
Kronos: A Scalable Group Re-Keying Approach for Secure
Multicast

Sanjeev Setia Samir Koussih
Dept. of Computer Science
George Mason University

Fairfax, VA 22030

Sushil Jajodia
Center for Secure Information Systems

George Mason University
Fairfax, VA 22030

Abstract

In this paper, we describe a novel approach to scalable group re-keying for secure multicast. Our
approach, which we call Kronos, is based upon the idea of periodic group re-keying. We first motivate
our approach by showing that if a group is re-keyed on each membership change, as the size of the
group increases and/or the rate at which members leave and join the group increases, the frequency of
re-keying becomes the primary bottleneck for scalable group re-keying. In contrast, Kronos can scale
to handle large and dynamic groups because the frequency of re-keying is independent of the size and
membership dynamics of the group. Next, we describe how Kronos can be used in conjunction with
distributed key management frameworks such as IGKMP [10], that use a single group-wide session key
for encrypting communications between members of the group. Using a detailed simulation, we compare
the performance tradeoffs between Kronos and other key management protocols.

1 Introduction

Many emerging Internet applications (e.g., real-time information services, pay per view, computer-supported
collaborative work) are based upon group communications. As the next generation of the Internet is de-
ployed, many of these applications are expected to increase in importance. Network protocols that support
multicast communications in an efficient and scalable manner are essential for applications based on group
communications. Consequently, issues such as reliable delivery of data and congestion control in the context
of multicasting over the Internet have been active areas of research over the last few years.

An issue that is critical for mainstream adoption of multicast technology is the need forsecuringmul-
ticast communications. In other words, it is important to ensure that multicast communications can only
be received by the intended recipients. While security mechanisms for supporting unicast communications
over the Internet have been studied extensively [13], it is only recently that the research community has
started to address the issues involved in supporting secure multicasting [5].

The multicast service currently supported in the Internet (IP Multicast) does not have any provisions
for restricting delivery of data to a specified set of receivers. Any receiver can join or leave a multicast
group (identified by a Class D IP address [19]) by sending IGMP (Internet Group Management Protocol) [8]
messages to their local router. Further, any user can send data to a multicast group by addressing the message
to the group address. In other words, IP multicast does not support “closed” groups.

To restrict the flow of multicast data to a specific set of users, it is necessary to use cryptographic
mechanisms. Specifically, messages are encrypted by senders using a session key that is only distributed to
members of the group. Participation in a group session is restricted by ensuring that only members of the
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group have possession of the session key at any given time. Thus key management (creating and distributing
session keys to authorized group members) is a critical aspect of secure multicast.

One of the issues that has to be addressed by key management schemes for secure multicast is the
need for forward and backward confidentiality [22]. In other words, new members joining a group should
not be able to access previously multicast data and old members should not be able to continue to access
data multicast after they have left the group. For applications that require perfect forward and backward
confidentiality, the session key used for encrypting group communications needs to be changed on each
membership change and securely redistributed to the existing members of the group. This is referred to as
group re-keying.

For large groups with frequent membership changes, the costs of re-keying the group can be quite
substantial. The straightforward approach under which a new session key is generated on each join and
leave, and securely transmitted to each existing group member is not scalable to large groups. This is
because the session key will have to be encrypted individually for each group member and the costs of
doing so increase linearly with the size of the group. Scalable re-keying is therefore an important problem
that needs to be addressed in order to support secure communications for large and dynamic groups.

Recently several protocols for group key management for secure multicast have been proposed. The
techniques that specifically address the problem of scalable group re-keying fall under two categories. The
first set of approaches [22, 23, 3, 21], typically involve creating a logical hierarchy of keys. The main
focus of these schemes is to reduce the overhead of re-keying the session key on a membership change.
The schemes are scalable because the computational overhead of re-keying is logarithmic in the number
of members of the group. However, these approaches do not attempt to reduce the frequency at which the
session key needs to be changed and redistributed to the members of the group. As we discuss in Section
2, for large and dynamic groupsthe frequency of re-keyingimposes an upper limit on the scalability of key
management protocols that is independent of the efficiency of an individual re-keying operation. Secondly,
with the exception of the Distributed Flat scheme of Waldvogelet al [21], these approaches are centralized.
As such, they have all the well-known advantages (from the security point of view) and disadvantages (from
the performance and availability point of view) of providing a centralized service on the Internet.

The second approach to scalable group re-keying employs a divide-and-conquer approach. This ap-
proach [15] (henceforth referred to as Iolus) is inherently distributed in nature. A group is divided into
several sub-groups each with its own session key. Membership changes in a sub-group result in a change of
the sub-group session key and do not affect the remaining members of the group. Thus, both the frequency
and computational overhead of re-keying is determined by the size of a sub-group instead of the size of
the whole group. Under this approach, however, a sub-group manager is responsible for re-encrypting and
relaying all multicast traffic flowing between its members and the rest of the group.

In this paper, we describe a novel approach to scalable group re-keying for secure multicast. Our ap-
proach, which we call Kronos, is based upon the idea of periodic re-keying. Periodic re-keying decouples
the frequency of re-keying from the size and membership dynamics of the group. As such, our scheme can
easily scale to large and dynamic groups. However, this is potentially at the expense of increased laten-
cies experienced by members joining and leaving the group. Further, if the period between key changes
is too large, the delay in evicting members may be unacceptable for some high-security applications. In
Sections 3 and 4, we explore this tradeoff and show that by appropriately selecting the period of re-keying,
acceptable join and leave latencies can be obtained.

Another advantage of periodic re-keying is that it permits scalable group re-keying within distributed
frameworks for key management such as Iolus [15] or IGKMP [10], while allowing the use of single group-
wide session key for encrypting communications between members of the group. In Section 3, we describe
a scheme whereby each sub-group key manager independently generates the same traffic encryption key
at fixed intervals and multicasts it to the members of its sub-group. Since there is a single group-wide
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traffic encryption key, the sub-group manager is no longer responsible for re-encrypting and relaying all
data between its members and the rest of the group. At the same time, group re-keying is accomplished in
an efficient and scalable fashion. We note that periodic re-keying has long been recognized as necessary
from the security point of view [22, 10]. However, our emphasis on periodic re-keying is motivated by the
need for scalable group re-keying for large and dynamic groups.

We make three contributions in this paper. First, we evaluate the impact of group size and group mem-
bership dynamics on the scalability of re-keying schemes. We show that if a group is re-keyed on each
membership change, as the size of the group increases and/or the rate at which members leave and join the
group increases, the frequency of re-keying becomes the primary bottleneck for scalable group re-keying.
Second, we propose a scalable group re-keying approach based upon periodic re-keying that can be used in
conjunction with distributed key management frameworks such as Iolus and IGKMP. Third, using a detailed
simulation, we explore the performance tradeoffs between Kronos and other key management protocols for
secure multicast.

The organization of the rest of the paper is as follows. In Section 2, we analyze impact of group size and
group membership dynamics on the scalability of re-keying schemes. In Section 3, we describe the Kronos
approach for group re-keying. In Section 4, we evaluate the tradeoffs between group re-keying schemes
both qualitatively and quantitatively. Finally, Section 5 contains our conclusions.

2 The Case for Periodic Re-keying

To provide forward and backward confidentiality, key management protocols for secure multicast change
the session key used for encrypting traffic whenever there is a membership change. As discussed in the
introduction, several researchers have developed techniques that minimize the overhead of generating a new
session key and redistributing it securely to the existing members of the group. However, the total overhead
for re-keying over a given period of time depends not only on the cost of an individual re-keying operation
but also upon how often re-keying is done during that period.

An increase in the rate of re-keying results in an increase in the overhead of key management for several
reasons. First, the computational overhead at the key manager for generating, encrypting, and transmitting
the session key increases with the rate of re-keying. Second, the computational overhead of the group
members for receiving and decrypting the key increases with the rate of re-keying. This is an important
consideration especially for delay-sensitive applications and for applications executing on computers with
limited resources. Third, the network overhead (number of messages per unit time and bandwidth consumed)
for the re-keying traffic increases. Another factor that should be considered here is the overhead for ensuring
that keys are transmitted in a reliable manner to the members of the group; this overhead may arise from a
reliable multicast protocol or from an application-specific protocol for delivering keys to the group members.

The frequency of group re-keying depends upon two factors: (i) the size of the group, and (ii) group
membership dynamics, i.e., the rate at which members join and leave the group. In this section, we use a
simple model to analyze the impact of these two factors on the rate at which groups need to be re-keyed.

Consider an application (e.g., a real-time information delivery service) that can be expected to have large
and dynamic groups. In this application, there is a single source multicasting a stream of data to a changing
set of recipients. Assume that there exists a population ofN subscribers or viewers who are potentially
interested in the information being multicast. Each subscriber can be modeled as alternating between two
states: a state in which s/he is tuned in to the multicast (i.e., a member of the multicast group being used by
the application) and a state in which s/he is tuned out.

An important factor that affects the membership dynamics of a multicast group is the statistical corre-
lation between the joining/leaving times of the members of the group. Currently, there is little empirical
evidence available about group membership dynamics for large scale multicast applications. However, there

3



are two extremal assumptions one can make about the correlation between the behavior of the members of
the group: (i) that the patterns of joining/leaving the group arehighly correlated, i.e., all subscribers join
and leave the group at nearly the same time (ii) each subscriber’s behavior isindependentof that of other
subscribers. For several applications, we can expect there to be a high degree of correlation in subscriber
joining and leaving patterns, e.g., for a pay per view scenario, we can expect a lot of subscribers joining the
group at the beginning of the broadcast and leaving at the end of the broadcast. For other applications, e.g., a
real-time information delivery service, individual subscriber joining/leaving patterns are more independent.
We discuss both cases below.

Case 1: Correlated Subscriber Behavior Consider the situation where thousands of subscribers attempt
to join or leave a group at roughly the same time. In this case, the group manager can expect to receive a
flurry of join or leave requests over a short period of time at the beginning or end of a broadcast. In this
situation, re-keying the group on each and every membership change is clearly untenable. Instead, it is
preferable to use a scheme under which the group is re-keyed periodically and the new key distributed in a
scalable manner to all the current members of the group.

Case 2: Independent Subscriber Behavior The motivation for periodic re-keying is less clear in the
second case: when each subscriber’s behavior is independent of that of other subscribers. We use a simple
analytical model to analyze this case. Assume that the time for which a subscriber is tuned in to a multicast
is exponentially distributed with mean1/µ. Further, assume that the time during which a subscriber isnot
tuned into the multicast is exponentially distributed with meanR/µ. ThusR is the ratio of the average time
for which a subscriber is tuned out to the average time for which a subscriber is tuned in.

Under these assumptions, the number of subscribers that are tuned in to a broadcast can be modeled by a
birth-death Markov process [20]. Note that the number of subscribers tuned in to the multicast corresponds
to users who are members of the multicast group under consideration. Thus, each time there is a membership
change the group will need to be re-keyed. We can show (see Appendix A) that the expected time interval
between re-keys is given by

Trekey = (1 + R)/(2µN)

This shows that as the productµN of the subscriber population (N ) and the reciprocal of the time for
which a user tunes in to a broadcast (1/µ) increases, the time between re-keys decreases. In other words,
the larger the subscriber population and the smaller the time for which a subscriber tunes in to a multicast,
the smaller the interval between re-keys. The factorR has the opposite effect; the largerR is the larger the
interval between re-keys.

Assume that the key manager generates a new key in response to a membership change and multicasts
it to the current members of the group at timeTs. Assume that the average delay after which this new key
reaches the members of the group, i.e., the network delay of propagating the key to the members of the
group, is represented by∆. Thus, on average, a member of the multicast group will receive the new key at
timeTr = Ts + ∆.

If the expected time between re-keys,Trekey is smaller than∆, it implies that the key being used to
encrypt data will be need to be changed even before a majority of the members of the group have received
the previous version of the key. In that sense,∆ represents a lower limit on the time interval between re-
keys (or an upper bound on rate of re-keying). Note that this lower limit arises even if the computational
overhead of re-keying is negligible, i.e., even if a key manager has infinite processing power available to
it. The conditions under which this re-keying interval is reached thus represent limits on the scalability of
approaches that re-key the group on each membership change.

We now compute these bounds for a variety of group sizes and membership dynamics. For large groups
spread across the Internet, 50 ms represents a reasonable value of the average delay∆ before a new key
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Figure 1: The plots forR = 0.5, 1, 2, 10 and 100 show the combination of values ofN (number of sub-
scribers) and1/µ (average subscriber tune-in time) that lead to an expected time between re-keys of 50 ms,
i.e., the limiting value of the re-key time. The point labeled X corresponds to1/µ = 60 seconds,R = 10,
andN = 6600 while the point labelled Y corresponds toN = 500000, R = 100 and1/µ = 496 seconds.

reaches the majority of the members of the group. In Figure 1, we plot the values ofN (the number of
subscribers) and1/µ (the average time a subscriber tunes in to the broadcast) that will result in the expected
time between re-keys being equal to 50 ms forR = 0.5, 1, 2, 10 and 100.

The x and y coordinates corresponding to any point on the plot for a particular value ofR represent
the limiting conditions beyond which a key management protocol that re-keys on every membership change
will not scale. Thus, the area under the line for a particular value ofR corresponds to combinations ofN
and1/µ for which the expected time between rekeys will be smaller than 50 ms. For example, consider the
plot for R = 1. WhenN = 10000 the limiting value of the average tune-in time is 500 seconds. In other
words, the time between re-keys will become unacceptably small for average tune-in times smaller than 500
seconds. Similarly, forN = 100000 andN = 1000, the smallest average tune-in times that can be handled
are 5000 seconds and 50 seconds respectively. Note that these limits are independent of the processing
power available to the key manager.

It is important to note that for large subscriber populations it is not necessary for the group membership to
be very dynamic before the frequency of re-keying becomes unsustainable. For example, whenN = 500000
andR = 100, the minimum tune-in time is over twelve minutes ( see the point labelled Y in Figure 1). Note
thatN represents the maximum subscriber population and not the average size of the group that is tuned in.
Conversely, when membership is very dynamic (tune-in time = 1 minute, R = 10), the maximum subscriber
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population that can be sustained is 6600 (see the point labelled X in Figure 1).
While these results have been obtained using simplifying assumptions (e.g., exponentially distributed

tune-in times), similar results are obtained (albeit via simulation) if we assume that group membership
dynamics are driven by long-tailed distributions similar to those observed for other network processes [16].

These results show that for large and dynamic groups the frequency at which the group is re-keyed
imposes an upper limit on the scalability of the key management protocol that is independent of the efficiency
of an individual re-keying operation. For a key management protocol to be able to scale to large and dynamic
groups, it is necessary to address the factors that lead to high re-keying frequencies.

Previous works have attempted to reduce the frequency of re-keying in two ways. First, it is possible to
avoid the overhead of distributing a new key to all the members of the group on joins by generating the new
version of the session key by applying a one way function to the previous key. Under this approach, which
has been adopted in the Versakey project [21] and in the LKH+[12] protocol, the overhead of transmitting a
new key to the existing members of the group is only incurred when a member leaves the group1. Second,
under the Iolus approach, the frequency of re-keying is reduced because sub-groups have both smaller sizes
and smaller rates of joins/leaves than the entire group.

A third approach to reducing the frequency of re-keying is to decouple it altogether from group size
and membership dynamics. This can be accomplished by periodic re-keying, i.e., by re-keying the group at
fixed intervals instead of having the re-keying operation be driven by member joins and leaves. In the next
section, we describe an approach to scalable group re-keying that is based upon this observation.

3 The Kronos Approach for Scalable Group Re-keying

Kronos is a scalable approach for re-keying large and dynamic groups. The analysis in Section 2 shows
that as groups become large and/or dynamic, re-keying the group on each membership change becomes
unsustainable irrespective of the efficiency of an individual re-keying operation. By re-keying the group at
fixed intervals, we can decouple the frequency of re-keying from the group size and membership dynamics.
If the interval between re-keys is large enough, the scalability of a centralized key management protocol that
uses periodic re-keying is determined solely by the efficiency of an individual group re-keying operation.
By using approaches such as LKH [22, 21, 23] or One-way Function trees [2], such a protocol can scale to
large groups.

While a centralized key management service can be implemented without requiring a distributed trusted
infrastructure, it suffers from all the well-known disadvantages of providing a centralized service on the
Internet, viz. a single point of failure, high latencies for (network-wise) distant hosts, unavailability due to
network partitions, etc. To robustly support large multicast groups with members spread across the Internet,
it is necessary to distribute the key management protocol.

We note that several issues that need to be addressed for supporting distributed key management pro-
tocol such as multicast address allocation and the design of protocols for the creation, initialization, and
advertisement of multicast groups are still at the research stage. We envision that Kronos would be used
within a distributed key management framework such as that proposed by Hardjanoet al [9, 10] or Mit-
tra [15]. Our focus in this paper is not on how such a framework should be established but on how scalable
group re-keying can be accomplished once such a framework is in place.

3.1 Distributed Key Management Frameworks

Mittra [15] and Hardjanoet al [10] have proposed frameworks for distributing the task of key management
for secure multicast groups. Under the Intra-domain Group Key Management Protocol (IGKMP), an admin-

1For these protocols,Trekey = (1 + R)/(Nµ)
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istrative domain is divided into several “areas”. Each host-member of a multicast group is assumed to reside
in a particular area. IGKMP distinguishes between multicast groups for the purpose of key management and
payload delivery. There is a domain-wide key distributor (DKD) and an area key distributor (AKD) corre-
sponding to each area. Each host-member in a specific area is a member of a multicast group established for
the purpose of key distribution that includes its AKD. All the AKDs and the DKD are members of another
multicast group that is used by the DKD for transmitting the multicast data encryption key to the AKD,
which in turn, transmits it to each host-member in its area. Note that there is a single group-wide multicast
data encryption key under this scheme.

Before a host can start participating in a group session, it has to join the group. Joining a group involves
sending a request to the AKD. The AKD authenticates the request and checks the credentials of the member.
If the member is allowed to join the group, the AKD will establish a private key that is shared with the
member. This key will be used to encrypt the group wide data encryption key when it is sent to the member.
Note that if an approach such as LKH is used at the sub-group or area level, a set of keys will need to be
transmitted to the member [22, 23]. A member is considered to have joined the group only when it has
received the group data encryption key.

The Iolus framework is similar to IGKMP in many respects. For example, each multicast group is
divided into several sub-groups, each with their own manager (a Group Security Intermediary using Iolus
terminology). Members join and leave requests are sent to the sub-group manager. However, Iolus differs
from IGKMP in that its framework supports both data delivery and key management. There is no group-
wide data encryption key; instead, there is a separate data encryption key for each subgroup. Each sub-group
manager is responsible for re-encrypting and relaying all traffic flowing between the members of its sub-
group and the other sub-groups.

Tradeoffs: The Iolus approach can scale to handle large and dynamic groups because joins and leaves
within sub-group do not affect the rest of the group. However, sub-group managers are responsible for
both payload delivery and key management. Under the IGKMP framework, however, key management and
payload delivery are decoupled since there is a single group-wide key that is used for encrypting group
traffic. This allows data packets to be routed using the best multicast communications scheme and removes
the need for the packets to be re-encrypted by the sub-group manager. Having a single group-wide key,
however, implies that the scalability of group re-keying is affected by the size and the membership dynamics
of the whole group. If the DKD multicasts a new key to the AKDs on every membership change, the scheme
will not scale to large and dynamic groups.

3.2 Our Approach

We now describe a scalable approach, which we call Kronos, for re-keying a large and dynamic group that
can be used within a distributed framework such as IGKMP.

The operation of the Kronos protocol is similar to that of IGKMP as discussed in Section 3.1 with two
key differences. First, the DKD or group manager is not directly involved in generating the new group
traffic encryption key that is distributed by the AKDs to the existing members of the group in their area.
Instead each AKDindependentlygenerates thesamegroup-wide traffic encryption keyat the same time
and transmits it to the members in its area. Second, Kronos uses periodic re-keying to decouple the rate of
re-keying from group size and membership dynamics.

Under Kronos, group re-keys are not driven by member join or leave requests. Instead, at periodic
intervals, all the member join and leave requests that have accumulated at an AKD are processed and the
new multicast traffic encryption key is securely transmitted to the existing members of the group. An
algorithm such as LKH can be used by each AKD to accomplish this task in a scalable manner. Note that
most of the processing required for joins and leaves can be done during the time interval between re-keys.
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Further note that under this approach a new traffic encryption key will be transmitted by an AKD to the
members in its area even if there has been no membership change during the previous time period.

Two issues need to be addressed for this approach to work correctly. First, all the AKDs must use the
same period for re-keying and must have their clocks synchronized so that they re-key at the same time.
Second, the AKDs must share some state information that enables them to generate the same key without
any communication. Further, no entity other than the AKDs should be able to generate the group key.

The first issue is addressed by having the AKDs agree in advance on the re-keying period and by using
a clock synchronization algorithm such as the Network Time Protocol (NTP) [14]. NTP can synchronize
hosts to within a millisecond on LANs and within a few tens of milliseconds on WANs relative to a server
synchronized to Coordinated Universal Time via a Global Positioning Service (GPS) receiver. Further, NTP
can be configured to use multiple redundant paths for reliability, and authentication to prevent accidental or
malicious protocol attacks.

The second issue can be addressed as follows. First, all the AKDs need to agree on two shared secrets,
say K and R0. This can be accomplished by having the DKD (or the group coordinator) selectingK
andR0 and transmitting it to the AKDs using a secure channel. Alternatively, the AKDs can use a group
key agreement algorithm such as Cliques[18] to generateK andR0 in a contributory fashion. Once the
shared secrets are established, every AKD generates the multicast group key,R1, by applying a secret-key
encryption algorithm,E, to R0 using K as the secret key. Thus,R1 = EK(R0). R1 is then securely
transmitted to the members of the group in the AKD’s area.

This process is repeated at each iteration, i.e., the AKD obtains the next multicast group key by applying
the secret key encryption algorithm to the the previous group key. Thus

Ri+1 = EK(Ri), i ≥ 0

The choice of the encryption function,E and the length of the key,K, is dictated by the security
requirements of the application. Any function such as DES, triple DES, or IDEA [17] can be used. In
addition, periodically, for enhanced security the AKDs should re-establish the shared secrets,K andR0.

The choice of the re-keying period for our approach is largely dependent on the security and performance
requirements of the application. However, the fact that the AKDs do not need to coordinate while re-keying
enables us to select re-key periods that can be as small as one second. Using this approach, a distributed
key management framework such as IGKMP can re-key large and dynamic groups in a scalable way while
maintaining a single group-wide multicast key.

3.3 Discussion

Using periodic re-keying implies that join and leave latencies will be on average equal to half the the interval
between re-keys plus the network delay for the join request and the reply. We assume that a join is considered
complete when the user receives the current session key, and a leave is completed when the existing members
of the group receive the new session key. If the interval between re-keys is large, this latency may be
unacceptable for some applications. On the other hand by making the re-keying interval relatively small (of
the order of seconds), this latency can be reduced to acceptable levels for most applications. We explore this
issue in more detail in Section 4.

We note that periodic re-keying has long been recognized as being necessary from the security point
of view [10]. This is because employing the same key for a long period of time increases the chances of
that key being successfully crypto-analyzed by an attacker who has collected the ciphertext of messages
encrypted with that key.

An advantage of periodic re-keying from the point of view of the application is that the overhead of re-
keying is predictable and bounded. This is especially advantageous for applications executing on platforms
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with limited resources or for real-time applications. Another advantage of periodic re-keying is that typically
several joins and/or leaves will processed at the same time thus allowing the use of optimizations such as
that proposed by Changet al [3].

Variants: It is also possible to come up with variants on the basic periodic re-keying scheme. If the security
requirement of perfect backward confidentiality is relaxed, then there is no need to change the current session
key on a join. Thus, a user who makes a join request can be supplied with the current key right away instead
of having to wait until the next re-key to join the group.

If an application distinguishes between member leaves and member ejections, and it is critical to eject a
member as soon as possible, then another variant can be used in which re-keying is done either periodically
or when a member is ejected from the group. Since it is reasonable to assume that ejections are less frequent
than joins and leaves, this does not affect the scalability of the scheme.

Finally, we note that the re-keying interval for a group can be made adaptive so that it matches group
membership dynamics. An example hybrid protocol would be one in which in times of heavy load, the
Kronos approach would be used whereas at other times re-keying can be initiated by the DKD.

Trust Considerations: Kronos builds upon distributed key management frameworks such as IGKMP and
therefore inherits the trust relationships assumed by these frameworks. Thus, it is assumed that each host
member in an area trusts its AKD, and that all AKDs and the DKD trust each other. As such, a protocol such
as Kronos may be more applicable for applications where the AKDs and DKD are all under the control of a
single organization.

4 Evaluation

In this section, we use a detailed simulation to evaluate the performance tradeoffs between Kronos and other
approaches for scalable key management, specifically LKH and Iolus.

4.1 Metrics

The performance metrics of interest are the following:

Join/leave latency This is the time that elapses between the submission of a join or leave request by a
member and the receipt of the keying material that enables it to decrypt group communications. We
assume that a user has previously established a private key with the group (or sub-group) manager
using Diffie-Hellman agreement before submitting the join request. Thus, the components that make
up the join/leave latency include (i) the network delay for the packets corresponding to the request
and the reply (ii) the delay at the server corresponding to the computation time for receiving and au-
thenticating the request, generating and encrypting the new keys, creating the message digest, signing
the response, and transmitting it to the member (iii) the queueing delay at the server (iv) delay due to
lost requests or responses.

Time between RekeysAs discussed in Section 2, the shorter the time between the rekeys, the higher the
network overhead in terms of both the number of messages and the bandwidth consumed. In addition,
the computational overhead at the member hosts for receiving and decrypting new keys increases with
decreasing re-key times.

Data packet latency This is the average network delay before a data packet transmitted by the source
reaches the members of the group. For the LKH and Kronos protocols, multicast data delivery is
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independent of the keying protocol. However, under Iolus, each packet sent by the source is re-
encrypted and relayed by the sub-group manager to its subgroup. The extra delay for these actions is
reflected in data packet latency.

4.2 The Simulation Environment

Network Model: Our simulations were written using the packet-level, event-based network simulator
ns2 [24] from UC, Berkeley. We used the Tiers network topology generator [6] to generate the topolo-
gies used in our simulation. Tiers generates 3-level hierarchical networks consisting of WANs, MANs, and
LANs. While we ran simulations for several different topologies, the base network topology for which
results are reported in this section consisted of 360 nodes distributed over a WAN corresponding to the
backbone, 10 MANs, and 50 LANs. The WAN backbone has 10 routing sites and each MAN also has 10
routing sites, while each LAN has 5 hosts. The average degree of redundancy (extra edges between nodes)
for both WAN and MAN routers is 2. The bandwidth of the WAN, MAN, and LAN links are assumed to be
2248 Mb/s, 155 Mb/s and 100 Mb/sec respectively. The average link propogation delay is approximately 60
ms for WAN links, 17 ms for MAN links and 1 ms for LANs.

In order to simulate large topologies in a reasonable amount of time, we we only simulated traffic
flows corresponding to the multicast application under consideration and the control traffic for group key
management. To model the effect of background traffic and queueing, on each hop each packet experiences
a random delay drawn from a uniform distribution between 0 and 2 ms. Further, each link has an associated
loss rate,li. Thus each packet traversing the link gets dropped with a probabilityli. While we considered
several different loss models corresponding to different network conditions, in the loss model used for the
results reported in this section, higher packet losses occur in some of the MANs. Specifically, 30% of the
MAN and MAN-WAN links have a loss probability of 2% while the remaining links have a loss probability
of 0.5%. In the simulation, routers run dense mode multicast routing similar to DVMRP [7].

Workload Model: We considered two multicast scenarios: a one-to-many scenario and a many-to-many
scenario. For both scenarios, there were 240 potential multicast group members (the number of subscribers,
N , using the terminology introduced in Section 2) distributed among the LAN-level nodes of the network.
As in Section 2, each subscriber independently alternates between a state in which it is member of the
multicast group corresponding to the application and a state in which it is not a member. In our simulations,
we assumed that the time spent in these states is exponentially disitributed. Further, we assumed thatR, the
ratio of the time spent in these states was 1, while the time for which a host is a member of the group (1/µ)
was varied from 5 seconds to 12.5 seconds. Our intent was to simulate situations in which there were a
large number of join and leave requests arriving per unit time at the group manager, i.e., situations in which
the frequency of group re-keying would become a bottleneck for protocols which re-keyed the group on
every membership change. As discussed in Section 2, the frequency of re-keying depends upon both group
membership dynamics (as determined byR and1/µ) as well as the size of the subscriber population (N ).
Since simulating large groups with thousands of members is not feasible2, we achieved our goal of high
rates of join and leave requests by selecting relatively small (and unrealistic) values of1/µ andR.

Each simulation run corresponds to 70 seconds of simulated time. Statistics are gathered only after the
first 10 seconds of the simulated time have elapsed to remove cold-start effects. In the one-to-many scenario,
a single CBR source multicasts data to the group at 224 Kb/sec. The CBR source starts transmitting data
after 0.6 seconds in the simulation. In the many-to-many scenario, the fraction of the members that are
senders is varied from 10% to 40%. These senders are uniformly distributed over the network topology.

2Each run of our simulations for the network and workload models described in this paper took more than one day on a PC with
a Pentium III 600 MHz CPU and required between 200 and 400 MB of RAM
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Each member that is a sender alternates between a state in which it is a CBR sender (sending state) and a
state in which it does not transmit any data (quiet state). The time each sender spends in both the “sending
state” and the “quiet state” is uniformly distributed between 0 and 12.5 seconds.

In our simulations for LKH, there is a single group manager that is co-located with the data source in the
one-to-many scenario. Separate multicast addresses are used for data and control traffic. The logical keytree
has a degree of 4 and key-oriented keying [23] is used. In our implementation of LKH, if multiple join and
leave requests are present in the request queue, they are processed as a batch while re-keying the logical
keytree. For Iolus and Kronos, the network is divided into “areas” each with their own AKD or sub-group
manager. Each sub-group manager (AKD) uses the LKH algorithm for key management in its sub-group
(area). For Iolus, the re-encryption done at the sub-group manager for each data packet simply involves
decrypting and re-encrypting the message key that is associated with each message [15] (and not the entire
payload in the packet).

For Kronos (Iolus), the location of the AKDs (sub-group managers) affects the join and leave latency for
the hosts in that area. In the case of Iolus, the latency of the multicast data is also affected by the location
of the sub-group managers. We consider two cases in our simulations. In the first case, which we label as
the “dense” mapping, each MAN is considered an “area”; thus, there are 10 areas each with an AKD that
performs the key management for 24 hosts in the area. In the second case, which we label as the “sparse”
mapping, the network topology is mapped into 8 areas each with 30 hosts. While most of the hosts in an
area are located in the same MAN as their AKD, some of the hosts are in “nearby” MANS.

Finally, for Kronos, we assume that an algorithm such as NTP is being used to keep the clocks of
the AKDs synchronized to within 25 ms. Thus, in our simulations, the clock skew between the AKDs is
uniformly distributed between 0 and 25 ms. The costs assumed in our simulations for the various tasks
performed by the LKH, Iolus, and Kronos are listed in Table 4.2. These costs assumed are based on results
reported in the literature [3, 17].

Encryption algorithm DES3
Key Length 168 bits

Key Encryption Time 1.64 msec
Key Generation Time 2.8 msec

Data packet size 500 bytes
Signature type RSA

Signature Key Length 512 bits
Authentication rate 1506 KB/sec

Signature rate 367 KB/sec

Table 1: The costs used in our simulations for the LKH, Iolus and Kronos protocols. The signing and
authentication rates include the time for taking a MD5 hash.

Reliable key delivery: While UDP is used for both data and key messages, we use a simple receiver-
initiated protocol for reliable-key delivery. Each message contains a clear text field that indicates the key
version number used to encrypt the message. Group members use the version number field of each message
to detect if they are missing some keys. If this is the case, a request for the missing keys is sent to the key
manager. Each group member maintains an adaptive timer for detecting if its messages to its AKD have
been lost. This timer is set based on the round-trip-time between the member and its key manager.
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4.3 Results

Unless stated otherwise, the results discussed below use the network and workload models described in
Section 4.2. The results for Iolus and Kronos assume the “sparse” mapping of AKDs on the network
topology. The re-key interval used for Kronos is 1 second.

Join and Leave Latency: Our first set of results compares the performance of LKH, Iolus and Kronos
for the one-to-many scenario described above. In Figure 2, we plot the join and leave latencies seen by
the members of the group for these protocols as a function of the average time for which a user joins the
group (1/µ). We can make three observations from Figure 2. First, LKH has higher join and leave latencies
than Iolus for all values of1/µ. Second, the join (leave) latencies for Iolus and Kronos are not affected by
changing1/µ. Third, the join (leave) latencies for LKH increase dramatically as1/µ is decreased below 10
seconds.

The join and leave latency for a member depends on two components: the network delay for the request
and reply and the delay at the key manager. While the network delay for the request and reply largely de-
pends upon the network “distance” between the member and the key manager, the delay at the key manager
depends on the load on the key manager. Recall from Section 2 that the load on the key manager depends
upon the number of subscribers (N ) and the group membership dynamics (as determined by1/µ andR).
For a fixedR, the load on the manager increases as1/µ decreases. In the case of LKH, Figure 2 shows that
the key manager becomes overloaded when1/µ is decreased below 10 seconds. Thus the major component
of the join and leave latency under LKH is the queuing delay at the key manager.
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Figure 2: Average member join and leave latencies under LKH, Iolus, and Kronos as a function of1/µ.

In the case of Iolus and Kronos, the task of re-keying is distributed among the AKDs and sub-group
managers. In our experiments, varying1/µ between 5 and 12.5 seconds did not impose a heavy load on
the AKDs, and thus did have any noticeable impact on the join and leave latency. For Iolus, the major
component of the join latency is the network delay for the request and the manager’s response. In the case
of Kronos, the major component of the join (leave) latency is the queueing time at the AKD, which is on
average equal to half the fixed re-keying period - in this case 0.5 seconds.

Data Latency: Figure 3 plots the average latency for the data packets multicast by the CBR source in
the one-to-many scenario. In the case of LKH and Kronos, data delivery is independent of the group key
management protocol. Thus, the data latency is not affected by changing1/µ. On the other hand, in the
case of Iolus, the CBR source first multicasts the data to the sub-group managers who are responsible for
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re-encrypting it and forwarding it to the members of their respective sub-groups. Figure 3 shows that the
data latency under Iolus is significantly larger than under LKH and Kronos. Note that the higher data latency
under Iolus relative to LKH and Kronos isnot because of the cost of re-encryption which is less than 2 ms
per packet. Instead, the difference in data latency is because of the extra network delay in routing each
packet to its destination via the sub-group manager. Further note that the results in Figure 3 were obtained
for the “sparse” mapping of sub-group managers on the network topology. Later in this section we examine
the effect of changing the location of the sub-group managers on the data latency for Iolus.
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Figure 3: Average data latencies for LKH, Kronos, and Iolus as a function of1/µ
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Figure 4: Avg. data latency under the Many-to-Many multicast scenario for Kronos and Iolus as a function
of the percentage of group members that are senders. Note that Iolus(NX) represents the case where the
encryption bandwidth of each sub-group managers isN times the baseline encryption bandwidth.

We also examined the average data latency for the protocols for the many-to-many scenario described
in Section 4.2. In contrast to the one-to-many scenario, in the case of the many-to-many scenario, the
encryption bandwidth available at the Iolus sub-group manager has a significant impact on the average data
latency. For the base parameters listed in Table 4.2, the Iolus sub-group manager is capable of re-encrypting
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approximately 610 packets per second3. In our many-to-many scenario, the number of packets that are
delivered to the sub-group manager is much larger than this. As a result, each packet experiences long
queueing delays at the sub-group manager leading to high data latencies4.

In Figure 4, we plot the average data latency under Kronos and Iolus for the many-to-many scenario as
a function of the fraction of group members who are senders. For Iolus, we consider the effect of doubling
and quadrupling the encryption bandwidth at the subgroup managers. We observe that changing the fraction
of senders has no impact on the data latency under Kronos. (Although not shown in the figure, the same is
true for LKH.) For Iolus, it is clear that the encryption bandwidth becomes a bottleneck as the number of
senders increases. Quadrupling the processing power of the sub-group manager results in the data latencies
under Iolus being comparable to those of Kronos when the fraction of group members that are senders is
below 30%. To obtain comparable data latencies for the 40% percent case, it was necessary to increase the
encryption bandwidth at the sub-group managers by a factor of 5.

Time between Group Re-keys:Figure 5 shows the impact of changing1/µ on the time interval between
group re-keys. For Kronos, the interval between re-keys is fixeda priori so changing1/µ has no effect.
For Iolus, decreasing1/µ increases the rate at which join and leave requests arrive at the sub-group key
managers, thus increasing the frequency of sub-group re-keying. Thus, we see that the time between re-
keys decreases from 400 milliseconds when1/µ = 12.5 seconds to around 190 milliseconds when1/µ = 5
seconds.

0

200

400

600

800

1000

1200

5 7.5 10 12.5

1/µ (sec)

Av
g t

im
e b

etw
ee

n r
ek

ey
s (

ms
)

LKH(2X) LKH(1X) Iolus Kronos

Figure 5: Avg. time between re-keys for the various policies. LKH(2X) represents the case where the
processing power at the key manager is doubled.

For LKH, the re-key period increases as1/µ decreases. While this may seem counter-intuitive, it can be
explained by the fact that (as discussed above) the key manager becomes overloaded as1/µ is decreased.
Consequently, long queues of join and leave requests build up at the key manager. In our simulation im-
plementation of LKH, the key manager processes all the join and leave requests present in the queue as a
single batch. Thus, the number of re-keys is not as large as would be the case if each and every join or leave
request resulted in a group re-key. Figure 5 also shows the average re-key period for LKH if the processing
power at the key manager is doubled. In this case, we see that the re-key period for LKH is much smaller; it
decreases from around 90 ms to 60 ms as1/µ decreases from 12.5 to 5 seconds.

3Note that for each packet only a single key is re-encrypted, not the entire payload of the packet
4We assume that the sub-group manager has sufficient buffer space for these queued packets.
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Figure 6: The impact of increasing the processing power at the key manager on LKH performance.
LKH(2X) represents the case where the processing power at the key manager is doubled.

Impact of increasing processing power for LKH: As the results above show, for LKH the key manager
becomes a bottleneck as the rate of join and leave requests increases. Increasing the processing power at the
key manager will obviously remove this bottleneck. Figure 6 shows that when the processing power at the
key manager is doubled (relative to the baseline parameters listed in Table 4.2), the join and leave latencies
are significantly reduced. However, we note that increasing the processing power also results in a reduction
in the time between re-keys as shown in Figure 5. Further note that for the network topology considered
in our simulations, the average latency for keys to distributed to the members of the group is around 150
msec which is larger than the re-key period (90 msec). This implies that the group key is changed by the
key manager even before all members have received the previous key. These results show that for protocols
that re-key the group on every membership change the frequency of group re-keying imposes limits on the
scalability that are independent of the processing power available at the key manager.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Iolus Kronos

Av
g. 

joi
n l

ate
nc

y (
se

c)

Sparse Dense

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Kronos Iolus

Av
g. 

Da
ta 

La
ten

cy
 (s

ec
)

Sparse Dense

(a) (b)

Figure 7: The Impact of Manager Location on Iolus and Kronos (a) Join latency (b) Data Latency
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Impact of manager location on Iolus and Kronos:The results reported above for Iolus and Kronos are for
the “sparse” mapping of sub-group managers described in Section 4.2. In the case of the “dense” mapping,
each manager is located in the same MAN as its members so that messages between members and their key
managers never traverse the network backbone. Figures 7 (a) and (b) compare the join and data latencies for
the dense and sparse mappings under Kronos and Iolus. We observe that the average join latencies for both
Iolus and Kronos are significantly reduced (by around 300 ms) for the dense mapping. In the case of Iolus,
the data latency is also reduced (by around 120 ms) for the dense mapping. On the other hand, for Kronos,
the AKDs are not involved in data delivery so their location has no impact on the data latency.

Impact of changing the re-key period for Kronos: Our last set of experiments examines the impact of
changing the re-key time period on the join and leave latencies under Kronos. In Figure 8, we plot the avg.
join latency for the “dense” manager mapping for re-key periods of 0.5, 1, and 1.5 seconds. As expected,
the average join latency increases with the re-key period.
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Figure 8: The effect of changing the re-key period on the join latency under Kronos.

4.3.1 Summary of Results

From the results above, we can draw the following conclusions:

• The increase in the frequency of re-keying with increasing join and leave rates imposes limits on the
scalability of LKH that are independent of the processing power available at the key manager.

• For most scenarios, Iolus results in the lowest join and leave latencies among the three protocols.
However, Iolus has the highest data packet delivery latencies among the three protocols because of
the need for re-encryption and re-transmission. The location of the Iolus sub-group manager has a
significant impact on the data latency. Further, in the case of the many-to-many scenario, the encryp-
tion bandwidth of the sub-group managers become a bottleneck as the number of senders in a group
and the rate at which they are transmitting data increases.

• The join and leave latencies under Kronos depend upon the re-keying period. By selecting a re-key
period of 1 second, we can obtain join and leave latencies that are comparable to those of Iolus.
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Further, Kronos has the attractive properties that the data latencies are independent of the location of
the AKDs, and that the group re-keying rate is independent of group size and membership dynamics.

5 Conclusions

In this paper, we have described Kronos, a novel approach to scalable group re-keying for secure multi-
cast. We showed that if a multicast group is re-keyed on each membership change, as the size of the group
increases and/or the rate at which members leave and join the group increases, the frequency of re-keying
becomes the primary bottleneck for scalable group re-keying. In contrast, Kronos is based on periodic re-
keying which decouples the frequency of re-keying from the size and membership dynamics of the group.
Another feature of Kronos is that it can be used in conjunction with a distributed framework for key man-
agement such as IGKMP [10] that uses a single group-wide session key for encrypting communications
between members of the group.

Using a detailed simulation, we examined the performance tradeoffs between Kronos, Iolus, and LKH.
Our results indicate that the join and leave latencies obtained for Kronos are acceptable for most applications.
Further, the average data latencies for the multicast application are lower than those obtained under Iolus.
Finally, the network and processing overheads for group re-keying under Kronos are predictable and lower
than those obtained under Iolus and LKH.
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A Average Time between Rekeys

We derive the expected time between re-keys for the Independent Subscriber Behaviour case discussed in
Section 2.

Assume that the time for which a subscriber is tuned in to a multicast is exponentially distributed with
mean1/µ. Further, assume that the time during which a subscriber isnot tuned into the multicast is
exponentially distributed with mean1/λ = R/µ. ThusR is the ratio of the average time for which a
subscriber is tuned out to the average time for which a subscriber is tuned in.
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Under these assumptions, the number of subscribers that are tuned in to a multicast can be modeled by a
birth-death Markov process [20]. Consider a state in which there arei subscribers tuned in to the multicast.
Thus, there areN − i subscribers that are tuned out. The transitions into statei can occur from statei − 1
at a rate(N − i + 1)λ and from statei + 1 at a rate(N − i − 1)µ. The transitions out of statei occur at a
rateiµ + (N − i)λ. Solving the balance equations for this Markov chain, we can obtain the probability of
each statei.

Since the group is re-keyed each time there is a membership change, the rate at which transitions occur
out of a given statei is the rate at which the group will be re-keyed. Thus, the expected time between re-keys
is given by

Trekey =
N∑

i=0

(iµ + (N − i)λ)pi

wherepi is the probability of being in statei. After some straightforward algebraic manipulation, we find
that

Trekey = (1 + R)/(2µN)

19


