
An Approach for Recording Multimedia Collaborative Sessions:
Design and Implementation

Shervin Shirmohammadi, Li Ding, and Nicolas Georganas
Multimedia Communications Research Laboratory
School of Information Technology and Engineering

University of Ottawa, Ottawa, Canada
[shervin | lding | georgana]@mcrlab.uottawa.ca

Abstract

In this article we present the design and implementation of a videoconferencing
session recorder multimedia system. Our system is a videoconferencing tool that has
the capability of recording live multimedia collaborative/conferencing sessions. The
main distinction between our architecture and other ones is that unlike other
recording systems, which require the original application for the playback, our
system generates Synchronized Multimedia Integration Language (SMIL) compliant
documents which can be played back in any SMIL-compliant player.

1. Introduction

The ability to record a multimedia conferencing/collaboration session is an important
requirement for many applications. In many cases, it is necessary to play back the
events that took place in a meeting, in the exact same order as the events occurred in
the live session. For example, when a student misses a live telelearning session of a
virtual classroom, where instructors and students had met to discuss a specific
lecture, the absent student can play back exactly what happened in the virtual
classroom, including conversations and the documents that were presented and
discussed among participants.

Therefore it becomes beneficial for multimedia conferencing/collaboration systems
to provide some sort of a recording mechanism. As an analogy one can consider
recording meetings in the real world; i.e., using video camcorder to record a wedding
or birthday or any other meeting. The differnce in video-conference sessions is that
the meeting is between geographically distributed participants.

In this paper we present the design and implementation issues that we came across
when creating J-VCR: the Java Video Conference Recorder. J-VCR subscribes as a
client to our JETS1 multimedia collaboration system [1] and records the live
whiteboard sessions together with real-time video and audio streams. It converts, on
the fly, its recorded archive into SMIL-compliant files that can be played back in any
SMIL [19] player.

Some parts of our design have understandably been specifically implemented for the
JETS system, but the overall architecture and approach can be generalized for any
similar conferencing/collaboration tool.

The next chapter of this paper discussed the fundamental design issues and

1 JETS: Java-Enabled Telecollaboration System.

2

requirements, while chapter 3 presents the overall architecture. Chapter 4 consists of
our implementation, and chapter 5 and 6 conclude the article with discussions about
similar work and final remarks.

2. Design
In this section we discuss the functional requirements and design considerations of
the system.

2.1 Design Goals
The overall goal of J-VCR is to enable effective asynchronous collaboration by
recording and playback through providing a session archive service. In order to
achieve this goal, some subgoals have been identified:

• Unobstructive recording

The J-VCR should be an “added-value” feature supporting the natural activities of
the collaborative session. Unobstructive recording refers to transparent recording of
the recorded applications. Generally, applications are “recording-unaware”; i.e, they
are not designed with recording in mind. But we believe that one should not have to
change the behavior of an application in order to be make it recording-aware. In
other words, from the development point of view, no source code or other systems'
components of the original application should be changed.

• Integrated service

A collaboration system may consist of applications with different architectures,
service interfaces and media broadcast approaches. For our project, we need to
record the output of two different components: JETS shared applets
(telecollaboration) and J-VC2 (videoconferencing), our real-time videoconferencing
tool. JETS uses an replicated event-based broadcast method to achieve collaboration.
The instance of shared applet in each site connects with the JETS server through
TCP/IP. All events will be sent to the JETS server first, then the JETS server
broadcasts this event to other sites (an exception is the events request for floor
control, which will not be broadcast). J-VC, on the contrary, uses RTP [6] over
MBone [4] to transmit the audio and video streams. Every participant can receive the
streams if he joins the multicast group. Therefore, J-VCR should provide an
integrated service interface so that it can work with different collaboration
applications and hide all these difference to the participant.

• Open archive format

In order to support interoperability, J-VCR should store the recorded session with
application-independent data format so that it can be reused by a third-party system.

• Interactive recording

J-VCR should provide an interactive control ability so that users can customize it to
satisfy their specific requirements. To be more accessible, J-VCR should provide a
platform-independent, intuitive and easy-to-use graphics user interface for the users
to issue their recording request and control command.

2 J-VC: Java Video Conference. This is the conferencing part of J-VCR.

3

2.2 Design Considerations
Let us have a more detailed look at some key issues that influence our design.
Generally, a complete recording process includes the following stages:

• Capture: captures the collaboration content.

• Handle: processes the collaboration content.

• Store: saves the handled collaboration content to database so it can be used
asynchronously.

• Playback: plays back the recorded content.

Capture

To capture the user interactions of JETS and the associated real-time audio/video
streams, J-VCR joins the session as a special JETS participant. The difference from
other participants is that J-VCR basically participates as a receiver only, and doesn't
send out any media streams to be broadcasted while other participants may be a
senders as well as a receivers at the same time [fig. 1].

 Figure 1 J-VCR joins the session as a participant

J-VCR uses two recorders, one for JETS applications and another for J-VC. This
approach separates the different tasks logically. Performance will be better because
the two recorders can work concurrently. Furthermore, different recorders can be
loaded dynamically according to the user’s requirement which decreases the
workload of the server.

J-VCR makes use of the Java Media Framework (JMF) [17] to capture, handle and
store RTP audio of video data. JMF is a standard extension of core JAVA
technology to enable the display and capture of multimedia data within Java
applications and applets. It specifies a unified architecture, messaging protocol and

collaboration
session

client_1

client_2 client_3

JVCR

JETS event audio/video streams

4

programming interface for playback, capture and conferencing of compressed
streaming and stored timed-media including audio, video, and MIDI across all Java-
enabled platforms. It also provides the ability to access and manipulate media data
before it is rendered.

The capturing is controlled explicitly by the user who has been granted suitable
permission to do so. The user can start, pause, resume and stop the capturing at any
time.

Handle

The captured data can be divided into syntactic information and semantic
information. Syntactic information is system-level data and is application-
independent, such as raw audio and video packet. Semantic information, on the other
hand, is application-dependent, such as a JETS event broadcast in a collaboration
session. There are three possible handling approaches for a recording system based on
the levels of awareness for how it interprets captured data [3].

• Unaware: the recording system does not interpret the contents of captured data,
but adds some tags to the data so they can be differentiated. When played back,
captured data is sent back to the corresponding application, which is in charge of
interpreting and playing back the data. This architecture is most flexible because
it is transparent to recorded applications. The drawback is that the captured data
format is application-dependent.

• Semantically aware/syntactically unaware: the recording system fully interprets
all semantic information, but does not interpret syntactic information. It is
application-dependent bacause the recording system need to know the
application semantics.

• Fully aware: the recording system interprets all captured data. The advantage is
that the captured data is application-neutral and self-explained. However, the
recording system must know the recorded application context and process logic.

One key goal of J-VCR is to create application-independent archive data. Therefore,
J-VCR uses a fully aware architecture. So the question is how to extract the
multimedia objects from the JETS events and audio/video streams so that they can be
stored with well-known formats.

The media object is defined according to the media type. For live audio and video
streams, a media object is defined as each continuous segment of live audio and
video.

For the JETS whiteboard, there are two different kinds of multimedia objects
involved in the JETS events:

• Pre-existing media files which are loaded to the collaborative space from disk.
There are two kinds of such files used in the JETS whiteboard. One is discrete
media, such as image. Another type is continuous media, such as video clip and
audio clip.

5

• Dynamic collaborative information, which is created by users’ interactions,
such as an annotation drawn by the users in the whiteboard, or live chat text
input by users.

In the first case, the loaded file is the media object. In the second case, we define the
dynamic information created in a continuous interaction as a media object. For
example, an annotation drawn from the mouse click to mouse up is a media object.

Because J-VCR interprets all captured data, it should have knowledge of the events
broadcast by the JETS server, which is predefined by the application developer. In
other words, J-VCR needs an application dependent event handler which knows the
semantics of events of specific implementation of the JETS whiteboard. Whenever J-
VCR captures an event through the event receiver, it will delegate the event to event
handler. The event handler will explain each event in order to identify the multimedia
objects used in the event. The event handler is somewhat similar to the JETS
whiteboard, but without the display window. It interprets every JETS event in the
same way as the whiteboard in order to keep track of the whiteboard’s current state.

A general process of generating a media object from a JETS event is given as follows
[fig. 2].

 Figure 2 A general process to extract a media object

As we can see, the event handler does not connect to the JETS server directly and the
event is passed from the event receiver. The separation of the event receiver and the
event handler can provide a more flexible plug-in architecture, so that different event
handlers can be plugged into J-VCR according to well-defined interfaces. This can
be done by designing an abstract class as a template of the event handler. The
abstract class defines the common interfaces and methods but leaves them to be
implemented by each specific event handler according to the semantics of different
sets of events. The event handler should be dynamically found and loaded by J-VCR
through its name registered in the configuration file using Java’s dynamic loading
mechanism.

J-VCR need to preserve the temporal relationship among different objects. It uses
timeline mode and creates a timestamp for every event or stream it receives. The
issue here is who provides the timestamp and how to count it. J-VCR is designed to
work with recording-unaware applications, which means J-VCR does not need to
change any behavior or source code of the original applications. However, we can
not guarantee that the event broadcast by the original applications will carry
timestamp information. Therefore, J-VCR will generate the timestamp for the
received event. Because the recorder for JETS and recorder for J-VC are running in
the same machine, it is convenient to synchronize the recorded JETS event and
media streams.

The timestamp is a relative value, counting from the system clock. As we mentioned
before, J-VCR loads the recorder on demand in order to keep server workload lower.

JETS
server

event
receiver

event
handler

event event media object

6

However, this initialization process causes some latency, especially for audio-video
recording. In order to skip this empty time gap, the beginning timestamp of recording
process should be defined as the system clock time on the server when the first JETS
whiteboard event or J-VC audio/video stream is received by the J-VCR server.

With the help of timestamp, we specify the “active time” of each media object. The
active time is the time from when it is loaded to when it disappears in the
collaborative space. The synchronization relationship among different media objects
can be preserved by specifying the active time of each media object.

For example, in time t1, J-VCR receives event1, which loads img1.jpg into the
whiteboard; and in time t2, J-VCR receives event2, which load another image to
replace img1.jpg. Then, the active time of img1.jpg is t2-t1. [fig 3]

 t1: Event1: load image img1.jpg in Whiteboard
 t2: Event2: load another image to replace img1.jpg
 t2-t1: the active time of img1.jpg

 Figure 3 an example of counting active time

By specifying the “active time” of a media object, it is easy to explicitly specify the
time slot of every media object occurring in the session, even for media without
intrinsic time such as images and text. On a given time slot, there may be serveral
media objects.

J-VCR creates a SMIL document to combine all media objects together by
specifying the synchronizaiton relationship among media objects. The Synchronized
Multimedia Integrated Language (SMIL, pronounced as “smile”) is a
recommendation for multimedia documents presentation over the Web released by
W3C. SMIL 1.0 was accepted as a recommendation in June, 1998. Basically, SMIL
specifies when and where to render the multimedia objects. The focus of SMIL is
time. SMIL uses a timeline mode for synchronization. By using a single time line for
all of the media on a page, their display can be properly time coordinated and
synchronized. SMIL provides a rich collection of timing constructs and associated
attributes to describe temporal relationships. Furthermore, SMIL also specifies how
a SMIL document can be customized according to different rendering system
abilities and settings.

The SMIL document is XML [20] compliant. The document has a tree structure,
which is very similar to that of HTML. The nodes give the temporal and other
compositional structure of the presentation. The leaves represent the media objects.

event1 event2

timeline0 t1 t2 timeline0 t1 t2

 img1.jpg

7

Similar with an HTML document, a SMIL document is a text file. It can be created
with any text editor manually or created with a program on the fly.

A SMIL document is played-back by a SMIL player which can be standalone
application or a ‘plug-in’ of Web browser. Several SMIL players have been
implemented in research communities and the marketplace, such as RealNetwork’s
RealPlayer[18] .

Store

The captured media objects and associated temporal relationship should be saved in
a repository for later playback. J-VCR stores the session in a database and a file
system. The database stores the temporal relationship and the links for all captured
media objects. The dynamically created media objects themselves are stored in the
file system. The record of database can point to the file through its link which is the
URL of the file.

In order to be flexible and not be bound to a specific kind of database, J-VCR
accesses the database through the Java Database Connect (JDBC) API .

playback

Collaboration sessions are recorded as SMIL documents, so they can be played back
by SMIL players. To facilitate access to the recorded sessions, J-VCR also creates a
recorded session catalogue which is an HTML page including the hyptertext links to
the SMIL document of the recorded session. Users can automatically link to that
page by a mouse click in J-VCR Web-based user interface or inputing the catalogue
page’s URL directly in the Web browser.

The recorded session is available for playback immediately, so that it can be played
back concurrently with the live session. This is a very useful feature for the
latecomer to a live session. By reviewing what happened several minutes earlier, he
can catch up with the ongoing session easily.

3. Architecture
After presenting the requirements of the recording tool, we will now present in detail
the component-level architecture of our system.

3.1 System Architecture
J-VCR is a client-server system with three parts:

• J-VCR client

• J-VCR server

• Data repository

The following figure shows the architecture of J-VCR.[fig 4]

8

CE: collaboration environment
RS: a set of recorders
COR: coordinators
DG: a set of multimedia document generators
DBA: database access wrapper
RF: resource files
SD: session information database
SMIL: SMIL document
HTML: HTML document

 Figure 4 system architecture of J-VCR

The J-VCR Client provides a graphics user interface to access J-VCR services. It is
an applet and can be run in any Java-compliant Web browser.

The J-VCR Server provides recording service for the collaboration session. It has
four major components.

• COR (Coordinator): the component to coordinate the behavior of all other
components of the J-VCR server. All user requests will be sent to COR first. It
then dispatches the user requests to other components.

• RS(Recorders): a set of recorders which capture, handle and store the session
data. RS consists of the JETS recorder wbRecorderServer and the J-VC recorder
streamRecordServer. The JETS recorder connects with the JETS server through
TCP/IP while the J-VC recorder joins the J-VC multicast group through RTP
over MBone. RS saves the dynamic collaboration information as files. In the
meantime, it stores the extracted media object link and active time to a database.

Internet

 J-VCR server data repository

J
D
B
C

c
l
i
e
n
t

C
O
R

D
B
A

D
B
M
S

SD

SMIL

RF

 J-VCR client

A/V streams

JETS

JVC

CE

JETS event
R
S

D
G

HTML

9

• DG (Document Generator): a set of document generators. DG consists of the
SmilCoder and the CatalogProducer. The Smilcoder generates SMIL documents
and the catalogProducer creates an HTML catalogue page for recorded sessions.

• DBA (Database Assessor): the database access interface between the J-VCR
server and back-end database. It is a thin wrapper of JDBC that hides JDBC API
from the database service clients. All components access database through DBA,
which provides a unified and easy-to-use interface.

The Data repository manages the database and file system used to store the J-VCR
archive data. It include the following components:

• RF: resource files that are dynamically created to store media objects. These
resource files are application independent with a well-known format. For
example, an annotation will be saved as JPEG file, audio stream will be saved as
the AU files.

• SD: a SQL database which saves the links of media objects and their active
time.

• SMIL documents: the documents which specify the presentation of recorded
sessions with SMIL language.

• HTML document: the document that lists all recorded sessions with the
hyperlink to their SMIL document.

3.2 Design of the J-VCR server

In this section, we give more details of the J-VCR server design.

3.2.1 COR (Coordinator)

COR provides a unified service interface to clients. It is the coordinator component
of the J-VCR server. COR is composed of the RecordManager and the
subRecordManager.

RecordManager

The RecordManager is a thread dispatcher. It initializes the server socket and waits
for client connection. When a client connects to the J-VCR server, RecordManager
spawns a new subRecordManager object to serve this client. Furthermore,
RecordManager also creates a new client socket for the new subRecordManager
instance so that each instance of subRecordManager can communicate with client
using a separate socket.

subRecordManager

The subRecordManager is the object that actually works as a coordinator. The
responsibilities of subServerManager are:

1. Receives all requests from J-VCR clients and returns the execution states back
to them.

2. Launches other server components on demand after it receives a client request.

3. Dispatches the user requests to corresponding server components.

10

4. Listens to other server components state changes through announcement /
receiver machanism.

5. Saves the session metadata such as sessionId, sessionTitle, recording time, etc.
to the session catalogue database. However, RecordManager doesn’t handle
any JETS events or RTP packets itself. On the contrary, it delegates this task
to wbRecorderServer and streamRecordServer.

The subRecordManager gets the client request as well as sends back the feedback to
the client. In order to dispatch the client request to the appropriate objects as well as
get the status of other J-VCR server components, subRecordManager should have a
bi-directional communication with these objects. Each recording server and
document server posts its events through a well-defined interface. The object can
register as a listener of these events and get informed when an event is posted.
Therefore, the bi-directional communication is achieved with the following
approach:

1. subRecordManager registers as the event listener of recording servers and
document servers.

2. recording servers and document servers register as the event listener of
subRecordManager.

Whenever SubRecordManager receives a client control command, it posts this
control command through its interface.

The recording servers are launched dynamically. Besides the consideration of
decreasing the workload of the machine running the server, the major reason is to
dynamically configure the recording server. For the wbRecorderServer, the
parameters of JETS Whiteboard applet are embedded in an HTML page and not
stored in the server. For the streamRecordServer, the multicast address, audio and
video RTP port, and TTL may be different for different recording clients. In both
cases, the J-VCR client can specify these parameters and send them to the J-VCR
server. The subRecordManager then initializes and loads the corresponding
recording server with these parameters. When subRecordManager receives a new
recording request, it means a new recording session begins. subRecordManager then
creates a new record in database and creates the directories for storing the media
objects captured in this session.

3.2.2 RS (Recorders)

RS provides recording service. It consists of the wbRecorderServer and the
streamRecordServer.

wbRecorderServer

The wbRecorderServer records user interaction of the JETS whiteboard. Its
responsibilities includes:

1. Connects to JETS server through TCP/IP Socket connection.

2. Receives the JETS events broadcast by the JETS server.

3. Handles every JETS event and extract media object.

4. Saves the media object link and active time to a database.

11

5. Saves the dynamic collaboration information as files.

6. Notifies the state to registered listeners.

7. Registers as a subRecordManager state listener and do appropriate action when
informed of the state change.

The wbRecorderServer works as a special JETS whiteboard client. It runs on the server side
and saves the shared media object without rendering them in a whiteboard user interface.
The wbRecorderServer uses the same approach to receive a whiteboard event as other
whiteboard clients. From the socket connecting with the JETS server, wbRecorderServer
gets I/O streams for JETS data channel and signaling channel to listen for a JETS event.
Then, the event is timestamped and delegated to the event handler to extract the media
object and its active time.

The media object is specified by its URL. For a pre-existing media object, the URL
of the file is created by combining the file path and file name. The file path is sent by
J-VCR client. The file name can be gotten directly because it has already been
included in the JETS event message. For example, the following event is to load an
image to whiteboard (fig 5):

 Figure 5 an example of a JETS event

For a dynamic media object, a file will be created first to store the object with
application-independent standard format. For example, the annotation with its
background will be saved as a JPEG file. Then, the URL of this file is used to
specify the dynamic object.

The wbRecorderServer registers as the user control command event listener of the
subRecordManager. It can start, pause, resume or stop recording according to the
control command.

streamRecordServer

The streamRecordServer records J-VC audio and video streams. The responsibilities
of streamRecordServer include:

1. Joins the corresponding J-VC RTP stream session(s) as a passive participant.

2. Saves the media object link and active time to a database.

3. Saves the audio / video streams to the disk files.

4. Notifies the state to registered listeners.

5. Registers as a subRecordManager state listener and does appropriate action
when informed of the state change.

streamRecordServer makes use of JMF RTP API to receive and store the
audio/video RTP streams.

In order to receive audio or video RTP streams, streamRecordServer implements the
interface ReceiveStreamListener of JMF RTP API. It will get notification when a
new stream has been received. Then it launches a new RTP writer, which is a
thread to write the detected RTP stream to disk as a seperate file. RTP writer creates

2 image001.gif

12

JMF Datasink and Processor object from the stream and uses them to control the
recording of the stream.

As the wbRecorderServer, the streamRecordServer listens to the events posted by
subRecordManager. When it gets notification of the user control request, it controls
the recording of the stream through the corresponding RTP writer.

3.2.3 DG (Document Generator)

DG consists of the smilCoder and the catalogProducer.

smilCoder

The smilCoder creates SMIL documents that specify the presentation of the recorded
session by combining the recorded multimedia objects according to their temporal
relationship. Because the active time of media objects as well as their URLs have
already been recorded in the database, the temporal relationship of all media objects
can be easily specified.

The smilCoder specifies all media objects as the children of the “par” element. For
each media object, the begin and end time-point will be specified explicitly
according to its active time during collaboration. The “fill” attribute of each media
object is specified as “remove”, because the media object will be removed as soon as
the end timestamp is over.

However, it is very difficult to specify the screen layout in exactly the same way as
that of the recorded application with SMIL. First, participants may interact with
several shared applications at the same time. The GUI of these applications may
have arbitrary complicated relationships. For example, the GUI of an active
application may overlay with that of an inactive application. Another reason is that
there may be no consistent screen layout among all participants. For example, a
participant may change the size of the shared application‘s screen layout on his
machine without affecting other participants. Therefore, the smilCoder simply
combines all media stream presentation space together and divides the screen into
three rectangular regions:

• Whiteboard region: presenting all interactions on the JETS whiteboard except
chat text.

• Chat region: presenting all chat text input in the chat box of the JETS
whiteboard.

• Live audio and video region: presenting the audio and video streams.

The “fit” attribute of each region is specified as “scroll” to support the scrolling
mechanism in case the region's rendered contents exceed its bounds.

All chat messages will be written to a text file first, then, this file will be specified as
one media object element as the child of “par” element. The “begin“ attribute of this
media object will be specified as the begin timestamp of the first chat message. The
“end” attribute will be specified as the end timestamp of the last chat message.

catalogProducer

The catalogProducer creates an index file with HTML format for all recorded
sessions. The HTML page includes the metadata of the sessions as well as the
hypertext link to the SMIL document of the recorded session.

13

3.2.4 DBA (DataBase Accesser)

The DBA is a thin wrapper of JDBC which hides JDBC API from the database
service client as well as provides an unify and easy-to-use interface. The DBA:

1. Loads SQL database driver.

2. Creates the connection with the database.

3. Parses the client’s parameters and creates SQL statement.

4. Forwards the SQL statement to the JDBC API, which will communicate with
the database directly.

5. Combines the database search result and returns it to the client.

3.3 Design of the J-VCR client

The J-VCR client can be a JAVA applet or a Frame launched within an applet. It can
run within any JAVA-enabled Web browser. Its main functionality is to provide the
GUI to access the recording service as well as set the data channel to communicate
with the J-VCR server.

Communication between J-VCR client and server goes through the TCP/IP socket.
Once downloaded into the user machine, the client applet establishes a Socket
connection to the J-VCR server. The parameters of the client applet are embedded in
the HTML page where this applet resides. These parameters include the JETS server
address and Audio/Video multicast session parameters. The applet will send these
parameters to the J-VCR Server in the initialization phase of recording. The J-VCR
server then uses these parameters to initialize the whiteboard and Audio / video
recorders.

The message transmitted between J-VCR client and server is packaged as a packet
with the following format [fig 6]:

 Figure 6 the packet format transmitted between the J-VCR client and server

Each message is preceded by a token which indicates the semantics of the message,
and is followed by its own set of data. The token is 1 byte, and each data_i has the
built-in JAVA type with variable length.

The client and server communicate with three kinds of packets:

a. Initialize packet: sent by client to server, including the parameters to initialize a
session recording. The token is 0.

b. User Control packet: sent by client to server, including the user control
command. The token is 1.

c. Feedback packet: sent by server to client, including the return values and status
of the user request.

The GUI consists of widgets to input the session metadata as well as the buttons to
fire corresponding recording actions. The buttons can be divided into two groups:

token data_1 data_2 ... data_n

14

one for recording, another for generating the SMIL document and catalogue HTML
page. The buttons can be enabled or disabled according to the current recording
status to prevent misuse.

3.4 Design of the J-VCR data repository

The J-VCR data repository consists of an SQL-enabled relational database and the
hierarchy file system.

The database stores the hypertext link and active time of each captured media object.
The live audio / video streams, the annotation and chat text of JETS whiteboard are
stored as files.

• SessionCatalog: saves the metadata of sessions. Each database record
corresponds to a recorded session.

• eventLog: saves the begin timestamp and end timestamp of each media object.

• mediaObject: saves the attributes of each media object.

Besides the database, there is a directory for each recorded session. The directory is
named by the sessionId of the session. The directory has five subdirectories:

• SMIL subdirectory: stores the SMIL document created by the smilCoder.

• Video subdirectory: stores the captured video streams.

• Audio subdirectory: stores the captured audio streams.

• Text subdirectory: stores chat text.

• Image subdirectory: stores drawing annotations over whiteboard.

The relation between the database and the file system can be shown by the figure
below [fig 7]:

 Database Hierarchy file system

 Figure 7 the relation between the J-VCR database and file system

sessionIDsessionCatalog

sessionID objIDeventLog

sessionID objID URLmediaObject

sessionID

smil audio video imagetext

15

4. Implementation
The architecture described in the previous section was implemented using JDK 1.2,
JMF, and JDBC. The database itself was an ODBC database running on Microsoft
Windows NT 4.0 Workstation. A sample JETS collaboration session was started and
then coupled with the J-VC conferencing tool. Figure 8 shows a screen shot of the
session.

Figure 8. A JETS/J-VC collaboration session between two users.

In the following section, we discuss some of the implementation details, as well as
problems that we encountered.

4.1 Implementation issues
The J-VCR recording Client is a Java applet to make it is possible to access the
recording service from any Java-enabled Web browser. The J-VCR recording server
is implemented as a multithread Java application in order to get high performance.
WbRecordServer, StreamRecordServer, SmilCoder, and CatalogProducer are all
implemented as a separate threads. StreamRecordServer is implemented based on
the JMF API. We created two separate SessionManager objects of the JMF API for
the video and audio streams, and we implemented the ReceiveStreamListener
interface to receive the A/V data. A synchronization mechanism is applied in the
callback method to coordinate shared resource access.
The J-VCR server accesses the back-end database through SQL language and JDBC
API. For simplicity, we use Microsoft Access which provides the necessary ODBC
drivers and can be accessed by JDBC through JDBC-ODBC bridge.
When creating the SMIL document, we use predefined layout template to setup the
regions. There are two reasons: first, it is difficult to customize the layout as same as
the original whiteboard because of the limitation of spatial layout specification of
SMIL. Another reason is that we want to combine the interaction of whiteboard and
video/audio into an integrated presentation on the same window. The Body part of
the generated SMIL document consists of a “par” element, and all multimedia

16

components in eventLog as the children of that “par” element with explicit begin
and end time of presentation. Figure 9 shows a recorded session being played back in
RealNetwork's RealPlayer tool.

 Figure 9. A recorded J-VCR session played back in RealPlayer.

As can be seen from the picture, all whiteboard, chat, video and audio components
play back synchronously as one continuos session. Any SMIL player can playback
the recorded sessions. Users just need to click the “playback” button, which will
launch a new Web browser window that contains the index HTML page for all
recorded sessions automatically. By setting SMIL player as a helper application of
the Web browser, users just need to click on the appropriate link and the session will
play back. The SMIL player will synchronize the presentation of every media
according the SMIL document specification. The client can also use some advanced
features provided by the player such as forward, backward, and pause to browse
through the recorded session.

4.2 Limitations

At this point, a lot of implementation problems/bugs arise with JMF and SMIL

17

because JMF and SMIL players are in their early evolution stages. This also limits
the J-VCR functionality and makes it more of a research prototype as opposed to an
industry-level product. However these limitations are due to the immaturity of JMF
and SMIL and not our architecture.
Currently, JMF2.0 is not stable enough and has a number of bugs. One major
problem is that the JMF technology consumes a lot of memory and other resources.
As an example, the CPU usage will jump to 100% if the JMF session is open for
more than two live streams. Therefore, in our prototype we only permit one audio
and one video stream to be recorded: those of the instructor of a session. Another
problem is that JMF sometimes shuts itself down after about 10 minutes. These
problems severely limit the usability of our prototype at the present moment.
As mentioned before, J-VCR creates SMIL document according to SMIL1.0
specification. However, the current available SMIL players don't have a consistent
behavior in supporting the SMIL specification. Some players don’t support all
feature of the SMIL1.0 specification, and some others have their own proprietary
built-in extensions which can get in the way. Currently, we create SMIL document
that can be played back by RealPlayer because this player is the most widely-used
SMIL player.
For the RTP video and audio streams, users can select any available file formats
support by JMF to save them. Because the video/audio data is very huge, the disk
will be exhausted very shortly if we save them as uncompress data. As of the writing
time of this article, JMF2.0 can save RTP stream as a file with compressed format
such as MPEG or H.263. However, RealPlayer doesn’t recognize them yet and it
will not play them. Therefore, we save RTP streams as uncompress format on this
stage.
Like any other technology, it is expected that all of the above deficiencies will be
overcome in the near future as JMF and support for the SMIL format mature.

5. Related Work

The recording system can be found in three application domains: videoconferencing
system, collaboration system (without real-time videoconferencing support) and
multimedia document authoring systems.
Most of the recording systems for videoconferencing are MBone tools that are used
to record MBone videoconferencing sessions. MBone VCR [15] is the first
application that supported interactive, synchronized recording and playback of
MBone sessions. However, it was a single-user application that simply dumps
packets to a local file and cannot be access through a distributed system. MBone
VCRoD [16] is a client-server based system for interactive remote recording and
playback of MBone sessions. Schuett et al also present a recording system for
MBone conferencing system [2]. It uses multiple distributed recorders placed close
to the source of session in order to get high quality archives.

For tightly coupled collaboration applications [8], there are relatively few recording
systems that can be found in the literature. Manohar and Prakash present a system to
capture and replay a session for asynchronous collaboration [9]. In this system, a
session with an application’s user interface is encapsulated into a data artifact,
referred to as "session object". Each session object is composed of several data
streams that encapsulate audio annotations and user interactions with the application.

18

The replay of a session object is accomplished by dispatching these data streams to
the application for re-execution. Another system is MINUTE [7]. It can record users'
interaction with the shared applications and live audio and video streams form a
WWW based conferencing system. The recorded session is composed of nodes,
where each node can be played back independently. However, the nodes must be
created manually. The system needs a lot of user intervention to manually recognize
the collaboration events and put them in the right place in the flow chart. Different
from MINUTE, our J-VCR is easy to use. The scribe only needs to click the button
to start the recording. Then it automatically records the specific data streams.
Furthermore, MINUTE is not an open recording system. Although an HTML
document is used to store the minute object, it only specifies the links to the recorded
session. To play back the recorded session, the MINUTE system sends the archive
data back to the original applications which will play them back. By contrast, J-
VCR uses SMIL documents to store the recorded session, which specify not only the
links to specific recorded multimedia components, but also the synchronization
relationship among them. The multimedia components themselves are recorded by J-
VCR in well-known formats. Therefore, the recorded sessions can be played back by
all SMIL-enabled players. Finally, MINUTE does not support the recording of an
RTP stream. J-VCR, as we mentioned before, can record the streams transmitted by
both RTP and TCP.

In addition to the above telecollaboration tools, there are some "presentation
recording" systems that create multimedia documents dynamically and support
playback later on [5][10][11][14]. But these systems focus on multimedia document
creation: they record live activities in the real world, not the users' interactions with
the computer support telecollaboration application. They are used in meeting rooms
or classrooms with special equipment, which makes them much less accessible
compared to our web based telecollaboration system.

6. Conclusions and Future Work

The architecture and design of the J-VCR recording system was presented in this
article. J-VCR provides a unique solution for supporting real-time videoconferencing
and recording of a telecollaboration session. Developed with Java, our approach
provides a portable recording tool for JETS whiteboard as well as J-VC real-time
audio/video tools. J-VCR creates and manages audio and video streams among
participants, as well as creating reusable multimedia documents on the fly, which
preserves the temporal relationship of live collaboration at no cost.
Initially, the emphasis of our work was to design and implement an end-to-end
audio-video communication tool with recording capabilities. In the next phase, we
will focus on QoS management. The QoS monitoring parameters can be obtained
from RTCP packets. Another area of research is SMIL itself. SMIL1.0 has
intentionally been kept basic so that its concepts can be readily understood and easily
implemented. However, this also limits the presentation's ability, for example,
SMIL1.0 is weak in specifying the spatial layout. Other works such as SMIL Boston,
a new SMIL version, try to add new facilities for animation, extended navigation,
and for handling multimedia delivered with broadcast audio and video. We will
research how to use these new features in our system.

19

References

[1] S. Shirmohammadi, J.C. Oliveira and N.D. Georganas, "Applet-Based
Telecollaboration: A Network-centric Approach", IEEE Multimedia, Volume 5,
Number 2, April-June 1998, pp. 64-73.

[2] A. Schuett, R. Kata, S. McCanne, “A Distributed Recording System for High
Quality MBone Archives”, Proc. of the First International Workshop on Networked
Group Communication, (NGC '99), Pisa, Italy, November 1999.

[3] E.Craighill, R.Lang, M.Fong , and K.Skinner, “CECED: A System for Informal
Multimedia Collaboration”, Proc. Of ACM Multimedia’93, pp437-443.

[4] H. Eriksson. 1994. "MBONE: The Multicast Backbone," Communications of the
ACM , pp54-60, Volumn 37, Number 8, August 1994 .

[5] G. Cruz and R. Hill, “Capturing and Playing Multimedia Events with
STREAMS”, Proc. Of ACM Multimedia’94.

[6] H.Schulzrinne, S.Casner, R.Frederick, V.Jacobson “RTP:A Transport Protocol
for Real-time Applications”. IETF RFC 1889.

[7] I.C. Chang, B.S. Liou, J. H. Huang etc. “A Multimedia World Wide Web Based
Conference Minute System for Group Collaboration “, Multimedia Tools and
Applications, pp.199-226, Volume 9, Number 3, November 1999.

[8] M.Handley, J.Crowcroft, C.Bormann and J.Ott, “Very large conferences on the
Internet: the Internet multimedia conferencing architecture” , Computer Networks ,
pp.191-204, Volume 31, 1999.

[9] N. R.Manohar and A. Prakash, “The Session Capture and Replay Paradigm for
Asynchronous Collaboration”, in H.Marmolin, Y.Sundblad, K.Schmidt9eds):
Proceeding of the 4th European Conference on Computer-Supported Cooperative
Work, ECSCW’95, Kluwer Academic Publishers, 1995, pp. 149-164.

[10] G.D. Abowd, C.G. Atkeson, J.A. Brotherton, etc. “Investigating the capture,
integration and access problem of uniquitious computing in an educational setting”.
Proc. of ACM CHI’98.

[11] S. L. Minneman, S. R. Harrison, B. Janssen, etc. “A Confederation of Tools for
Capturing and Accessing Collaborative Activity”. Proc. ACM Multimedia ’95,
pp.523-534.

[12] T. Berners-Lee, R. Fielding, L. Masinter, “Uniform Resource Identifiers (URI):
Generic Syntax”, IETF RFC2396, Aug.1998.

[13] W.Hurst, R.Muller , “A synchronization Model for Recorded Presentations and
its Relevance for Information Retrieval”, Proc. ACM Multimedia ’99.

[14] S. Mukhopadhyay and B. Smith, “Passive Capture and Structuring of Lectures”,

20

Proc. Of ACM Multimedia ’99.

[15] W. Holfelder , “MBone VCR: Video Conference Recording on the MBone”.
Proc. of ACM Multimedia ’95, pp. 237-238.

[16] W. Holfelder: “Interactive Remote Recording and Playback of Multicast
Videoconferences” 4th. International Workshop on Interactive Distributed
Multimedia Systems and Telecomminication Services (IDMS '97).

[17] JMF website: http://www.javasoft.com/products/java-media/jmf/index.html

[18] Real Network website: http://www.real.com/

[19] W3C SMIL website: http://www.w3.org/AudioVideo/#SMIL

[20] T. Bray, J. Paoli, C.M.Sperberg-McQueen, editors, "Extensible Markup
Language (XML) 1.0", February 1998. Available at http://www.w3.org/xml/

