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Abstract—Multicast communication is becoming the basis for a growing
number of applications. It is therefore critical to provide sound security
mechanisms for multicast communication. Yet, existing security protocols
for multicast offer only partial solutions.

We first present a taxonomy of multicast scenarios on the Internet and
point out relevant security concerns. Next we address two major security
problems of multicast communication: source authentication, and key revo-
cation.

Maintaining authenticity in multicast protocols is a much more complex
problem than for unicast; in particular, known solutions are prohibitively
inefficient in many cases. We present a solution that is reasonable for a
range of scenarios. Our approach can be regarded as a ‘midpoint’ between
traditional Message Authentication Codes and digital signatures. We also
present an improved solution to the key revocation problem.

I. INTRODUCTION

The popularity of multicast has grown considerably with the
wide use of the Internet. Examples include Internet video trans-
missions, news feeds, stock quotes, software updates, live multi-
party conferencing, on-line video games and shared white-
boards. Yet, security threats on the Internet have flourished as
well. Thus the need for secure and efficient multicast protocols
is acute.

Multicast security concerns are considerably more involved
than those regarding point-to-point communication. Even deal-
ing with the ‘standard’ issues of message authentication and
secrecy becomes much more complex; in addition other con-
cerns arise, such as access control, trust in group centers, trust
in routers, dynamic group membership, and others.

A trivial solution for secure multicast is to set up a secure
point-to-point connection between every two participants (say,
using the IP-Sec protocol suite [17]). But this solution is pro-
hibitively inefficient in most multicast scenarios. In particular,
it obviates the use of multicast routing. Instead, we are looking
for solutions that mesh well with current multicast routing pro-
tocols, and that have as small overhead as possible. In particular,
a realistic solution must maintain the current way by which data
packets are being routed; yet additional control messages can be
introduced, for key exchange and access control.

This work. First, we present a taxonomy of multicast security
concerns and scenarios, with a strong emphasis on IP multicast1.

�
IBM T.J. Watson research center. Email: canetti@watson.ibm.com�
Lucent Bell-Labs. Email: garay@research.bell-labs.com�
News Data Systems. Email: gitkis@ndc.co.il	
Laboratory for Computer Science, MIT. Research supported by DARPA con-

tract DABT63-96-C-0018. Email:miccianc@theory.lcs.mit.edu

Dept. of AM and CS, Weizmann Institute of Science. Research supported

by ESPRIT working group RAND2. Email: naor@wisdom.weizmann.ac.il�
Dept. of AM and CS, Weizmann Institute of Science. Research supported

by an Eshkol Fellowship from the Israeli Ministry of Science. Email: ben-
nyp@wisdom.weizmann.ac.il�

This survey is also the basis for a recent internet-draft [8], prepared for the
Secure Multicast Group (SMuG) of the IRTF [26]. See also [15] for an earlier,
more basic discussion of secure multicast issues.

It soon becomes clear that the scenarios are so diverse that there
is little hope for a unified security solution that accommodates
all scenarios. Yet we suggest two ‘benchmark’ scenarios that,
besides being important on their own, have the property that so-
lutions for these scenarios may be a good basis in other settings.
In a nutshell, one scenario involves a single sender (say, an on-
line stock-quotes distributor) and a large number of recipients
(say, hundreds of thousands). The second scenario is on-line vir-
tual conferencing involving up to few hundreds of participants,
where many (or all) of the participants may be sending data to
the group.

Next we concentrate on a problem that emerges as a serious
bottleneck in multicast security: source and message authenti-
cation. Known attempts to solve multicast security problems
(e.g., [16], [22], [3], [28], [29], [21]) concentrate on the task
of sharing a single key among the multicast group members.
These solutions are adequate for encrypting messages so that
only group members can decrypt. However, the single shared
key approach is inadequate for source authentication, since a
key shared among all members cannot be used to differentiate
among senders in the group. In fact, the only known solutions
for multicast authentication involve heavy use of public key sig-
natures — and these involve considerable overhead, especially
in the work needed to generate signatures.

We present solutions to the source authentication problem
based on shared key mechanisms (namely, Message Authenti-
cation Codes — MACs), where each member has a different set
of keys. We first present a basic scheme and then gradually im-
prove it to a scheme that outperforms public-key signatures in
several common scenarios. Our main savings are in the time to
generate signatures.

The basic source authentication scheme for a single sender
draws from ideas of [2], [11]: the sender holds a set of  keys
and attaches to each packet  MACs – each MAC computed with
a different key. Each recipient holds a subset of the  keys and
verifies the MAC according to the keys it holds. Appropriate
choice of subsets insures that with high probability no coalition
of up to � colluding bad members (where � is a parameter)
know all the keys held by a good member, thus authenticity is
maintained. We present several enhancements to this authenti-
cation scheme:� A considerable gain in the computational overhead of the
authentication scheme is achieved by noticing that the work
needed for computing some known MAC functions on the same
input and  different keys is far less than the  times the work to
compute a single MAC. This is so since the message can first be
hashed to a short string using key-less collision-resistant hash-
ing.� Using similar parameters to those of the basic scheme, one
can guarantee that each good member has many keys that are
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known only to itself and to the sender. In order to break the
scheme an adversary has to forge all the MACs computed with
these keys. Thus it is enough that the sender attaches to the
message only a single bit out of each generated MAC (as long
as this bit cannot be successfully ‘predicted’ without knowing
the key – see elaboration within). Consequently, the total length
of the tag attached to the message can be reduced to only  bits.
(Also, such MAC functions may be more efficient than regular
MACs.)� A very similar method allows for many senders to use the
same structure of keys — each sender will hold a different sub-
set of keys, making sure that with high probability each sender-
recipient pair shares a sufficient number of keys that are not
known to any (small enough) bad coalition.� It is further possible to increase security by making sure that
no coalition of senders can forge messages, only large coalitions
of recipients can. This property is beneficial when the recip-
ients are relatively trusted (say, these are network routers). It
is achieved by differentiating between primary and secondary
keys. A sender only receives secondary keys, while primary
keys are only held by the recipients. Each secondary key is de-
rived by applying a pseudorandom function (e.g., a block cipher
or keyed hash), keyed by the corresponding primary key, to the
sender’s public identity. Each recipient can now compute the
relevant secondary keys and verify the MACs; yet, no coalition
of senders knows even a single key other than its legitimate set
of keys.

Finally, we consider the membership revocation problem.
When a member leaves a multicast group it might be required to
change the group key in a way that the leaving member does not
learn the new key. A relatively efficient solution to this problem
has been recently proposed [28], [29]. We present an improve-
ment to this solution, that saves half of the communication over-
head. (When a new member joins, the group might have to be
re-keyed as well, in order to prevent the joining member from
understanding previous group communication. This is a much
simpler task: the group controller simply multicasts the new key
encrypted with the previous group key.)

Organization. In Section II we list and discuss multicast se-
curity issues, in several common scenarios. In Section III we
present our multicast authentication schemes, and in Section IV
we present our improvements over past mechanisms for mem-
bership revocation.

II. MULTICAST SECURITY ISSUES

We overview salient characteristics of multicast scenarios,
and discuss the relevant security concerns. The various scenar-
ios and concerns are quite diverse in character (sometimes they
are even contradictory). Thus it seems unlikely that a single so-
lution will be satisfactory for all multicast scenarios. This situa-
tion leads us to suggest two benchmark scenarios for developing
secure multicast solutions.

Multicast group characteristics. We list salient parameters that
characterize multicast groups. These parameters affect in a cru-
cial way which security architecture should be used. The group
size can vary from several tens of participants in small dis-
cussion groups, through thousands in virtual conferences and

classes, and up to several millions in large broadcasts. Member
characteristics include computing power (do all members have
similar computing power or can some members be loaded more
than others?) and attention (are members on-line at all times?).

A related parameter is membership dynamics: Is the group
membership static and known in advance? Otherwise, do mem-
bers only join, or do members also leave? How frequently does
membership change and how fast should changes become effec-
tive? Also, is there a membership control center that has infor-
mation about group membership? Finally what is the expected
life time of the group (several minutes/days/unbounded)?

Next, what is the number and type of senders? Is there a single
party that sends data? Several such parties? All parties? Is the
identity of the senders known in advance? Are non-members
expected to send data?

Another parameter is the volume and type of traffic: Is there
heavy volume of communication? Must the communication ar-
rive in real-time? What is the allowed latency? For instance,
is it data communication (less stringent real-time requirements,
low volume), audio (must be real-time, low volume) or video
(real-time, high volume)? Also, is the traffic bursty?

Another parameter that may become relevant is the routing
algorithm used. For instance, a security mechanism may interact
differently with dense-mode and sparse-mode routing. Also, is
all routing done via a single server or is it distributed?

Security requirements. The most basic security requirements
are secrecy and authenticity. Secrecy usually means that only
the multicast group members (and all of them) should be able to
decipher transmitted data. We distinguish two types of secrecy:
Ephemeral secrecy means preventing non group-members from
easy access to the transmitted data. Here a mechanism that only
delays access may be sufficient. Long-term secrecy means pro-
tecting the confidentiality of the data for a long period of time.
This type of secrecy is often not needed for multicast traffic.

Authenticity may take two flavors: Group authenticity means
that each group member can recognize whether a message was
sent by a group member. Source authenticity means that it is
possible to identify the particular sender within the group. It
may be desirable to be able to verify the origin of messages even
if the originator is not a group member.

Other concerns include several flavors of anonymity (e.g.,
keeping the identity of group members secret from outsiders
or from other group members, or keeping the identity of the
sender of a message secret). A related concern is protection
from traffic analysis. A somewhat contradictory requirement is
non-repudiation, or the ability of receivers of data to prove to
third parties that the data has been transmitted.

Access control, or making sure that only registered and legiti-
mate parties have access to the communication addressed to the
group, is usually obtained by maintaining ephemeral secrecy of
the data. Enforcing access control also involves authenticating
potential group members. The access control problem becomes
considerably more complex if members may join and leave with
time.

Lastly, maintaining service availability is ever more relevant
in a multicast setting, since clogging attacks are easier to mount
and are much more harmful. Here protection must include
multicast-enabled routers as well as end-hosts.
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Trust issues. In simple scenarios there is a natural group owner
that can be trusted to manage the group security. Typical roles
are access control, logging traffic and usage, and key manage-
ment. (It may be convenient, but not necessary, to identify the
group owner with the core used in some multicast routing proto-
cols, e.g. in [3].) In other cases no single entity is totally trusted;
yet different entities can be trusted to perform different tasks (for
instance, the access-control entity may be different than the en-
tity that distributes keys). In addition, basing the security of the
entire group on a single service makes the system more vulner-
able. Thus it is in general beneficial to distribute the security
tasks as much as possible.

A natural approach for distributing trust in multicast security
centers is to use threshold cryptography [9], [13] and proac-
tive security [7] techniques to replace a single center with a dis-
tributed service with no single point of failure. This is an inter-
esting topic for future research.

Performance. Performance is a major concern for multicast se-
curity applications. The most immediate costs that should be
minimized are the latency and work overhead per sending and
receiving data packets, and the bandwidth overhead incurred by
inflating the data packets via cryptographic transformations. Se-
cure memory requirement (e.g., lengths of keys) is a somewhat
less important resource, but should also be minimized. Here
distinction should be made between the load on strong server
machines and on weak end-users.

Other performance overheads to be minimized include the
group management activity such as group initialization and
member addition and deletion. Here member deletion may
cause severe overhead since keys must be changed in order to
ensure revocation of the cryptographic abilities of the deleted
members. We elaborate in Section IV.

An additional concern is possible congestion, especially
around centralized control services at peak sign-on and sign-off
times. (A quintessential scenario is a real-time broadcast where
many people join right before the broadcast begin and leave right
after it ends.) Another performance concern is the work incurred
when a group member becomes active after being dormant (say,
off-line) for a while.

Benchmark Scenarios

As seen above, it takes many parameters to characterize a
multicast security scenario, and a large number of potential sce-
narios exist. Each scenario calls for a different solution; in fact,
the scenarios are so different that it seems unlikely that a single
solution will accommodate all. This is in sharp contrast with the
case of unicast security, where a single architectural approach
(public-key based exchange of a key, followed by authenticat-
ing and encrypting each packet using derived keys) is sufficient
for most scenarios.

In this section we present two very different scenarios for
secure multicast, and sketch possible solutions and challenges.
These scenarios seem to be the ones that require most urgent
solutions; in addition, they span a large fraction of the concerns
described above, and solutions here may well be useful in other
scenarios as well. Thus we suggest these scenarios as bench-
marks for evaluating security solutions.

Single source broadcast. Consider a single source that wishes
to continuously broadcast data to a large number of recipients
(e.g. a news agency that broadcasts news-feeds and stock-quotes
to paying customers). Such applications are common in the In-
ternet today, but they still typically rely on unicast routing and
have few or no security protections.

Here the number of recipients can be hundreds of thousands
or even millions. The source is typically a top-end machine with
ample resources. It can also be parallelized or even split into
several sources in different locations. The recipients are typi-
cally lower-end machines with limited resources. Consequently,
any security solution should be optimized for efficiency at the
recipient side.

Although the life-time of the group is usually very long group
membership is typically dynamic: members join and leave at a
relatively high rate. In addition, at peak times (say, before and
after important broadcasts) a high volume of sign-on/sign-off
requests are expected.

The volume of transmitted data may change considerably: if
only text is being transmitted then the volume is relatively low
(and the latency requirements are quite relaxed); if audio/video
is transmitted (say, in on-line pay-TV) then the volume can be
very high and very little latency is allowed.

Authenticity of the transmitted data is a crucial concern and
should be strictly maintained: a client must never accept a
forged stock-quote as authentic. Another important concern is
preventing non-members from using the service. This can be
achieved by encrypting the data; yet the encryption may be weak
since there is no real secrecy requirement, only prevention from
easy unauthorized use. Regarding trust, here there is typically a
natural group owner that manages access-control as well as key
management. However, the sender of data may be a different
entity (say, Yahoo! broadcasting Reuters news).

A natural solution for this scenario may have a group manage-
ment center that handles access control and key management.
(To scale the solution to a larger number of recipients the center
can be distributed, or a hierarchal structure can be introduced.)
It is stressed that the center handles only ‘control traffic’. The
data packets are routed using current multicast routing proto-
cols. Encryption can be done using a single key shared by all
members. Yet, two main cryptographic problems remain: How
to authenticate messages, and how to make sure that a leaving
member loses its ability to decrypt.

A simple and popular variant of this scenario, file transmis-
sion and updates, typically has static group membership and
does not require on-line delivery of data.

Virtual Conferences. Typical virtual conference scenarios in-
clude on-line meetings of corporate executives or committees,
town-hall type meetings, interactive lectures and classes, and
multiparty video games. A virtual conference involves several
tens to hundreds of peers, often with roughly similar compu-
tational resources. Usually most, or all, group members may
a-priori wish to transmit data (although often there is a small set
of members that generate most of the bandwidth).

The group is often formed per event and is relatively short-
lived. Membership is usually static: members usually join at
start-up, and remain signed on throughout. Furthermore, even
if a member leaves, cryptographically disconnecting it from the
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group is often not crucial. Bandwidth and latency requirements
vary from application to application, similarly to the case of sin-
gle source broadcast.

Authenticity of data and sender is the most crucial security
concern. In some scenarios maintaining secrecy of data and
anonymity of members may be crucial as well; in many other
scenarios secrecy of data is not a concern at all. Although there
is often a natural group owner that may serve as a trusted center,
it beneficial to distribute trust as much as possible.

Also here a simple approach to a solution uses a server that
handles access control and key management. Encryption, when
needed, can be dealt with as above. Yet, the performance re-
quirements from the authentication mechanism are very differ-
ent. In particular, in contrast with the single sender scenario,
here signing data packets may be prohibitively slow on the
sender’s machine. In addition, there are far less receivers, and
the group members may be somewhat more trustworthy. Virtual
conferencing applications are also typically more tolerant to oc-
casional and local authentication errors. These considerations
point to an alternative approach to solving the multicast authen-
tication problem. In the next section we describe this alternative
approach.

III. EFFICIENT AUTHENTICATION SCHEMES

We concentrate on two approaches to authentication: public
key signatures, and MACs. (We do not address information-
theoretic authentication mechanisms, such as [10], [25], [6],
which are inherently inefficient for groups of non-trivial size.)

Public key signatures are perhaps the most natural mechanism
for multicast authentication. Yet, signatures are typically long,
and computing and verifying each signature requires a signifi-
cant computational overhead. Applying signatures to authenti-
cate streams of data was investigated in [14], who proposed a
chaining mechanism that requires a single signature per stream.
These constructions do not tolerate packet loss, and are thus in-
compatible with IP multicast. Alternatively, [30] suggested
using tree-based hashing to authenticate streams. This approach
is a little less efficient, and incurs some latency, but it better tol-
erates packet loss.

As an alternative to public key signatures, we propose an
authentication method based on message authentication codes
(MACs). A MAC is a function which takes a secret key

�
and a

message � and returns a value MAC � ��� ��� . Very informally,
a MAC scheme is unforgeable if an adversary that sees a se-
quence ���
	 � MAC � ��� ��	��� where the �
	 ’s are adaptively cho-
sen, but does not know

�
, has a negligible probability to generate

MAC � ��� ��� for any ���� ��� 	  .
While MACs are typically much more efficient to generate

and verify than digital signatures, they require that all potential
verifiers have access to a shared key,

�
. This property makes

MACs seemingly insufficient for achieving source authentica-
tion: any potential receiver who has the key

�
can “impersonate”

the sender. We present new MAC-based authentication methods
which achieve source authentication, and are more efficient than
public key based authentication (especially in the time to gener-
ate signatures). We first present a description of a basic scheme,
followed by several variants and improvements (see sketch in
the Introduction).

We analyze the following salient resources for all the schemes
we present: The running time required to authenticate a mes-
sage and to verify an authentication, denoted ��� and ��� , respec-
tively. The length of the keys that the authenticator and the veri-
fier should store, denoted � � and � � , respectively. The length
of the authentication message (the MAC or the signature), de-
noted � . These resources are obviously related to the latency,
secure memory and bandwidth overhead parameters discussed
in Section II.

Per-message unforgability of MAC schemes. We distinguish
between two types of attacks against a MAC scheme. One is
a complete break, where the attacker can authenticate any mes-
sage of its choice (e.g., a key recovery attack). The other attack
allows the attacker to randomly authenticate false messages;
here the attacker can authenticate a given message with some
fixed and small probability (but does not know a-priori whether
it will be able to authenticate the message). Our schemes do not
allow complete break with higher probability than the underly-
ing MAC scheme. Yet, we do allow for random authentication
errors with non-negligible probability (say, �����! up to �"�$#% ).

A bit more formally, we say that a MAC scheme is & -per-
message unforgeable if no (probabilistic polynomial-time) ad-
versary has a positive expected payoff in the following guessing
game: the adversary can ask to receive the output of the MAC
on a sequence of messages � #

�(')')'(� �+* of its choice, and then
decide to quit or to gamble. If it quits it receives a payment of
$0. Otherwise, it chooses a message �-,� �(� #

�(')')'(� � *  and
tries to guess the value of the MAC on � . The adversary re-
ceives ./�10324&5� if its guess is correct, and pays .5& otherwise.
In other words the adversary may guess correctly the value of
the MAC with probability at most & , but (except with negligible
probability) won’t “know” whether its guess is correct.

We believe that for most systems a small (although non-
negligible) per-message unforgeability (say, &768�����! ) is suf-
ficient. Note that per-message unforgeability is a weaker secu-
rity property than standard unforgeability, in the sense that any
scheme that is unforgeable in the standard sense is also & -per-
message unforgeable (for any non-negligible value of & ). The
converse does not necessarily hold.

A. The Basic Authentication Scheme for a Single Source

Let � be the maximum number of corrupted users. The basic
scheme proceeds as follows:

� The source of the transmissions ( 9 ) knows a set of :6<;"� �+=
0>�@?BA��C0�,5&5� keys, DE6GFIH #

�(')')'(� HKJML .� Each recipient N knows a subset of keys DPORQSD . Every key
HT	 is included in D O with probability 0�,@� �7=�0�� , independently
for every U and N 2.� Message � is authenticated by 9 with each key H 	 using a
MAC and F MAC �IH #

� ��� � MAC ��H �
� ��� �(')'('V� MAC ��HKJ � ���CL

is transmitted together with the message.� Each recipient N verifies all the MACs which were created
using the keys in its subset DPO . If any of these MACs is incorrect
then N rejects the message.

W
Notice that this can be accomplished by using a XBY[Z]\!^ -wise independent

mapping from users to subsets.
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The performance parameters are the following. The source
must hold � � 6  6 ;"� � =S0��"?BA �10�,5&5� basic MAC keys. Each
receiver expects to hold � ��6S; ?BA$�C0�,�&5� MAC keys.3 The com-
munication overhead per message is � 6 ;"� � = 0>�"? A��10�,�&5�
MAC outputs. The running time overhead is � � 6 ;"� � =0>�@?BA��C0�,5&5� MAC computations for the source and only ��� 6
; ?BA��C0�,5&5� MAC computations for a receiver.

Theorem 1: Assume that the probability of computing the
output of a MAC without knowing the key is at most & � . Let
N be a user. Then the probability that a coalition of � corrupt
users can authenticate a message � to N is at most & = & � (the
probability is taken over the choice of key subsets and over the
message)4.

Proof (sketch): For every user N and any coalition of �
users, the probability that a specific key is good (i.e. con-
tained in a user’s subset, but not in the subset of any of the

� members of the coalition) is ‘ � 6 #��� #
� 0 2 #��� #��

�
6

#� ��� #
	 � # ��� � �� #� � ��� #
	 . Therefore, the probability that DPO
is completely covered by the subsets held by the coalition mem-
bers is �10 2��@� J�� �C0 2 #� � ��� #�	 � � � ��� #�	�� � � #�����	 � ; ��� � � #�����	 6<& .
If D O is not covered, the set ����� �K��H 	 � ���� 	 �"!�# contains at
least one MAC for which the coalition does not know H 	 . The
probability of computing it correctly is at most & � . By union
bound, the probability that the coalition can authenticate � to
N is at most & = & � . $

Notice that when the keys of a user are not covered by
the coalition, the coalition cannot check in advance (off-line)
whether it can authenticate a specific message. Therefore the
probability & � of authenticating a message by breaking a MAC
can be rather large (e.g. even & � 6S�"��#1 might be reasonable for
many applications).

A nice feature of this construction is that the complexity does
not depend on the total number of parties but rather only on
the maximum size of a corrupt coalition and the allowed error
probability. We remark that a similar idea was previously used
by Fiat and Naor for broadcast encryption (described in [2]) and
by Dyer et al. for pairwise encryption [11].

The security is against an arbitrary, but fixed, coalition of up
to � corrupt recipients. Notice that it is possible to construct
schemes which are secure against any coalition of size � as fol-
lows. Let & 6 �&%('*)
+�-, ����# (i.e. 0 over the number of possible
combinations of coalitions and users). By a probabilistic argu-
ment, there exists a system for % recipients in which the subset
of no user is covered by the union of the subsets of a coalition
of size � . The system has a total of less than ; � �S= 0>� �$?BA.%��
keys, and each recipient has a subset of expected size less than
;"� � =<0>�"? A.% .

B. Smaller Communication Overhead

We now describe a scheme with a lower communication over-
head. The idea behind it is that using just four times as many/

A straightforward modification of this scheme allows each member to have
a fixed number of keys.0

A similar result holds with respect to per-message unforgability. That is, if
the MAC is 132 -per-message unforgeable then for any user 4 and coalition of
other Y corrupt users, it holds with probability \*561 that the resulting scheme
is 132 -per-message unforgeable with respect to the coalition and the user.

keys as in the basic scheme, one can ensure that the coalition
does not know ?87"9��10�,�&5� of the user’s keys. Each key can there-
fore be used to produce a MAC with a single bit output and
the communication overhead is improved. The coalition would
have to guess ?:7;9��C0�,�&5� bits to create a false authentication and
its probability of success is as before.

Recall the basic scheme: it limits the success probability of
a corrupt coalition to be & = & � , where & � is the per-message
unforgeability. The MAC output must be at least ?:7;9 � �10�,5& � � bits
long. Therefore, assuming & � 6<& , the communication overhead
is � � ; � � =S0>�"? A � �10�,�&5� bits. The improved scheme achieves
a communication overhead smaller than < ;"� �7= 0��"?BA �10�,5&5� bits.

The improved scheme uses a MAC with a single bit out-
put. (Current constructions of MACs have much larger out-
puts, but our schemes can use a single bit of this output. It
might also be possible to design a special-purpose MAC func-
tion with a single bit output, which would be more efficient than
standard constructions.) For simplicity of exposition, assume
that for this MAC & � 6 0�,5� . If the keys of a corrupt coalition
do not cover ?87"9��10�,5&5� keys of a user’s subset, then the prob-
ability that the user accepts an unauthentic message from the
coalition is at most5 & . In the suggested scheme the source uses
76=< ;"� �E= 0��"? A$�10�,5&5� keys where each key is included in a
user’s subset with probability 0�,/� � =<0>� .

All performance parameters are multiplied by four. The
source must store � � 6 +6>< ;"� � = 0>�@?BA��C0�,5&5� basic MAC
keys. Each receiver expects to store � � 6?< ;�? A$�10�,�&5� ba-
sic MAC keys. The communication overhead is � 6@< ;"� �<=
0>�@?BA��C0�,5&5� bits per message. The source must compute < ;"� � =
0>�@?BA��C0�,5&5� MACs, whereas each receiver expect to compute< ; ? A$�10�,5&5� MACs.

Theorem 2: Consider a MAC with a single bit output that
is #� -per-message unforgeable, and consider the above scheme
using this MAC and  6�< ;"� � = 0>�@?BA��C0�,5&5� keys. Then for ev-
ery user N and coalition of other � corrupt users, it holds with
probability 0 2]& that the resulting scheme is & -per-message un-
forgeable (with respect to the coalition and N ).

Proof (sketch): The probability that a specific key is good
is � � #� � ��� #
	 as before. Since the MAC is #� -per-message un-
forgeable, the coalition cannot guess with probability better than
0�, � the output of a MAC whose key it does not know. There-
fore the expected success probability of a corrupt coalition isA J 	:B  ) J 	 , � 	 �C0K2C�@� J � 	 �@� 	 6 �10 2C� ,5� � JD� &�� . By Markov
inequality, with probability at most & the coalition has a proba-
bility greater than & to compute all MACs with key in D O . In
other words, with probability 0 2 & the scheme is & -per-message
unforgeable. $
C. Multiple Dynamic Sources

The schemes presented above can be easily extended to en-
able any party to send authenticated messages. The global set of
 keys is �S=E0 times bigger than in the single source scheme,
and every party receives a random subset DPO of these keys. KeysE

More formally, assume that it is not possible to distinguish in polynomial
time between the output of the MAC and a random bit with probability better
than \�F�G/ZIH . Then (see [23]) one can use a “hybrid argument” to show that it is
not possible to distinguish between J MAC outputs and an J bit random string
with probability better than \�F�G�Z�JKH .
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are included D O independently at random with probability #��� # .When a party N sends a message, it authenticates it with all the
keys in D O , and every receiving party � verifies the authentica-
tions that were performed with the keys in D3O � D�� . It is straight-
forward to verify that the resulting schemes are as secure as the
single source schemes. Note that the (average) communication
and computation overheads are not changed. The mapping of
users to subsets can be done with a public � �<= � � -wise inde-
pendent hash function.

Following, we present a better method which supports a dy-
namic set of sources and has the following properties:

� The total number of keys is as in schemes for a single source,
but every party can send authenticated messages.� The scheme does not require the set of sources to be defined in
advance or to contain all parties. Rather, it allows to dynamically
add sources.� The scheme distinguishes between the set of sources and the
set of receivers. Only coalitions of more than � receivers can
send false authenticated messages. The keys of sources do not
help such coalitions. This property is especially useful if re-
ceivers are more trusted than senders, as might be the case for
example if the receivers are network routers.� The scheme provides a computational (rather than an infor-
mation theoretic) security against revealing to a coalition all the
keys in the intersection of a source and a receiver’s subsets.
The scheme uses a family of pseudo-random functions ��� * 
(see [20] for a discussion of pseudo-random functions). It is
based on a single source scheme and can be built upon the ba-
sic scheme we described in Section III-A or the communication
efficient scheme of Section III-B.

Initialization: The scheme uses  primary keys F � #
�)'(')'(� � J L ,

where  is as in the single source schemes (  6��K� �7?:7;9��10�,�&5� ).
Each key

� 	 defines a pseudo-random function � *	� .
Receiver Initialization: Each party � which intends to re-

ceive messages obtains a subset D
� of primary keys. Every pri-
mary key

� 	 is included in D
� with probability 0�,/� � =<0>� .
Source Initialization: Every party N which wishes to

send messages receives a set of secondary keys 9�O 6
F�� *	� � N�� � � *	� � N�� �(')'(')� � *� �IN��!L . This set can be sent any time after
the system has been set-up, and the identity or the number of
sources does not have to be defined in advance.

Message Authentication: When a party N sends a message
� it authenticates it with all the secondary keys in 9 O . That is,� � � 9$O it computes and attaches a MAC of � with

�
.

Every receiving party � computes all the secondary keys of N
with primary key in D � . Namely, it computes the set �"!��"�IN�� 6
��� * � N���� � � D��  . It then verifies all the MACs which were
computed using these keys.

The number of keys which are used and stored is as in the sin-
gle source scheme. The work of the sources is as in the previous
schemes, and receivers only have the additional task of evaluat-
ing � to compute a secondary key for each of the primary keys
in their subset

A very useful property of this scheme is that it enables a dy-
namic set of sources. New parties can be allowed to send au-
thenticated messages by giving them a corresponding set of sec-
ondary keys. Another useful property of the scheme is that the
set of sources can be separated from the set of receivers, and

no coalition of sources can break the security. It also enables
to give sources dedicated keys for authenticating different mes-
sages. An attractive application of these properties is to give the
source which is designated to broadcast at time � the set of sec-
ondary keys � * �I� � , and require it to use them to authenticate its
broadcast at that time. This approach ensures that sources can
only send information to the group in their designated time slots.

D. Signatures vs. MACs: a rough performance comparison

Compared to the performance of public key signatures, our
authentication schemes dramatically reduce the running time of
the authenticator. The running time of the verifier and the com-
munication overhead are of the same order as public key signa-
tures (the exact comparison depends on the size of the corrupt
coalitions against which the schemes operate).

Consider for example RSA signatures with an 0�� � < bit mod-
ulus. Recent measurements indicate that on a fast machine
(200MHz power pc) a signature (authentication) takes ��� 6
0�,���� s and verification time is � � 6 0�,���� � ����� s.6 For 768-bit
DSS on a similar platform the numbers are roughly � � 6 0�, <��
and � � 6G0�,���� . In comparison, an application of the compres-
sion function of MD5 takes about 0�,������ � ����� of a second; an ap-
plication of DES takes roughly the same time. Future block ci-
phers and hash functions are expected to be considerably faster.

The schemes we introduce require the parties to apply many
MACs with different keys to the same message. Current con-
structions of MACs achieve both a hash down of the input to the
required output size, and a keyed unpredictable output. For the
suggested schemes it is preferable to perform a single hash down
of the message, and then compute MACs of the hashed down
value7. Regarding HMAC [19], [4] as a reference MAC func-
tion, this implies that only one of HMAC’s two nested keyed
applications of a hash function should be used (in the terms of
[4] this corresponds to defining  MACs with keys

�
#
�)'(')')�M� J as

���7��� � *� * �  J 	:B # , where the key
�

is common to all functions).
Therefore in comparisons to public key operations we assume
that a MAC takes a single application of a compression function
of the hash function in use (say, MD5), or equivalently a single
application of a block-cipher such as DES.

Furthermore, we believe that more efficient MACs could be
designed for our authentication schemes. In particular, these
MAC functions would make use of the fact that they can have
a single bit output, and would have small amortized complex-
ity (for evaluations of the function on the same input and many
keys). Authentication schemes based on such functions should
be considerably more efficient than schemes based on HMAC.

Table I compares the overhead of RSA and DSS signatures to
the overhead of the suggested authentication schemes with some
specific parameters. The communication overhead of the basic
and improved schemes are based on using only 10 bits out of
each MAC.

The table describes the number of authentications and veri-
fications that can be performed per second, the communication

!
The numbers here are for highly optimized RSA code with verification ex-

ponent 3. Verification using standard RSA code is considerably slower."
The initial hash down is also performed for public key signatures, since mes-

sages should be reduced to the size of the public key modulus. Therefore we
omit its computation time from the running time overhead of our schemes.
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Auth. Ver. Comm. Source Key Receiver Key
Units (ops/sec) (ops/sec) (bits)
RSA

�
1024 bits 50 30,000 1024 2048 bits 1024 bits

DSS, 768 bits 70 40 1536 1536 bits 1536 bits
Basic scheme, � 6�0�� � & 6G0��/� � � ��� ��� � � � ����� 1900 190 MAC keys 19 MAC keys
Low Comm., �S6�0�� � & 6�0�� � � ��� � �/��� ��� 760 760 MAC keys 76 MAC keys
Perfect Sec., %+6G0���� � & � 6G0��/� � 200 2000 ��� � ����� ������� MAC keys ����� MAC keys

TABLE I

A PERFORMANCE COMPARISON OF AUTHENTICATION SCHEMES.

overhead in bits, and the length of the key used by the source
and the receivers. The first two rows are for RSA and DSS
signatures. The third row provides an estimate for our basic
authentication scheme, providing per-message unforgeability of
&P6�0��@� � against coalitions of up to ten corrupt users. Next we
present the performance of the communication efficient variant,
in which each MAC has a single bit output. Last is the perfor-
mance of a scheme which guarantees that no coalition knows all
the keys of any user (its overhead seems too large to justify its
use).

It is seen that the signing time is much shorter in our scheme
than with public key signatures. The verification time is compa-
rable to (highly optimized) RSA and much faster than DSS.8

IV. DYNAMIC SECRECY – USER REVOCATION

Secret group communication can be achieved by encrypting
messages with a group key. This raises the question of how to
add or remove users from the group. When a new member joins
the group, the common key can be sent to the new member using
secure unicast. Alternatively, if the previous communications
should be kept secret from the new user, a new common key
can be generated and sent to the old group members (encrypted
with the old common key) and to the new member (using secure
unicast). User deletion is more problematic. Obviously, it is
not enough to just ask members who leave the group to delete
their group key, and it is essential to change the key with which
group communication is encrypted in order to conceal future
communications from former group members. This problem is
known as user revocation or blacklisting, and is particularly im-
portant in applications like pay-per-view in which only paying
customers should be allowed to receive transmissions.

We survey some solutions for the member deletion problem,
describe a particularly appealing construction from [28], [29]
based on binary trees, and present an improved construction
with reduced communication overhead. We also show how our
construction is more resistant to a certain kind of attack.

A. Some User Revocation Schemes

A trivial solution for the member revocation problem is for
each group member to share a individual secret key with a cen-
ter which controls the group. When a member is deleted from

�
In addition note that if public key signatures are used for authentication then

each receiver should store the verification keys of all sources, or alternatively
the verification keys should be certified by a certification authority and then the
length of the authentication message and the verification times are doubled.

the group, the center chooses a new common key to encrypt fu-
ture multicast messages, and sends it to every group member,
encrypted with the respective individual secret keys. This solu-
tion does not scale up well since a group of % members requires
a key renewal message with % 2 0 new keys.

A more advanced solution was suggested by Mittra [22]. It
divides the multicast group into subgroups which are arranged
in a hierarchical structure and each has a special group con-
troller. The user revocation overhead is linear in the size of
a subgroup. However, this solution introduces group controllers
in every subgroup which form many possible points of failure,
both for availability and for security.

There are also suggestions to use public key technology,
namely generalized Diffie-Hellman constructions, to enable
communication efficient group re-keying (e.g. [27]). However,
for a group of % members these suggestions require �K�&%�� expo-
nentiations. For most applications this overhead is far too high
to be acceptable in the near future.

A totally different solution was suggested by Fiat and Naor
[12] and was motivated by pay-TV applications. It enables a
single source to transmit to a dynamically changing subset of
legitimate receivers from a larger group of users, such that coali-
tions of at most

�
users cannot decrypt the transmissions unless

one of them is a member in the subset of legitimate receivers.
A very nice feature of this scheme is that the overhead of a re-
keying message does not depend on the number of users that are
removed from the group. The communication overhead of the
scheme is �K� � ?:7;9 � � ?87"9��C0�,����C� , where � is an upper bound on
the probability that a coalition of at most

�
users can decrypt a

transmission to which it is not entitled. The scheme also requires
each user to store �K�I?:7;9 � ?87"9��10�,����!� keys. The main drawback
in applying it for Internet applications is that the security is only
against coalitions of up to

�
users, and the parameter

�
substan-

tially affects the overhead of the scheme. It should also be noted
that this scheme is only suitable for a single source of trans-
mission, but this obstacle might be overcome if all users trust
the owner of the group and all communication is sent through a
unicast channel to this owner and from there multicasted to the
group (as is the case for example in CBT routing).

B. A Tree Based Scheme

Tree based group rekeying schemes were suggested by Wall-
ner et al. [28] (who used binary trees), and independently by
Wong et al. [29] (who consider the degree of the nodes of the
tree as a parameter). We concentrate on the scheme of [28] since
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it requires a smaller communication overhead per user revoca-
tion. This scheme applied to a group of % users requires each
user to store ?:7;9 %�= 0 keys. It uses a message with � ?87"9 % 230 key
encryptions in order to delete a user and generate a new group
key. This process should be repeated for every deleted user. The
scheme has better performance than the Fiat-Naor scheme when
the number of deletions is not too big. It is also secure against
any number of corrupt users (they can all be deleted from the
group, no matter how many they are). A drawback of this
scheme is that if a user misses some control packet relative to a
user deletion operation (e.g., if it temporarily gets disconnected
from the network), it needs to either ask for all the missed con-
trol packets, or incur in a communication overhead comparable
to a user addition operation.

We now describe the scheme of [28]. Let N  
�(')'('V� N + ��# be %

members of a multicast group (in order to simplify the exposi-
tion we assume that % is a power of � ). They all share a group
key

�
with which group communication is encrypted. There is

a single group controller, which might wish at some stage to
delete a user from the group and enable the other members to
communicate using a new key

� �
, unknown to the deleted user.

The group is initialized as follows. Users are associated to the
leaves of a tree of height ?:7;9 % (see Figure 1). The group con-
troller associates a key

� � to every node of the tree, and sends to
each user (through a secure channel) the keys associated to the
nodes along the path connecting the user to the root. For exam-
ple, in the tree of Figure 1, user N  receives keys

�
   
� �
  
�M�
 

and
�

. Notice that the root key
�

is known to all users and can
be used to encrypt group communications.

In order to remove a user N from the group, the group con-
troller performs the following operations. For all nodes � along
the path from N to the root, a new key

� �� is generated. New
keys are encrypted as follows. Key

� �� � O 	 is encrypted with
key

� � � O 	 , where � �IN�� and � � N�� denote respectively the par-
ent and sibling of N . For any other node � along the path
from N to the root (excluded), key

� �� � � 	 is encrypted with
keys

� �� and
� � � � 	 . All encryptions are sent to the users. For

example, in order to remove user N  from the tree of Fig-
ure 1 the following encryptions are transmitted (see Figure 2):� *���� � � � �  � � � *����� � � � � � � *�� � � � � � � � *	�� � � � � � � * � � � � � . It is easy to
verify that each user can decrypt only the keys it is entitled to
receive.

C. The Improved Scheme

The improved scheme reduces the communication overhead
of [28] by a factor of two, from � ?:7;9 % to only ?:7;9 % . The
initialization of the scheme is the same as in [28]. We now de-
scribe the user revocation procedure. Let 
 be pseudo-random
generator which doubles the size of its input [5]. Denote by� ���� � DK����� the left and right halves of the output of 
 ����� , i.e.,

 ����� 6 � ����1DK���� where � � ������� 6 � DK������� 6 � � � . To remove a
user N , the group controller associates a value ��� to every node �
along the path from N to the root as follows: It chooses � � � O 	 6��
at random and sets � � � � 	 6 DK�����5� 6 D�� O � ��� � � ���5� for all other �
(where ��� � � denotes the parent of � ). The new keys are defined
by
� �� 6 � ��� � � 6 � �ID � O � ��� � � �$# ���5�!� . Notice that from � � , one

can easily compute all keys
� �� � � �� � � 	 � � �� � � � � 	&	 up to the root key

4�� 4 � 4 W 4 / 4 0 4 E 4 ! 4 "
� ����� � ��� � � � � � � � ��� � � � � � � � � � � � �

� ���

� �

� � � � � � � � �

� �

� � � �

�
Group Key

Fig. 1. The tree key data structure (the keys of 4�� are encircled).

� 2���

New Group Key

� X � 2��� � 2 ^ � X � � � � 2 ^
� X � 2��� � � 2� ^ � X � � � � � 2� ^

� X � ��� � � � 2��� ^

� 2�
� � �

� 2

� ��� �

� �

Fig. 2. Key revocation in the basic scheme.

� �
. Finally each value � � � � 	 is encrypted with key

� � � � 	 (where
� � � � denotes the sibling of � ) and sent to all users. For example,
in order to remove user N  from the tree of Figure 1, we send en-
cryptions

� *���� � ��5� � � *�� � �IDK����!� � � * � ��DK�IDK���5�C�!� . One can easily
verify that, under the assumption that 
 is a cryptographically
strong pseudo-random generator, each user can compute from
the encryptions all and only the keys it is entitled to receive.

Advantages of the new scheme: This construction halves
the communication overhead of the basic scheme to only ?:7;9 % ,
and its security can be rigorously proven. It has an additional
advantage: In the scheme of Wallner et al the group controller
chooses the group key (the root key), whereas is our construc-
tion this key is the output of a pseudo-random generator. Sup-

� 2���� X! X! X#"V^�^I^

� X � � � �  X#"V^I^

� X � � �  X! X#"V^I^�^

� X � ��� � � "V^

� 2� �$� X% X&"V^I^

� 2��� �'� X&"�^ � � �

� �

� ��� �

Fig. 3. Key revocation in the improved scheme.
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pose that there is an adversary which can break encryptions
performed with a subset of the key space (for example keys
in which certain bits have a linear dependency), and further-
more that this adversary has gained temporary control over the
group controller (e.g. when the controller was manufactured).
Then if the scheme of [28] is used, the adversary might cor-
rupt the method by which the group controller generates keys
in such a way that the root key would always be chosen from
the “weak” subspace. However, if our scheme is used, and the
pseudo-random generator 
 ����� 6 � ����CD ���� is cryptographi-
cally strong, then it will be hard to find values � such that the
root key

� 6 � �IDK�IDK�
' ' '(���5� ' '�' �C�C� is weak.
Independently, McGrew and Sherman [21] have presented

a tree based rekeying scheme which has the same overhead
as ours. However, the security of their scheme is based on
non-standard cryptographic assumptions and is not rigorously
proven. In comparison, the security of our scheme can be rigor-
ously proven based on the widely used assumption of the exis-
tence of pseudo-random generators [5].
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