectors works best in a bivariate
framework, where the spatial relationship between the components is taken into account. Our
method models the correlation as a function of the predicted wind direction, which turned
out to yield very good results, especially when compared to other techniques using only the
information contained in the ensemble forecasts.

Previous work on the topic of wind vectors was done by Sloughter (2009), developing a
two-dimensional version of Bayesian model averaging. Also, Pinson (2011) recently proposed
a way to adaptively calibrate bivariate ensemble forecasts, which is in some points related to
the EMOS method. The author likewise assumes wind vector observations to be bivariate
normally distributed; however, instead of fitting full predictive distributions, the ensemble
forecasts are corrected using translation and dilation factors only. These factors are obtained
from model parameters similar to the coefficients for the EMOS predictive mean vector
and predictive variances. For estimating the parameters, a recursive maximum likelihood
approach with exponential forgetting of past observations is proposed, as compared to the
conventional maximum likelihood estimation in the context of the EMOS method. The two
methods also differ in the treatment of the correlation between the wind components; in Pinson
(2011), a possible correction of the correlation is not considered, which works well for the here
employed ECMWF ensemble. This ensemble consists of 50 members and surely provides more
information about the spatial structure of wind vectors than the 8 member UWME. Therefore

it would be interesting to compare both methods when using the same data set.
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Finally, we want to take a look at possible improvements or extensions to the bivariate
EMOS technique. In order to optimise the parameter estimation, an exponential forgetting
method like in Pinson (2011) could be introduced, where the model parameters are successively
updated with the newest set of forecasts and observations. This approach might result in a
better ability to react to seasonal changes.

In the current context, we only make forecasts for a single date and a single location
and therefore can assume the forecast errors to be independent in space and time. Many
applications, however, require wind field forecasts, for which estimates of the spatial and
temporal dependencies are needed. Berrocal et al. (2007) combine ensemble forecasts for
weather fields with the BMA postprocessing method, which can also be done with both the
univariate and bivariate EMOS techniques.

To conclude this thesis, we summarise that the newly developed bivariate EMOS method
provides an excellent way to perform statistical postprocessing for two-dimensional weather
quantities. It yielded very good results for the UWME, due to modelling the spatial correlation
as a function of the predicted wind direction. As the essential properties of the univariate

approach are retained, the two-dimensional EMOS technique can be seen as a direct extension.
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Local Correlation Curves

An important feature of the new bivariate EMOS method is the estimation of the correlation
structure based on past observations. In Section 4.2.4, we modeled the predictive correlation
as a function of the bias-corrected predictive mean vector. Figure 4.8 shows the empirical
and estimated correlation curves to be used in the regional EMOS technique, with data
aggregated over all observational locations in the North American Pacific Northwest. For the
local technique, we create location-specific curves in order to obtain more accurate localised
forecasts. These curves were produced using data from the calendar year 2007 and can be

found in the following.
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APPENDIX A. Local Correlation Curves
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Appendix B

List of Notation for Chapter 4

U; Forecast of the ¢th ensemble member, for wind component U

Vi Forecast of the ith ensemble member, for wind component V'

U Ensemble mean for wind component U

Vv Ensemble mean for wind component V'

Sy /SE Ensemble standard deviation and variance for wind component U
Sy /SZ Ensemble standard deviation and variance for wind component V'
X Observed wind vector

U Observed value for wind component U

V Observed value for wind component V/

7} Predictive mean vector

Thes Predictive mean for wind component U

Ly Predictive mean for wind component V'

by Predictive variance-covariance matrix

ov /ot Predictive standard deviation and variance for wind component U
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ov /oy

Predictive standard deviation and variance for wind component V'
Predictive correlation coefficient of the wind components
Predictive wind direction, computed from the predictive mean
Observed wind speed

Ensemble size

Length of training period in days

Location for which the forecasts is issued

Valid time of the forecast
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