
An IPSec–based Host Architecture for Secure Internet Multicast

Ran Canetti, Pau–Chen Cheng, Frederique Giraud, Dimitrios Pendarakis
Josyula R. Rao and Pankaj Rohatgi

IBM Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598
email:

�
canetti,pau,dimitris � @watson.ibm.com,

�
giraud, jrrao, rohatgi � @us.ibm.com

Debanjan Saha
Bell Labs, Lucent Technologies

101 Crawford Corner Road
Holmdel, NJ 07733

email:
�
debanjan@dnrc.bell-labs.com �

Abstract

We propose a host architecture for secure IP multi-
cast. We identify the basic components of the archi-
tecture, describe their functionalities and how they in-
teract with one another. The fundamental design tenets
of the proposed architecture are simplicity, modularity,
and compatibility with existing protocols and systems.
More specifically, we try to re-use existing IPSec mech-
anisms as far as possible, and extend them when neces-
sary. We also discuss our experiences with implement-
ing the proposed architecture on Linux.

1 Introduction
The Internet today supports a basic form of multi-

cast service where a multicast group is identified by a
Class D IP address [H95]. A receiver can join and leave
the group by sending IGMP (Internet Group Manage-
ment Protocol) [RFC1112, D91] messages to their lo-
cal routers. To send datagrams to a multicast group, a
sender need not be a member of the group. It can simply
address the datagrams to the group address. It is the re-
sponsibility of the multicast capable routers to commu-
nicate with each other using multicast routing protocols
and deliver the datagrams to all receivers who are mem-
bers of the group. The multicast group is an open group
and senders do not necessarily know the identities of the
receivers in the group. Likewise, receivers do not have
any mechanisms available to authenticate the identity of
the senders or to verify the integrity of the received data.

Support for group membership control and for sender

and data authentication is essential for many multicast
applications. Maintaining confidentiality of the trans-
mitted data is also required by some applications. Ex-
amples range from one-to-many scenarios such as news
and data feeds (say, quotes of stock prices), audio and
video broadcasts, or file and software updates, to more
interactive scenarios such as electronic lectures, town-
hall meetings and conferences. (See [Q98, CP99] for
surveys of multicast applications and their security con-
cerns.)

A lot of work has been done in designing secure mul-
ticast protocols (see the survey in [CP99]). Recently,
the Internet Architecture Board (IAB) has chartered a
working group within the Internet Research Task Force
(IRTF) to study and develop standardizable protocols for
secure multicast [SMuG].

Existing work on securing group communication
concentrates on the task of group management and
access control (see, for instance, [HM97a, HM97b,
M97, STW98, WHA97, WGL98, HCD98, HCM98,
BMS99]). More specifically, the focus is on distributing
and maintaining a group key that is known to all legiti-
mate members, but remains unknown to non-members.
This group key is distributed by one or more group con-
trollers, according to some pre-specified policy, and is
then used to encrypt the group communication. Less at-
tention is given to the internal design of a group member.

The focus of this paper is on the host architecture of
a member of a secure multicast group. The member can
be either a sender, or a receiver, or both. In the rest of the
paper, we identify basic components of the architecture,
outline their functionalities, and describe the interaction
among them. The architecture is based on the IPSec pro-

1 of 17

tocol suite [KA98] and re-uses IPSec components (such
as IKE and ESP). We have extended the IPSec architec-
ture in several ways to accommodate the requirements
of secure group communication.

Some of the main features of the proposed architec-
ture are: simplicity, modularity and compatibility with
existing systems and protocols. We identify the key
components of the architecture and define the interfaces
between them. This modular approach allows the devel-
opment of alternative implementations of various com-
ponents. In addition, our architecture can accommo-
date known proposals for group and key management.
It is compatible with the secure IP multicast frame-
work that is being developed by the Secure Multicast
working group (SMuG) of the Internet Research Task
Force [SMuG]. It is simple to incorporate within IPSec-
compliant systems, with either small or no changes to
the operating system kernels.

We are implementing the proposed architecture within
the Linux kernel using the FreeSwan IPSec distribu-
tion [FSWAN] as the base. We describe this effort and
our experience.

A preliminary version of this architecture appeared as
an Internet Draft, draft-irtf-smug-sec-mcast-arch-00.txt
at the Secure Multicast Users Group IRTF. This paper
describes further internal details of the architecture and
experiences with implementing its components.

Organization The rest of the paper is organized as fol-
lows. Section 2 reviews some salient security require-
ments of multicast applications, and describes how our
work fits within the larger context of a comprehensive
secure multicast solution. Section 3 presents our main
design tenets. Sections 4, 5 and 6 describe the architec-
ture. Section 7 discusses compatibility issues between
secure multicast and IPSec and Section 8 describes ex-
periments to validate the basic design decision to use
IPSec and results of preliminary performance tests done
as part of an ongoing implementation of the architecture.
We conclude with some remarks in Section 9.

2 Background

2.1 Security requirements of multicast com-
munication

We outline the salient security requirements of mul-
ticast communication. A more detailed discussion ap-
pears in [CP99, CG

�

99].
� Group membership control and confidentiality:

The goal is to ensure that the group communica-
tion is accessible only to legitimate group mem-
bers. Group membership control is usually imple-
mented by having a group key shared by all group

members. All group communication is encrypted
via symmetric encryption using this key. The ar-
chitecture proposed here follows this approach.

For many applications, group membership is likely
to vary over time. It is often required that members
leaving a group lose access to future group commu-
nication, and that members joining a group do not
gain access to group communication that occurred
before they joined.

Note that in order to implement access control it
must be possible to authenticate the identity of po-
tential group members. This can be done using
public-key certificates of potential members. A de-
cision on whether to accept requests to join a group
is usually made according to some predefined pol-
icy.

� Group authentication: This refers to the ability of
a group member to verify that the received group
communication originated from a source within the
group. Note that any group member can imper-
sonate the sender or maliciously modify the trans-
mitted data. To achieve this, we follow the usual
approach of implementing group data authentica-
tion using a dedicated key shared among all group
members. All the communicated data is authenti-
cated via Message Authentication Codes (MACs)
using the shared key.

� Individual source and data authentication: This
refers to the ability of group members to verify
the authenticity of the data, and identity of the
sender of data, even if the other group members
are not trusted. This problem is inherently differ-
ent from group authentication and from authenti-
cation of point-to-point connections, since single
MAC based solutions (such as those used in IPSec
[KBC97]) are not applicable here.

Other security concerns, like non-repudiability and
anonymity, may also be relevant to some applications.

2.2 On the structure of secure multicast solu-
tions

In order to place our work in context, we outline the
general structure of secure multicast solutions.

Very roughly, a secure multicast solution involves the
following entities. In addition to the group members
(and would-be members) there are one or more group
control entities. These consist of the group initiator and
owner, and one or more policy and key servers. A solu-
tion can be viewed as consisting of two main parts:

2 of 17

� Group control: This part deals with the task of
group management and access control, in partic-
ular, with distributing and updating the group key
and other data that is relevant to securing group
communication. Typically this part includes only
communication between the control entities of the
group and potential group members (and possibly
some communication among the control entities).

� Data handling: This part deals with the communi-
cated data itself. This includes the processing of
data at the end hosts, data packet routing, and pos-
sibly en-route transformations. Typically the group
control entities do not participate in this part at all.

This work handles both parts, from the point of view
of a group member. It does not address the design of
the group control entities; it is compliant with any such
design.

3 Design Tenets

We describe the main design principles set forth in
this work.

� Independence from multicast routing: The archi-
tecture does not interfere with the routing mecha-
nism of data packets. Data packets may be routed
via any multicast or unicast routing. For sake of
simplicity and modularity of design, we recom-
mend that the key management mechanism assume
reliable communication. Yet, no specific mecha-
nism for obtaining reliability is specified. Any re-
liable multicast or unicast mechanism (e.g., TCP)
can be used.

� Mimic IPSec architecture: As in IPSec, we separate
the modules that handle data from those that han-
dle key management. Functions such as the genera-
tion, distribution and update of cryptographic keys
are encapsulated in a key management module, that
is placed in the “application layer” of the commu-
nication, and outside the OS kernel. This facilitates
application specific operations, such as multiplex-
ing of data for different users and certificate verifi-
cation. The data handling part lies mostly in the IP
layer, using IPSec modules. Yet, we introduce an
additional level of data handling, in the interest of
source authentication.

� Use existing components: We use existing com-
ponents wherever possible. Specifically, we use
IPSec’s Encapsulating Security Payload (ESP) pro-
tocol for encrypting and authenticating data. The

ESP protocol [KA98] is used for exchanging en-
crypted and authenticated multicast data. If confi-
dentiality is not an issue or if additional authentica-
tion beyond what is provided by the ESP authenti-
cation mechanism is required (such as authentica-
tion of the IP header) then the AH protocol can also
be used.

Since IPSec was mostly designed for unicast, there
are a few issues that arise when the ESP/AH proto-
cols are used for multicast data. We discuss some
of these issues in Section 7. Multicast-specific
packet transformations may be introduced in the fu-
ture.

We also recommend using Internet Key Exchange
protocol (IKE) as a component within the multi-
cast key management module, for securing point–
to–point communication between group members
and the control entities.

� Minimize modifications of the OS kernel: The ar-
chitecture is structured so that the new multicast se-
curity specific components are kept in the applica-
tion space and the IPSec components that are cur-
rently in the OS kernel can be used for multicast
security without modification. It is expected that
with time, some of the multicast specific compo-
nents may be moved to the kernel and IPSec com-
ponents already in the kernel would be modified to
better support multicast.

� Flexibility in the choice of cryptographic algo-
rithms: By re–using the IPSec design for data
transport, we retain the flexibility of using any data
encryption and authentication algorithm which can
be supported by IPSec.

The new components introduced in this document,
namely the Multicast Internet Key Exchange Mod-
ule (MIKE) and the Source Authentication Mod-
ule (SAM) provide frameworks which are flexible
enough to support most group key management and
source authentication schemes.

4 System Architecture

4.1 Motivation

We present a bird’s eye view of the architecture, its
components, and the data flow. We begin by motivating
the decision to base the architecture on the IPSec design.

The IPSec architecture. In a nutshell, the IPSec pro-
tocol suite consists of the following components: The
Internet Key Exchange (IKE) protocol is an application
layer protocol for agreeing on a security association

3 of 17

(SA) between the communicating peers. Among other
data, the SA includes shared session keys for authentica-
tion and encryption of data. The Authentication Header
(AH) and Encapsulating Security Payload (ESP) are two
protocols for authenticating and encrypting data packets,
using the information in the SA for the relevant session.
Both AH and ESP are IP–layer protocols and operate on
a packet by packet basis. The communication between
the application–layer IKE and the IP–layer AH and ESP
is done via a security association database.

Why IPSec–based design? In contrast to previous
designs of secure multicast host architectures (e.g.,
[CE

�

99]), that remained exclusively in the application
layer of the communication, we have based our design
on the IPSec protocol suite.

One main reason for using IPSec is that it provides a
set of protocols that will shortly be available on practi-
cally every security–conscious host on the Internet. We
see great benefit in using existing protocols for secure
multicast, both from the point of view of the system de-
signer (who does not need to design such protocols from
scratch) and from the point of view of the user (who
does not need to have duplicate code and can have a uni-
fied standard security mechanism for unicast and multi-
cast). Another reason for using IPSec is its enhanced
efficiency in processing data, being an IP–layer proto-
col.

On the down side, using IPSec ties the design to ex-
isting protocols and forces us to deal with compatibility
problems with existing implementations. We elaborate
on such problems in Section 7. However, even in light
of these problems, we regard the IPSec–based design as
a viable and preferable option.

4.2 Architecture

4.2.1 Overview We present a high level overview of
the architecture. As in IPSec, we partition the “con-
trol plane” functions (i.e., key management and policy
mechanisms) from the “data–plane” transformations.
The “control plane” functions are placed in the applica-
tion layer. The main component here is called Multicast
Internet Key Exchange (MIKE). This is a generic name
for the component that is responsible for communicating
with the group controller(s), both on joining and leaving
the group, and for periodic updates of the group secu-
rity data (such as key updates). The MIKE component
generates and updates a multicast security association
(MSA) database. This database contains the necessary
data for members in the relevant group. In particular,
for multi–user hosts the GSA specifies which users are
members of the group.

In contrast with IPSec, where the data transforma-
tions are done exclusively in the IP layer, we partition
the data–handling mechanism into two separate com-
ponents. The first component, called Source Authenti-
cation Module (SAM), sits in the application layer and
deals with transformations for authenticating the source
and contents of the data. (Recall that the AH or ESP
transforms do not guarantee individual source and data
authentication for group communication.) One benefit
of placing SAM in the application layer is avoiding the
need to modify the operating–system kernel. In addi-
tion, transforms for source authentication may benefit
form the ability to process the data in larger frames, be-
fore it is partitioned into IP packets by the sender, and
after the frames have been re–assembled by the receiver.
(This additional option may be most viable when reli-
able transmission is guaranteed.)

The second stage for data processing is the ESP
transform at the IP layer. Here data may be en-
crypted/decrypted using the group key. Possibly the data
is also authenticated using the group key; this guarantees
group authentication.

Both SAM and ESP take the information needed for
handling the data from the MSA database. (We remark
that a similar notion of security association for multicast
is proposed in [HM99]. The two notions may indeed be
unified.)

4.2.2 Architectural Details We now describe the
architecture of a member of a secure multicast group.
The member could either be a data recipient or a data
sender or both. From the application’s perspective, the
secure multicast framework provides a simple API for
using secure multicast. This API is logically partitioned
into the Data API which deals with sending and receiv-
ing multicast data securely and the Control API which
deals with the process of joining and leaving a secure
multicast group and the associated access control and
key update functions. The block diagram of a secure
multicast framework on a host is shown in Figure 1.

� MIKE – Multicast Internet Key Exchange: This
module is responsible for key management and im-
plements the Control API which permits applica-
tions to join and leave secure multicast groups.
This module resides in the application layer, out-
side the OS kernel. It interacts with the MIKE
modules of the group controller(s), and generates
and maintains a Multicast Security Association
(MSA) that contains:

– Group keys for encryption/decryptionand au-
thentication of data (via the AH/ESP mod-
ules).

4 of 17

 (MSA)

SENDER AUTHEN.
 MODULE
 (SAM) ASSOCIATION

CLIENT APPLICATION

 IPSec
(AH + ESP)

MULTICAST SECURITY

Kernel

MULTICAST INTERNET
KEY EXCHANGE MODULE
 (MIKE)

Control
 API

join/leave Data
 API send/receive

Secure Multicast
Data Flow

Secure Multicast
Key Management Flows

Control Plane Data Plane

User Space

Figure 1. Block diagram of secure multicast host architecture.

– Signing/Verification keys for source authenti-
cation of data by the SAM module, described
below.

– Other information regarding the connection,
as in an IPSec SA.

– A list of applications that are members of the
group (relevant for multi–user hosts only).

In order to make a MIKE specification complete,
the MIKE modules within the group controller(s)
need to be specified. See more discussion on the
design of MIKE in section 5.

An additional functionality of MIKE is periodic
updates of the MSA, whenever group keys or keys
used by SAM are changed.

� IPSec modules: AH/ESP:

These are the IPSec modules that reside in the OS
kernel and deal with encryption/decryption and au-
thentication of data packets. These modules pro-
vide encryption/decryption and group authentica-
tion of incoming or outgoing multicast data. Data

is encrypted with the group key by the sender(s)
and decrypted using the same key by receivers. The
ESP header remains as defined in the unicast case;
the protocol header preceding the ESP header will
contain the value 50 in its Protocol (IPv4) or Next
Header (IPv6, Extension) field and its destination
IP address will be the IP multicast group address, a
class D address. Thus, the packet will be forwarded
to all members of the group by routers supporting
multicast delivery. ESP can be used in conjunction
with the ESP authentication option. In principle,
ESP for multicast traffic can be used either in trans-
port or tunnel mode, although transport mode is
clearly more appropriate in an environment where
most participating members are end hosts.

For multicast data authentication different tech-
niques can be used depending on whether group
or individual sender authentication is desired. For
group authentication, the protocol designed for
unicast IP security, namely the IP Authentication
Header (AH) [KA98] and/or the authentication op-
tion within ESP are sufficient. All members share

5 of 17

a common, symmetric authentication key which is
administered by the group controller and which is
used to generate the message authentication code
(MAC). The AH header remains as defined in the
unicast case; the protocol header preceding the ESP
header will contain the value 51 in its Protocol
(IPv4) or Next Header (IPv6, Extension) field and
its destination IP address will be the IP multicast
group address, a class D address. The SPI value is
selected, as for ESP, by the group controller. (See
more discussion on the assignment of the SPI in
Section 7.)

� SAM – Source Authentication Module: This mod-
ule is responsible for the transformations that en-
able authenticating the source of received data and
possibly for replay protection. Scalable source au-
thentication may involve operations that span more
than a single packet, both for outgoing and incom-
ing data. Since UDP frames are good candidates
for a basic unit for authentication, it seems reason-
able to place this component in a higher layer in
the protocol stack, i.e., above UDP. It could either
be part of the kernel or kept in application space.
If the kernel were to be modified, then this module
should be part of a “Secure Multicast UDP” layer
which could replace UDP. This “Secure Multicast
UDP” layer could also implement the mult–user
access control functionality which we will discuss
later in Section 7.1. Apart from the disadvantage of
requiring kernel modifications, placing SAM in the
kernel will make it inflexible in the choice of au-
thentication schemes and will also result in the ker-
nel being entrusted with the user’s signature keys.
On the other hand, if the SAM module is kept in the
application space then source authentication will
not be transparent to applications and existing mul-
ticast applications will need to be re–written to in-
voke the relevant functions of the SAM module.
But if a SAM module is well designed, then this
burden should be comparable to moving from reg-
ular sockets to SSL in the case of unicast, and such
a change should be equally acceptable to the appli-
cation developer community. Therefore it is advan-
tageous to keep the SAM module in the user space
for now.

The internal structure of the SAM depends to a
large extent on the source authentication mecha-
nism used. Several source authentication mecha-
nisms exist, some are based on public key signa-
tures which may be applied on a group of pack-
ets via a variety of mechanisms, and others are
based on symmetric authentication with multiple

keys. (See the survey of [CP99].) In particular
the source authentication mechanism proposed in
[M99], based on a scheme of [WL98] or a scheme
described in [R99] are options for realizing SAM.

An additional potential functionality of SAM is to
provide replay protection for data, in case that the
IPSEC replay protection mechanism is turned off
because of multiple sender problems.

We shall discuss the SAM module in greater detail
in Section 6.

4.3 Data and Control Flows

Typical operation of the system is as follows.1 The
member initiates a secure multicast session by invok-
ing the join operation in the Control API which is im-
plemented by MIKE. This enables the member to reg-
ister in the group as a sender or a receiver or both.
Subsequently, the member is able to send and re-
ceive datagrams securely to the multicast group us-
ing the send/receive functions of the Data API. All
group key management, data encryption/decryption and
group/source authentication functions are managed by
the secure multicast framework and are transparent to
the member. If at some later point in time the mem-
ber decides to leave the secure multicast group then this
is done by invoking the leave operation in the Control
API. This action eventually results in the termination of
the member’s ability to securely send/receive messages
to the group.

We now outline the data and control flows in more
detail.

� Control Flows:

– Client Join: The application invokes MIKE
to join a multicast group. At a minimum,
the application must identify the group that
it wishes to join and provide information as
to the authentication required (e.g., whether
or not source authentication is required and if
so, the sources it will trust).
MIKE then performs the process of regis-
tering with the group controller(s), sets up
a Multicast Security Association (MSA), in-
vokes a standard registration mechanism for
the underlying IP multicast group and enables
the ESP/AH and SAM modules to start pro-
cessing data. (In multi–user hosts it may be
that an MSA for this group already exists,

1Here we assume that the data is sent/received via either reliable or
unreliable IP multicast. It is noted, however, that the security mech-
anism described here can be used even when the data is being routed
via point–to–point connections, such as TCP.

6 of 17

with another application listening to it. In this
case the MSA is updated to include the join-
ing application.)
The registration process will inevitably in-
clude communication with the group con-
troller(s) and this communication will require
mechanisms for authentication of the parties
as well as confidentiality of the information
exchanged. This communication, its authen-
tication and encryption mechanisms should
be dealt with within the MIKE module.
At the end of the join process, the Multicast
Security Association (MSA) database needs
to be updated. The relevant information from
the MSA is then pulled by the ESP/AH and
SAM modules.

– Key update: Key updates messages are in-
ternal MIKE messages and are not part of
the high–level architecture. These messages
are authenticated and encrypted separately, as
specified in MIKE. A special class of key
update messages consist of member expul-
sion messages in which the controller expels
the member from the group. The expulsion
process is dependent on the specifics of the
Key Management Protocol, but should result
in the member being cryptographically inca-
pable of sending/receiving messages from the
secure multicast group. In this case MIKE
module should treat an expulsion message
like a member leave request without the need
to contact the controller(s).

– Client Leave: First MIKE is invoked to de–
register with the group controller(s). Next
the Multicast Security Association database
is modified to reflect the fact that the client
leaves. (If there are no more applications that
are listening on the same group then the en-
try may be deleted or marked stale). Finally,
the host executes the standard procedure for
leaving the underlying IP multicast group.

� Data Flows:

– Sending of data: If source authentication is
not needed, then data is transmitted directly
via UDP (or a reliable multicast layer) and the
IPSec module in the IP layer, with the IP mul-
ticast group in the destination address.
If source authentication is needed then the
data is first transferred to the SAM. There the
data is processed for source verification. (The

keys for performing these operations are ob-
tained from the MSA.) Next, the data is di-
rected to the AH/ESP transformations in the
kernel. These transformations are executed
with the group keys that appear in the MSA.
Finally the data packets are sent on the chan-
nel in the standard way.

– Receipt of data: Incoming data packets are
first processed by IPSec’s AH/ESP transfor-
mations in the kernel. There the data is de-
crypted and group authentication is verified.
Next, the data stream is processed by the
SAM and source identity is authenticated, if
needed. Finally, the data is handed to the
calling application. (In a multi–user host it
should also be decided, based on information
in the MSA, whether the application is eligi-
ble to receive the comunication of the relevant
group.)

5 MIKE: Design Guidelines

Although the design of MIKE deserves a separate
document, we suggest some requirements for MIKE, de-
scribe architectural principles that will allow MIKE to
meet these requirements and yet be flexible enough to
accommodate a variety of group key management tech-
niques. This provides an interface for plugging in dif-
ferent group key management modules into MIKE.

It is stressed that the discussion below does not at-
tempt to address the internal design of the group control
entities. Instead, it is focused on the requirements from
the point of view of a group member.

5.1 Functionality of MIKE

We list salient requirements for the MIKE module.

1. MIKE should support the simple scenario where
there is only a single group controller that com-
municates with all group members. More complex
environments where intermediate servers facilitate
the communication may also be supported.

2. MIKE should support maintaining a set of keys (for
symmetric encryption and authentication) shared
among all group members. In addition, MIKE will
help in forwarding the public verification keys of
the group controller and of senders in the group, to
support source authentication by group members.
(Note that these verification keys may be different
from the long–term certificates of these parties.)
MIKE could obtain these keys directly from the
group controller(s) or from some other repository
using a protocol such as LDAP [LDAP].

7 of 17

GROUP KEY AND MSA
MANAGEMENT FRAMEWORK

GROUP
KEY MGMT
MODULE #1

GROUP
KEY MGMT
MODULE #N

Secure Multicast
Key Management Flows

GROUP
KEY MGMT
MODULE #2

Join/leave

Group Key Mgmt Module

initiated MSA Control Flows

KEY MANAGEMENT TECHNIQUE

MULTICAST INTERNET KEY EXCHANGE MODULE

MSA

 SELECTOR

Control API

Figure 2. Block diagram of MIKE.

3. MIKE will be placed in the application layer of the
communication, and outside the OS kernel.

4. MIKE should be flexible enough to accommodate
any reasonable multicast group key management
solution.

5. MIKE should be able to deal with multi–user hosts.
In particular, the MSA will contain information on
which users are members of each secure multicast
group.

An architectural block diagram of MIKE is shown in
Figure 2.

5.2 Some design guidelines for MIKE

This section suggests some design guidelines for a
group key management module to be plugged into
MIKE. We stress simplicity and re–use of existing pro-
tocols and standards such as IPSec and IKE where pos-
sible. In particular, we propose using IPSec to set–up
secure channels for all point–to–point communication
between the host and the controller(s). Of course, other

solutions that provide secure channels (e.g., SSL or pro-
prietary communication protocols) can be used instead.

1. Point–to–point communication between a group
member and the controller (say, for group registra-
tion and de–registration) will be secured via a stan-
dard IPSec connection established by IKE. This
connection will provide confidentiality as well as
authentication of the information exchanged. In
particular, the group keys and additional informa-
tion will be transmitted as data in the secure con-
nection. The IPSec SA between a group member
and a controller will be short–lived, and will gener-
ally not last throughout the lifetime of the multicast
group.

2. Key update messages will be transmitted from the
group controller to the members using an abstract
transportation mechanism, called ”Reliable Multi-
cast Shim” (RMS). This abstract mechanism pro-
vides reliable multicast, in the sense that any mes-
sage transmitted via the RMS is guaranteed to
reach all group members.

8 of 17

MANAGEMENT FRAMEWORK

MSA

Group Key Mgmt Module

initiated MSA Control Flows

 Flows
 Multicast Key Management

Point-to-Point Flows Required
for Secure Multicast Key Management
(e.g., between a member and the controller)

Reliable Multicast
Emulation Using
RMT or PGM or
Home-Grown Rel. MCast or
Point-to-Point TCP

GROUP KEY AND MSA

Reliable Multicast Shim

 IPSec
 AH + ESP

MULTICAST INTERNET KEY EXCHANGE MODULE

User Space

Kernel

Key Management Module
 GROUP

Figure 3. Suggested design of MIKE.

The RMS abstraction can then be implemented via
any available reliable multicast mechanism (such
as those developed in [RM]), or alternatively via
point–to–point reliable communication (TCP).

3. Key update messages sent by the controller will
have a special format. In particular, they will be
authenticated using public–key signatures that are
verifiable using a public key that is handed to the
members at registration time. MIKE will imple-
ment its own signature verification mechanism.

The suggested design guidelines for MIKE are
sketched in Figure 3.

5.3 An example

In the preceeding sections we outlined some require-
ments and guidelines for the MIKE module, without ex-
plicitly describing how existing group key management
techniques and implementations could be modified to fit
within the MIKE framework in conformance with these
requirements and guidelines. In this section we give
an example of one possible multicast key management

module which conforms to the MIKE requirements.
The example module is based on a few modifica-

tions to the multicast key management module in IBM’s
Toolkit for Secure Internet Multicast [CE

�

99]. The
original toolkit employed a scheme by Wallner et al,
[WHA97] for group key management and SSL for uni-
cast connections between the client’s key management
module and the group controller. In the example mod-
ule, the SSL interactions between the client’s key man-
agement module (MIKE) and the group controller would
be replaced by IPSec connections. In the original
toolkit, signed key update messages were multicast by
the group controller over a reliable multicast channel.
In the example, these signed messages would be trans-
ported over the “Reliable Multicast Shim”. These to-
gether with other minor changes would be sufficient to
make the toolkit comply with the MIKE guidelines.

6 Interfaces of SAM

In this section, we briefly describe the interfaces of
SAM, to the application and to the communication layer.
We do not describe an implementation of SAM; imple-

9 of 17

mentations may vary widely and are to a large extent
independent of the overall architecture. We believe that
these interfaces are general enough to accomodate a va-
riety of mulitcast authentication schemes and applica-
tions, and thus could serve as a basis for the standard-
ization. From Figure 1, it is clear that the interface to
SAM consists of a SAM Data API that is presented to
secure multicast applications and a specification of the
format of data blocks which are sent or received by the
SAM layer to the communication layers below.

6.1 SAM Data Format

Data flowing between the SAM module and the under-
lying communication modules is organized into blocks
or frames. The basic idea is that on the sending end, out-
going data supplied by the application is packaged to-
gether with authentication data into one or several SAM
frames which are passed to the communication layers
below. On the receiving end, SAM frames are delivered
by the communication layers to the SAM module which
verifies the authentication information contained within
the SAM frames and provides the raw authenticated data
back to the receiving application, together with the iden-
tity of the source.

Each SAM frame consists of several fields as shown
in Figure 4. These include the Session Identifier, the
Source Identifier, the Sequence Number, the Data Pay-
load and the Authenticator fields. We now describe the
functionality of each of these fields in more detail.

6.1.1 Session Identifier Field The Session Identi-
fier is a numeric field which uniquely identifies the se-
cure multicast session. The purpose of this field is to
bind the Data Payload with a particular secure multi-
cast session. It is expected that for some applications,
senders may use the same long term signature key for
signing packets for several different multicast sessions
and this binding is necessary to prevent out–of–context
substitution attacks. Our protoype currently implements
this as 32–bit numeric field chosen by the group con-
troller, but a more robust structure (possibly includ-
ing a combination of group controller id and a group–
controller assigned session id) would be required for
larger scale deployment and for standardization.

6.1.2 Source Identifier In scenarios with multiple
senders, the source identifier field provides a succinct
way to identify the purported sender of the packet, so
that the authentication mechanism corresponding to the
purported sender is used to verify the source of the
packet. In our prototype this is currently implemented
as a source IP–address/port–number tuple. Again, for
standardization purposes, this needs to be generalized to
handle other types of Source Identifiers.

6.1.3 Frame Sequence Number The frame se-
quence number field is a numeric field containing the
sequence number of the SAM frame with respect to the
flow of SAM frames sent out by the sender (as identified
by the source identifier) for the current session (as iden-
tified by the session identifier). Each sender maintains
the sequence number for its own own flow by picking a
starting sequence number for its frame and then subse-
quently incrementing the sequence number on each suc-
cessive outgoing frame. The SAM module on the re-
ceiver side can optionally use these sequence numbers
to implement replay protection and re–ordering of re-
ceived SAM frames (if required by the source authenti-
cation scheme) by employing well known sliding win-
dow based techniques.

6.1.4 Data Payload This field holds the actual data
payload that the sender needs to send in an authenticated
manner.

6.1.5 Authentication Information This field holds
the authentication information which is required by the
receiver to authenticate the source and contents of the
Data Payload, Session Identifier, Source Authentifier
and Frame Sequence Number fields in SAM frames
within the flow from the sender. To allow maximum
flexibility in the choice of authentication schemes, there
is no requirement that the authentication information
carried within a SAM frame be either sufficient to or
restricted to authenticate the contents of that frame, it
could even carry authentication information related to
other frames. All that is required is that SAM layer
should have authenticatated each of the required fields
within a SAM frame before passing the Data Payload to
the application layer. Therefore, in cases where authen-
tication information carried within a SAM frame and
all previous frames is not sufficient to authenticate the
frame, then depending on the authentication scheme, the
SAM module may need to buffer this frame till the au-
thentication information arrives or drop the frame as the
frame is no longer within the sequence number window.

6.2 SAM Data API

The SAM Data API draws heavily from Netscape’s
SSL API [SSLRef]. This is because in the network-
ing stack, the placement of SAM is quite similar to the
placement of SSL. The Netscape’s API was selected as
a model for the SAM Data API because of its clean
modular design that abstracts away most networking and
memory management details. Using a similar design for
SAM permits us to create a SAM module that focusses
only on its designated task, i.e., source authentication,
without having to handle extraneous issues such as net-
working, heap management etc. Another benefit of this

10 of 17

SESSION
 ID

SOURCE
 ID

FRAME
SEQ
NUMBER

DATA
PAYLOAD

AUTH
INFO

Figure 4. SAM Data Format

appraoch is that the same SAM module can work with a
variety of different underlying transport mechanisms.

At the core of the SAM Data API is the concept of
a SAM context, a data structure which holds all infor-
mation revelant to source authentication (including cur-
rent state) for a particular secure multicast session. The
SAM Data API provides APIs for intializing and main-
taining components of the SAM context as well as an
API for sending and receiving authenticated data from
the secure multicast session identified by the SAM con-
text. We now describe these two types of APIs in more
detail.

6.2.1 SAM context component management For
modularity, the SAM context consists of an I/O con-
text, a memory context, a user context and a group con-
text. The I/O context deals with the multicast data input
and output functions, the memory context deals with the
platform and/or application specific memory manage-
ment functions, the user context deals with information
specific to the application as a sender and/or receiver
within the multicast group and the group context deals
with information related to the entire group. We now
describe each of these contexts and their management in
greater detail.

� SAM I/O context: The SAM library provides pro-
totypes for functions to read and write data blocks
to the underlying communication layer. These
functions are read, readfrom and write. The read
function reads data from the communication layer
into a supplied buffer. The readfrom function is
similar but in addition to receiving data into a
buffer, the readfrom call also provides a hint as to
the identity of the sender (e.g., IP–address/port–
number of sender). The write function sends a
buffer of data down to the communication layer.
SAM assumes that pointers to the read and write
functions are blocking and internally SAM uses
only these functions for communciations. The ac-
tual read, readfrom and write functions are pro-
vided by the application and registered to the SAM
context. This modular approach allows the SAM
layer to be oblivious to the specifics and internals of

the communication mechanism being used for the
group communication. Accordingly, the SAM con-
text management API provides a set of functions
to register the application supplied read, readfrom
and write functions with a SAM context.

� SAM memory context As with the I/O context,
the SAM library provides prototypes for standard
memory mangement functions such as alloc, free
and realloc and provides an API to register these
application supplied functions with a SAM context.

� SAM user context The SAM user context data
structure contains user specific information relative
to the secure multicast group. This includes the
user identifier, the current outgoing sequence num-
ber and the user’s authentication information which
includes a handle to the source authentication algo-
rithm and key to be used for computing authenti-
cation information for outbound SAM frames. The
user context API also provides for functions to in-
tialize and maintain this information. It is expected
that the MIKE module would invoke these func-
tions to manage this information.

� SAM group context This data structure holds
group specific information such as a session identi-
fier and a list (or a hash table) of registered senders
and their algorithms, replay windows and keys to
be used to authenticate SAM frames from each of
the registered senders. Again, the SAM group con-
text API provides for functions to initialize and
maintain this information. It is expected that the
SAM group context will be managed by MIKE ei-
ther via direct communication with the Group con-
trollers or via some sort of LDAP [LDAP] access
to a repository of authentication keys.

6.2.2 SAM context data flow API Once the SAM
context components are initialized, a SAM context can
be used by an application to send and receive authenti-
cated data on the corresponding multicast session. The
main data communication functions available to the ap-
plication are

11 of 17

� sam readfrom: This function is to be used by ap-
plications to receive source authenticated data from
the secure multicast group. When provided with
a valid SAM context, a data buffer and a source
identifier placeholder, this function reads incoming
data from the secure multicast group identified by
the SAM context, authenticates it and places raw
authenticated data into the supplied data buffer and
the identity of the source into the source identifier
placeholder. This function blocks till authentic data
is received.

� sam write: This function is to be used by applica-
tions to post authenticated data to the secure multi-
cast group. When provided by a valid SAM context
and a data buffer, this function posts the data con-
tained in the data buffer together with user authen-
tication information to the secure multicast group.

7 Compatibility with IPSec & IKE

This section discusses some compatibility issues of
secure multicast with the design of the IPSec protocol
suite.

7.1 Granularity of Access Control: Host vs.
Application

By design, IPSec is ideally suited for securing traf-
fic between two hosts. Securing traffic between appli-
cations requires hosts to implement additional control
mechanisms to create and maintain SA’s at the granu-
larity of applications, i.e., to create and maintain proper
associations between SA’s and applications’ � protocol,
port � tuples [KA98, CGHK98]. Similarly, multicast
over IPSec works best when the granularity of access
control or group membership is at the level of hosts.
However, if the granularity of access control is at the
level of user applications, then IPSec by itself is not
sufficient. This is not a problem for most hosts on the
Internet which are single–user systems. However in
multi–user systems where multiple users could belong
to the same secure multicast group, additional mech-
anisms need to be implemented by the host to ensure
that IPSec protected multicast traffic flows are initiated
and delivered to only those applications which belong
to the multicast group. This requires close cooperation
between MIKE and the system.

An ideal solution involves making changes to the host
kernel so that:

1. The multicast SA’s for the multicast group are only
associated with the specific UDP port used by the
group.

2. Only applications which are current members
of the multicast group can send/receive packets
through the group’s UDP port.

This implies a new control mechanism in the UDP layer
which controls access to the port on the basis of multi-
cast membership information received from MIKE.

A less intrusive, but inferior solution which does not
require kernel modifications would be put the same con-
trol mechanism in a system daemon process. This pro-
cess joins a secure multicast group once on behalf of
user applications and perform multiplexing and access
control on outgoing and inbound data. By binding to
the group’s UDP port exclusively the daemon can en-
sure that no other application can subvert the daemon’s
control on the data flow.

7.2 Identification of Multicast Security Associ-
ations and SPI assignment

In the Internet Protocol, a Security Association (SA)
is uniquely identified by the combination of the desti-
nation address, Security Parameter Index (SPI) and the
protocol used (e.g., AH, ESP). As stated in the IPSec
architecture document [KA98], the destination address
can be either unicast or multicast; the definition of an
SA remains the same.

In unicast SAs, in order to avoid potential conflicts of
SPI values, receivers are responsible for assignment of
the SPI. Since in the multicast case there are multiple
destinations, all within the same multicast destination
address, such an approach is impractical since it would
require coordination by all receivers. Selection by the
sender would also be problematic, especially in the case
of multiple group senders.

Within our framework, a reasonable solution to the
problem is to utilize the benefits of the centralized con-
troller by requiring that the group controller selects
the SPI for each multicast group and communicates it
to members, senders and receivers, during registration.
Selection by the controller guarantees that the SA is
uniquely identified by the combination of the SPI value,
the multicast group address and the protocol. (A similar
solution is suggested in [HM99].)

As stated in [KA98], multiple senders to a multi-
cast group MAY use a single Security Association (and
hence Security Parameter Index) for all traffic to that
group. In that case, the receiver only knows that the
message came from a system knowing the security as-
sociation data for that multicast group. Multicast traf-
fic MAY also use a separate Security Association (and
hence SPI) for each sender. The assignment of SA’s to
senders can be done by the group controller.

12 of 17

7.3 Sequence Number Handling and Replay–
Prevention

Both ESP and AH headers contain a mandatory,
monotonically increasing, sequence number field in-
tended to provide anti–replay protection. Processing of
the sequence number is at the discretion of the receiver,
but the sender MUST always transmit it. The sender’s
and receiver’s counters have to be initialized to 0 when
the SA is established and the first packet of that SA will
have a sequence number of 1.

In the case of multiple senders using the same security
association (and hence the same SPI value) consistency
and monotonicity of the sequence number cannot be
guaranteed. Hence, anti–replay service SHOULD NOT
be used in a multi–sender environment that employs a
single SA. Multicast security implementations should
thus ensure that receivers do not perform sequence num-
ber processing and verification.

We see two possible solutions to provide anti–replay
protection:

(1) Using multiple SAs, one for each sender. (All
these SAs may be part of a single MSA.) This can
provide a weak form of replay protection (against out-
siders).

(2) Putting anti–replay protection in some higher
level module such as SAM. This solution requires
application–layer framing of multicast messages.

These alternative solutions may better suit different
applications.

7.4 Allowing IPSec processing of multicast
packets

Some current implementations of the IP protocol
stack will discard any IP packet with a class D desti-
nation address and a “protocol” field that is not UDP.
Such implementations need to be changed to support IP–
multicast packets protected by IPSec.

8 Validation of Architecture

A prototype of the proposed secure IP multicast archi-
tecture is currently under development. Components on
the data path such as SAM and UDP over IPSec have
been implemented and tested. Components along the
control path such as MIKE are still being developed.

Even at this early stage of development we were able
to test the feasibility of using IPSec to secure multicast
traffic. We also were able to evaluate the performance
impact of adding source authentication, group authenti-
cation and confidentiality to our architecture.

In this section, we describe these feasibility and per-
formance tests and present preliminary results.

8.1 Feasibility Tests

Our test bed consists of IBM PCs running Red Hat
Linux 5.1 with kernel version 2.0.35 and with Freeswan
version 0.91 implementation of IPSec. Freeswan con-
sists of two daemons, klips and pluto, which are started
at boot time.

Klips, in the kernel, encrypts/encapsulates outgoing
packets and decrypts/decapsulates incoming packets. It
is implemented as a virtual network interface and is con-
figured as any other network interface. This virtual inter-
face is attached to a physical interface which handles the
traffic flow to/from the network. In the network stack,
the IPSec packet handler is piggy–backed onto the as-
sociated physical interface packet handler. Klips also
provides an API to set up the security associations that
map destination addresses with the proper IPSec secu-
rity association.

The other daemon, pluto, runs in user space and man-
ages the keys and their updates. Refer to the Freeswan
documentation [FSWAN] for additional details. Pluto
was not used in our test since we configured the IPSec
SAs manually.

8.1.1 System set up and configuration Figure 5
shows the system setup for testing the Linux FreeSwan
IPSec package.

We first tested the proper configuration of IPSec, by
testing the 2 modes of IPSec encapsulation, transport
and tunnel, as described in the klips installation files.

We connected two security gateways A and B, run-
ning Linux with Freeswan, via an Ethernet link, config-
ured as network interface eth0 on both machines, and
representing the public Internet. Each gateway was also
connected via a token ring network to a LAN represent-
ing a private Intranet, designated as C and D, respec-
tively. A snooping box E running Solaris 5.1 observed
all Ethernet traffic.

The IPSec virtual interface ipsec0 was attached to
eth0 and configured So that all network traffic between
C to D would be secured across the public Ethernet. We
ran the test scenarios of the Freeswan sample files and
verified that packets between C to D were properly en-
crypted by A and B.

8.1.2 Test Setup We then proceeded to test the mul-
ticast support of Freeswan. For this set of tests we
did not change our previous configuration and ipsec0
was still bound to eth0 and traffic through the Ethernet
was still encrypted. But we disconnected the 2 subnets,
which were not needed. We installed, on gateways A
and B, a simple multicast client/server application that
opened a UDP socket, joined a given multicast group on
the eth0 interface and then looped on sending multicast

13 of 17

Gateway A

ipsec0
net interface

ipsec0
net interface

Linux/FreeSwan
Gateway B

C

Linux/FreeSwan

tr0

snoop E

eth0

D

tr1

Figure 5. System Setup for testing FreeSwan/IPSec on Linux.

messages and listening for messages. Again, a snooping
box on the Ethernet eavesdropped on the traffic across
the wire.

8.1.3 Feasibility Test Results We made the follow-
ing observations:

� Handling of multicast addresses by Linux Multi-
cast addresses are Class D addresses identified by
first 4 bits equal to 1110 with the remaining 28
bits specifying a multicast group id. This trans-
lates to addresses in the range from 224.0.0.0 to
239.255.255.255.

In the process of configuring the Linux routes to
run our tests, we noticed that Linux treats mul-
ticast addresses in the 224.0.0.0 range differently
from others. In theory, all multicast address routes
should use the same network mask of 240.0.0.0,
since they are not real network addresses. But in
practice, this is only true of the 224.0.0.0 range.
Other multicast ranges, such as 235.0.0.0, cannot
use the netmask 240.0.0.0 when the routes are set,
or else the “route add” command fails; we used the
netmask 255.0.0.0.

� Handling of received multicast IPSec packets by
Linux Linux successfully processed and delivered
received multicast IPSec packets intended for the
all–host multicast group at address 224.0.0.1. But
it dropped packets intended for other multicast
groups.

The flow–of–control in Linux and FreeSwan code
is as follows:

1.
��� �����	��

in
��� ��	���	�����

: This function re-
trieves an IP packet from the system input
queue; the IP packet is in a kernel buffer (skb)
containing a device id representing the phys-
ical network interface on which the packet

was received; in our test the id is eth0. The
function massages the skb and passes it to
the next protocol layer for further processing.
If the packet is an IPSec packet, it is passed
to the

��������� ��������

function, which will call����� �����	��

in
��������� ���������

(or ��� �����	��
 in��������� ��� ��� .).
2.

����� �����	��

in
��������� ����� ���

: This function pro-
cesses the skb further, and replaces the device
id (eth0) in the skb buffer with the virtual in-
terface identifier (ipsec0). The skb packet is
then decapsulated and decrypted as needed.
Finally, the resulting skb is placed back on the
system input queue and control is returned to��� ��������

in
�!� ��	���	�����

3.
�!� �����	��

in
�!� ��	���	�����

: This function re-
trieves the skb from the system input queue
again; note that the device id in the skb now is
ipsec0. The function examines the destination
address of the packet. If the address belongs
to a multicast group, the function checks if the
network interface identified by the device id
in the skb has registered interest in that group
(via a multicast join on that interface). If not,
the packet is dropped. Otherwise, processing
continues and the the resulting skb packet is
passed to the next protocol layer, in this case
UDP, for further processing and delivery to
the application.
One problem that we encountered here is
that in the Linux socket API for IPv4, mul-
ticast join requests can only be associated
with physical interfaces, such as eth0, but
not with virtual interfaces, such as ipsec0.
This causes

��� ��������

to drop the decapsulated

ipsec packet since the packet is associated
with an interface (ipsec0) which is not reg-

14 of 17

istered with the multicast group.
We developed a temporary work–around for
this problem:

– in the
����� ��������

function of
��������� ����� � �

:
We patched the klips code to simply re-
store the skb device field id in the skb to
the physical device id before placing the
skb back on the system input queue.

– in � � ��������
 function of
��������� ��� � � : The

same patch (as above) can be used, since
the ��� �����	��
 processing is nearly identi-
cal to that of

����� �����	��

.

� Sharing of UDP ports UDP delivers decrypted
multicast packets to any process listening on the
same interface and port as the registered multicast
application, even if the process has not joined the
multicast group. This happens when the multicast
application sets the socket SO REUSEADDR op-
tion before binding to the port. This is routinely
done in application code. Since multicast only
works with UDP sockets, care must be taken to
control access to the port. This is an instance of
the access control granularity problem discussed in
section 7.1.

A temporary work–around is to have the se-
cure multicast group

����� �
operation not set the

SO REUSEADDR socket option. This way after
the first group member joins, no other applications
will be able to bind to the multicast group’s UDP
port. This limits the granularity of multicast group
membership to one application per host. Better so-
lutions which do not have this restriction are de-
scribed in section 7.1 but have not yet been imple-
mented.

� Packets in the clear If a plain UDP packet is sent
to the multicast address, it should be dropped by the
receiver. The FreeSwan–0.91 code does not drop
the packet. This is a known bug to the FreeSwan
developers and it is mentioned in the FreeSwan dis-
tribution.

In general, an implementation of IPSec must check
and drop any received packet that is not properly
protected [CGHK98].

� Conclusion from Feasibility Test Results
Freeswan 0.91 was cumbersome to install, con-
figure and test. Documentation was basic but
adequate. So far, tests of secure IP multicast with
our patched Freeswan–0.91 seem to work within
the limits of the previous remarks.

8.2 Performance Tests

We performed a series of tests to evaluate the perfor-
mance cost of adding security to group multicast in our
architecture. Since only the data flow side of our design
is implemented, we focussed on the cost of adding group
authentication, source authentication and encryption to
the multicast data flows within our architecture. We did
not address performance issues relating to key manage-
ment. We performed our tests on a 400 Mhz Pentium
II machine running Red Hat Linux 5.1 with kernel ver-
sion 2.0.35 compiled with the Freeswan–0.91 package
[FSWAN] IPSec. Our SAM user library was imple-
mented as described in Section 6 using the Hybrid Sig-
nature scheme for source authentication as described in
[R99]. The test machines were connected via a 10Mbps
ethernet LAN. In the absence of a MIKE module, all
keys used for these tests were entered manually.

8.3 Description of Tests
� Baseline Test: Multicast over UDP: In order to es-

tablish a performance baseline, we first tested the
speed of plain multicast over UDP, i.e., the packet
processing time required to send a UDP packet
down to the communication hardware. This was
done for two different packet lengths both of which
are less than the MTU size.

� UDP–Multicast over IPSEC: In this test, we mea-
sured packet processing time for UDP–Multicast
packets over IPSEC for two packet sizes, using the
ESP protocol with the Triple DES and HMAC–
MD5–96 transforms.

� SAM over UDP–Multicast over IPSEC: In this test
we measured the packet processing time for pack-
ets sent through our SAM interface to the UDP–
Multicast/IPSEC layer. The IPSEC layer used the
ESP protocol with the Triple DES and HMAC–
MD5–96 transforms and the SAM layer used the
Hybrid Signature scheme as described in [R99].
This was again done for two different packet sizes.

8.4 Performance Results

We first tried to measure the time to send a packet
by measuring the time taken by an application to send
several packets and dividing by the number of packets.
This approach produced some strange results: we ob-
served that an application executing a loop to repeatedly
send a multicast packet over UDP could take longer than
a application trying to send the same number of multi-
cast UDP packets over IPSEC! We were able to trace
this anomaly to the networking device’s buffer getting
filled up by the high data input rate when plain multicast

15 of 17

UDP Payload Size Ethernet Frame Size Time (� �)
464 506 15.5
1262 1304 19.4

Table 1. Baseline Test Results

UDP Payload Size Ethernet Frame Size Time (� �)
464 542 349
1262 1334 823

Table 2. Multicast over UDP/IPSEC

packets were sent. This would cause a large OS over-
head since the process would have to be swapped out
and placed in the wait queue and restarted only when
networking device buffer was less than half–full. This
overhead could significantly skew the average time cal-
culation. For example, when a loop to send out 1262
byte messages over UDP was executed, the first 41 iter-
ations of the loop took 796 � � , or roughly 19.4 � � per
packet but the first 42 iterations took 26468 � � or an
average of 630 � � per packet! So we decided to mea-
sure only the best timing we obtained when sending few
packets, which in this case would be 19.4 � � per packet.

� Baseline Test: Multicast over UDP
Table 1 summarizes the results.

� Multicast over UDP/IPSEC
Table 2 summarizes the results.

� SAM/UDP/IPSEC

When measuring the time to send only a few pack-
ets (100 in this case), with the SAM module us-
ing the hybrid signature scheme of [R99]i, we ob-
served that the packet processing overhead was not
substantially worse than in the case without source
authentication. This is because of the off–line/on–
inline nature of the hybrid signature scheme. When
sending only a small number of packets, the aver-
age time calculation includes only the on–line costs
of the hybrid scheme. The results are summarized
in Table 3 below.

However, when averages were computed by send-
ing much larger number of packets (1000 in this
case), the average calculations included a portion
of the off–line cost as shown in Table 4

Eventually, we expect that the full off–line cost of
around 1500 � � per packet would show up when
calculating the averages based on sending a very
large number of packets.

UDP Payload Size Ethernet Frame Size Time (� �)
464 542 392
1262 1334 933

Table 3. Avg per–packet time (100 pkts)

UDP Payload Size Ethernet Frame Size Time (� �)
464 542 576
1262 1334 1522

Table 4. Avg per–packet time (1000 pkts)

9 Conclusion

We have presented a host architecture for a mem-
ber in a secure multicast group. The architecture is
based on the IPSec host architecture for secure point-
to-point communication, and re-uses the IPSec compo-
nents (ESP, AH, IKE). In addition, the architecture iden-
tifies new modules: MIKE for key exchange, SAM for
source and data authentication, and the MSA for bridg-
ing the control path (MIKE) and the data path (ESP/AH
and SAM). We have discussed compatibility issues with
IPSec, and described an on-going effort to validate the
architecture via implementation.

The proposed architecture complements existing pro-
posals for secure multicast key and policy management,
that concentrate on the design of the group control enti-
ties. We hope it will become an integral part of a com-
prehensive secure multicast solution.

References

[BMS99] D. Balenson, D. McGrew, A. Sherman,
“Key Management for Large Dynamic Groups:
One-Way Function Trees and Amortized
Initialization”, Internet Draft draft-balenson-
groupkeymgmt-oft-00.txt, February 1999.

[CG
�

99] R. Canetti, J. Garay, G. Itkis, D. Miccian-
cio, M. Naor, B. Pinkas, “Multicast Security: A
Taxonomy and Efficient Authentication”, INFO-
COM ’99.

[CP99] R. Canetti, B. Pinkas, “A taxonomy of multicast
security issues”, Internet Draft draft-irtf-smug-
taxonomy-01.txt, April 1999.

[CE
�

99] I. Chang, R. Engel, D. Kandlur, D. Pen-
darakis, D. Saha, “A Toolkit for Secure Internet
Multicast”, INFOCOM 99.

[CGHK98] P. C. Cheng, J. A. Garay, A. Herzberg, H.
Krawczyk, “A Security Architecture for the In-
ternet Protocol”, IBM System Journal, Vol. 37,
No. 1, Feb. 1998.

16 of 17

[D91] Steve E. Deering, “Multicast Routing in Data-
gram Internetworks”, Ph.D. Thesis, Stanford
University, December 1991.

[RFC1112] S. Deering, “Host Extensions for IP Multi-
casting”, IETF Request for Comments No. 1112,
August 1989.

[FSWAN] Code available at
http://www.xs4all.nl/ freeswan/download.html.

[HCD98] T. Hardjono, B. Cain, N. Doraswamy, “A
Framework for Group Key Management for
Multicast Security”, Internet Draft draft-ietf-
ipsec-gkmframework-00.txt, July 1998.

[HCM98] T. Hardjono, B. Cain, N. Monga, “Intra-
Domain Group Key Management Protocol”,
Internet Draft, draft-ietf-ipsec-intragkm-00.txt,
November 1998.

[HM99] T. Hardjono, N. Monga, “Group Security
Association (GSA) Definition for IP Mul-
ticast”, Internet Draft draft-irtf-smug-gsadef-
00.txt, February 1999.

[HM97a] H. Harney, C. Muckenhirn, “Group Key Man-
agement Protocol (GKMP) Specification”. IETF
Request for Comments 2093, July 1997.

[HM97b] H. Harney, C. Muckenhirn, “Group Key
Management Protocol (GKMP) Architecture”,
IETF Request for Comments 2094, July 1997.

[H95] C. Huitema, “Routing in the Internet”, Prentice
Hall, 1995.

[KA98] Stephen Kent, Randall Atkinson, “Security Ar-
chitecture for the Internet Protocol”, IETF Re-
quest for Comments 2401, 1998.

[KBC97] H. Krawczyk, M. Bellare, R. Canetti,
“HMAC: Keyed-Hashing for Message Authen-
tication”, IETF Request for Comments 2104,
February 1997.

[LDAP] ”Lightweight Directory Access Protocol (v3)”,
IETF Request for Comments 2251, 1997.

[M99] L. Mccarthy, “RTP Profile for Source Authen-
tication and Non-Repudiation”, Internet Draft
raft-mccarthy-smug-rtp-profile-src-auth-00.txt,
May 1999.

[M97] S. Mittra, “Iolus: A Framework for Scalable Se-
cure Multicast”. In Proceedings of ACM SIG-
COMM ’97, Cannes, France, September 1997.

[Q98] Bob Quinn, ”IP Multicast Applications: Chal-
lenges and Solutions”, draft-quinn-multicast-
apps-00.txt, Nov 1998.

[RM] The Reliable Multicast working group
at the Internet Research Task Force,
http://www.irtf.org/charters/reliable-
multicast.htm.

[R99] Pankaj Rohatgi, ”A Compact and Fast Hybrid
Signature Scheme for Multicast Packet Authen-
tication”, To appear in the Proceedings of 6th
ACM Computer and Communications Security
Conference, 1999.

[SMuG] The Secure Multicast working group
at the Internet Research Task Force,
http://www.irtf.org/charters/secure-
multicast.htm and
http://www.ipmulticast.com/community/smug.

[SSLRef] SSLRef 3.0: Available from
http://www.netscape.com.

[STW98] M. Steiner, G. Tsudik, M. Waidner,
“CLIQUES: A new approach to group key
agreement”, IEEE ICDCS’98, May 1998.

[WHA97] D.M. Wallner, E. J. Harder, R. C. Agee,
“Key Management for Multicast: Issues and
Architectures”, Internet Draft draft-wallner-key-
arch-01.txt, September 1998. (Preliminary ver-
sion in July 97.)

[WGL98] C. K. Wong, M. Gouda, S. S. Lam, “Secure
Group Communication Using Key Graphs”,
SIGCOMM ’98. Also, University of Texas at
Austin, Computer Science Technical report TR
97-23.

[WL98] C.K. Wong, S.S. Lam, “Digital Signatures for
Flows and Multicasts”, IEEE ICNP ’98. See also
University of Texas at Austin, Computer Science
Technical report TR 98-15.

17 of 17

