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Abstract

Multicast communication is becoming the basis for a growing number of applications. It is
therefore critical to provide founded security mechanisms for multicast communication. Yet,
existing security protocols for multicast offer only very partial solutions.

We first present a taxonomy of multicast scenarios on the Internet and point out the relevant
security concerns. Next we identify two major security problems of multicast communication:
individual authentication, and key revocation.

Maintaining authenticity in multicast protocols is a much more complex problem than for
unicast; in particular, known solutions are prohibitively inefficient in many cases. We present
a solution that is reasonable for a range of scenarios. Our approach can be regarded as a
‘midpoint’ between traditional Message Authentication Codes and digital signatures. We also
present an improved and very efficient solution to another prevailing problem for multicast
protocols, namely the key revocation problem.
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1 Introduction

The popularity of multicast has grown considerably with the wide use of the Internet. Examples
include Internet video transmissions, stock quotes, news feeds, software updates, live multi-party
conferencing, on-line video games and shared white-boards. Yet, security threats on the Internet
have flourished as well. Thus the need for secure and efficient multicast protocols is acute.

Multicast security concerns are considerably more involved than those regarding point-to-point
communication. Even dealing with the ‘standard’ issues of message authentication and secrecy
becomes much more complex; in addition other concerns arise, such as access control, trust in
group centers, trust in routers, dynamic group membership, and others.

A trivial solution for secure multicast is to set up a secure point-to-point connection between
every two participants (say, using the IP-Sec protocol suite [22]). But this solution is prohibitively
inefficient in most multicast scenarios!. Furthermore it obviates the use of multicast routing.
Instead, we are looking for solutions that mesh well with current multicast routing protocols, and
that have as small overhead as possible. In particular, a realistic solution must maintain the current
way by which data packets are being routed; yet additional control messages can be introduced, for
key exchange and access control.

1.1 This work

First, we offer a taxonomy of multicast security concerns and scenarios, with a strong emphasis
on IP multicast?. It soon becomes clear that the scenarios are so diverse that there is little hope
for a unified security solution that accommodates all scenarios. Yet we suggest two ‘benchmark’
scenarios that, besides being important on their own, have the property that solutions for these
scenarios may be a good basis for other scenarios. In a nutshell, one scenario involves a single
sender (say, an on-line stock-quotes distributor) and a large number of recipients (say, hundreds
of thousands). The second scenario is on-line virtual conferencing involving up to few hundreds
of participants, where many (or all) of the participants may be sending data to the group. We
elaborate within.

Next we concentrate on a problem that emerges as a serious bottleneck in multicast security:
individual sender and message authentication. Known attempts to solve multicast security problems
(e.g., [20, 21, 28, 3, 33, 34, 27]) concentrate on the task of sharing a single key among the multicast
group members. These solutions are adequate for encrypting messages so that only group members
can decrypt. However, the single shared key approach is inadequate for authentication, since a key
shared among all members cannot be used to differentiate among senders in the group. In fact,
the only known solutions for multicast authentication involve heavy use of public key signatures
— and these involve considerable overhead, especially in the work needed to generate signatures.
(Here stream signatures [17] could reduce much of the overhead; however their techniques do not
tolerate packet loss; see more below).

We present solutions to the individual authentication problem based on shared key mechanisms
(namely, Message Authentication Codes — MACs). Yet, we let each member have a different set of
keys. We first present a basic scheme and then gradually improve it to a scheme that outperforms
public-key signatures in several common scenarios, where our main savings are in the time to
generate signatures.

!We remark that although there are solutions to point-to-point keying between any pair among n users, which
require only (O(r)) keys [19] and no public key cryptography, they are still not scalable.
2See also [18] for an earlier, more basic discussion of secure multicast issues.



The basic individual authentication scheme for a single sender draws from ideas of [2, 13]: the
sender holds a set of { keys and attaches to each packet £ MACs — each MAC computed with
a different key. Each recipient holds a subset of the £ keys and verifies the MAC according to
the keys it holds. Appropriate choice of subsets insures that with high probability no coalition
of up to w colluding bad members (where w is a parameter) know all the keys held by a good
member, thus authenticity is maintained. We present several enhancements for the scalability of
the authentication scheme:

e A considerable gain in the computational overhead of the authentication scheme is achieved
by noticing that the work needed for computing some known MAC functions on the same
input and £ different keys is far less than the £ times the work to compute a single MAC. This
is so since the message can first be hashed to a short string using key-less collision-resistant
hashing.

o A second improvement enables the use of MACs with a single bit output. Such MAC functions
can be very efficient to compute, and the communication overhead of the MAC outputs is
also greatly reduced.

We show that using similar parameters to those of the basic scheme, one can guarantee that
each good member has many keys that are known only to itself and to the sender. In order
to break the scheme an adversary has to forge all the MACs computed with these keys. Thus
it is enough that the sender attaches to the message only a single bit out of each generated
MAC (as long as this bit cannot be successfully ‘predicted’ without knowing the key — see
elaboration within). Consequently, the total length of the tag attached to the message is now
only £ bits.

e A third improvement notices that a very similar method allows for many senders to use the
same set of keys — each sender will hold a different subset of keys, making sure that with
high probability each sender-recipient pair shares a sufflicient number of keys that are known
to no (small enough) bad coalition.

o [t is further possible to increase security by making sure that no coalition of senders can forge
messages, only large coalitions of recipients can. This property is beneficial when the recipients
are relatively trusted (say, these are network routers). It is achieved by differentiating between
primary and secondary keys. A sender only receives secondary keys, while primary keys are
only held by the recipients. Each secondary key is derived by applying a pseudorandom
function (e.g., a block cipher or keyed hash), keyed by the corresponding primary key, to
the sender’s public identity. Each recipient can now compute the relevant secondary keys
and verify the MACs; yet, no coalition of senders knows even a single key other than its
legitimate set of keys. Similar techniques constitute an alternative method for achieving the
third improvement.

We also consider the security problem of membership revocation. When membership in the
multicast group changes it might be required to change the group key. When a new user joins the
multicast group the group key might have to be re-keyed in order to prevent the joining member
from understanding previous group communication. This re-keying can be achieved with negligible
communication overhead by simply sending the the new key to the old group members encrypted
with the previous group key. The problem is much more complicated when a user should be removed
from the group. The group key should be changed but since the excluded member knows the value



of this key it cannot be used to encrypt the new key. We present a considerable improvement to
current solutions for group re-keying, in both efliciency and security.

Organization: In section 2 we list and discuss multicast security issues, in several common
3. In Section 3 we present our multicast authentication schemes, and in Section 4 we
present our improvements over past mechanisms for membership revocation.

scenarios

2 Multicast Security Issues

We overview salient characteristics of multicast scenarios, and discuss the relevant security con-
cerns. The various scenarios and concerns are quite diverse in character (sometimes they are even
contradictory). Thus it seems unlikely that a single solution will be satisfactory for all multicast sce-
narios. This situation leads us to suggest two benchmark scenarios for developing secure multicast
solutions.

Multicast group characteristics

We list salient parameters that characterize multicast groups. These parameters affect in a crucial
way which security architecture should be used. The group size can vary from several tens of
participants in small discussion groups, through thousands in virtual conferences and classes, and
up to several millions in large broadcasts. Member characteristics include computing power (do
all members have similar computing power or can some members be loaded more than others?)
and attention (are members on-line at all times?).

A related parameter is membership dynamics: [s the group membership static and known
in advance? Otherwise, do members only join, or do members also leave? how frequently does
membership change and how fast should changes be updated? Also, is there a membership
control center that has information about group membership? Finally what is the expected life
time of the group? several minutes? days? unbounded?

Another parameter is the number and type of senders: Is there a single party that sends
data? several such parties? all parties? Is the identity of the senders known in advance? Are
non-members expected to send data?

Another parameter is the volume and type of traffic: Is there heavy volume of communica-
tion? Must the communication arrive in real-time? what is the allowed latency? For instance, is it
data communication (less stringent real-time requirements, low volume)? audio (must be real-time,
low volume)? video (real-time, high volume)? Also, is the traffic bursty?

Another parameter that may become relevant is the routing algorithm used. For instance, a
security mechanism may interact differently with dense-mode and sparse-mode routing. Also, is all
routing done via a single server or is it distributed?

Security requirements and trust issues

The most basic security requirements are secrecy and authenticity. Secrecy usually means that
only the multicast group members (and all of them) should be able to decipher transmitted data.
Authenticity may take two flavors: Group authenticity means that each group member can recognize
whether a message was sent by a group member. Individual authenticity means that it is possible to

#This survey is also the basis for a recent internet-draft [10].



identify the particular sender within the group. It may also be desirable to be able to verify the
origin of messages even if the originator is not a group member.

Other concerns include several flavors of anonymity (e.g., keeping the identity of group mem-
bers secret from outsiders or from other group members, or keeping the identity of the sender of a
message secret). A related concern is protection from traffic analysis. A somewhat contradictory
requirement is non-repudiation, or the ability of receivers of data to prove to third parties that
the data has been transmitted.

An additional concern is access control. It is often desirable to control the group membership,
and sometimes also keep track on the amount of usage of each member (say, for billing purposes).
Here the problem becomes more complex if members may join with time, and even more complex
if members may leave the group (and then the group has to make sure that the leaving members
lose the cryptographic abilities reserved to members).

Lastly, maintaining service availability is ever more relevant in a multicast setting, since
clogging attacks are easier to mount and are much more harmful. Here protection must include
multicast routers as well as end-hosts.

Trust issues. In simple scenarios there is a natural group owner that can be trusted to manage
the group security. Typical roles are access control, logging traffic and usage, and key management.
(It may be convenient, but not necessary, to identify the group owner with the core used in some
multicast routing protocols, e.g. in [3]) In other cases no single entity is totally trusted; yet different
entities can be trusted to perform different tasks (for instance, the access-control entity may be
different than the entity that distributes keys). In addition, basing the security of the entire group
on a single service makes the system more vulnerable. Thus, it is beneficial, in general, to distribute
the security tasks as much as possible.

A natural approach for distributing trust in multicast security centers is to use techniques
of threshold cryptography [11, 16] and proactive security [9] for replacing a single center with a
distributed service with no single point of failure. This is an interesting topic for future research.

Performance

Performance is a major concern for multicast security applications. The most immediate costs that
should be minimized are the latency and work overhead per sending and receiving data packets, and
the bandwidth overhead incurred by inflating the data packets via cryptographic transformations.
Secure memory requirement (e.g., lengths of keys) is a somewhat less important resource, but should
also be minimized. Here distinction should be made between the load on strong server machines
and on weak end-users.

Other performance overheads to be minimized include the group management activity such as
group initialization and member addition and deletion. Here member deletion may cause severe
overhead since keys must be changed in order to ensure revocation of the cryptographic abilities of
the deleted members. We elaborate in Section 4.

An additional concern is possible congestion, especially around centralized control services at
peak sign-on and sign-off times. (A quintessential scenario is a real-time broadcast where many
people join right before the broadcast begin and leave right after it ends.)

Another performance concern is the work incurred when a group member becomes active after
being dormant (say, off-line) for a while.



2.1 Benchmark Scenarios

As seen above, it takes many parameters to characterize a multicast security scenario, and a large
number of potential scenarios exist. Each scenario calls for a different solution; in fact, the scenarios
are so different that it seems unlikely that a single solution will accommodate all. This is in sharp
contrast with the case of unicast security, where a single architectural approach — public-key based
exchange of a key, followed by authenticating and encrypting each packet using keys derived from
this key — is sufficient for most scenarios.

In this section we present two very different scenarios for secure multicast, and sketch possible
solutions and challenges. These scenarios seem to be the ones that require most urgent solutions;
in addition, they span a large fraction of the concerns described above, and solutions here may well
be useful in other scenarios as well. Thus we suggest these scenarios as benchmarks for evaluating
security solutions.

Single source broadcast

Consider a single source that wishes to continuously broadcast data to a large number of recipients.
The source can be a news agency that broadcasts stock-quotes and news-feeds to paying customers.
Such applications are common in the Internet today but they still typically rely on unicast routing
and have few or no security protections.

Here the number of recipients can be hundreds of thousands or even millions. The source is
typically a top-end machine with ample resources. It can also be parallelized or even split to
several sources in different locations. The recipients are typically lower-end machines with limited
resources. Consequently, and security solution must optimize for efficiency at the recipient side.

Although the life-time of the group is usually very long, the group membership is dynamic:
members join and leave at a relatively high rate. In addition, at peak times (say, before and after
important broadcasts) a high volume of sign-on/sign-off requests are expected.

The volume of transmitted data may change considerably: if only text is being transmitted
then the volume is relatively low (and the latency requirements are quite relaxed); if audio/video
is transmitted (say, in on-line pay-TV) then the volume can be very high and very little latency is
allowed.

Authenticity of the transmitted data is a crucial concern and should be strictly maintained: a
client must never accept a forged stock-quote as authentic. Another important concern is preventing
non-members from using the service. This can be achieved by encrypting the data; yet the encryp-
tion may be weak since there is no real secrecy requirement, only prevention from easy unauthorized
use. Regarding trust, here there is a natural group owner that manages access-control as well as
key management. However, the sender of data may be a different entity (say, Yahoo broadcasting
Reuters stock-quotes in its home-page).

A natural solution for this scenario may have a group management center that handles access
control and key management. (To scale the solution to larger numbers of recipients the center can be
distributed, or a hierarchal structure can be introduced.) It is stressed that the center handles only
‘control traffic’. The data packets are routed using current multicast routing protocols. Encryption
can be done using a single key shared by all members. Yet, two main cryptographic problems
remain: How to authenticate messages, and how to make sure that a leaving member loses its
ability to decrypt.

Clearly, a single key shared by all members cannot be used to authenticate the source. In the
next section we describe techniques for authenticating individual sources using traditional MACs
with a set of shared keys.



Member revocation, or making sure that a leaving member loses its ability to decrypt, inevitably
involve choosing a new encryption key and distributing it to all remaining members. In Section 4
we describe current techniques and improve on them somewhat.

Virtual Conferences

Typical virtual conference scenarios include on-line meetings of corporate executives or committees,
town-hall type meetings, interactive lectures and classes, and multiparty video games. A virtual
conference involves several tens to hundreds of peers, often with roughly similar computational
resources. Usually most, or all, group members may a-priori wish to transmit data (although often
there is a small set of members that generate most of the bandwidth).

The group is often formed per event and is relatively short-lived. Membership is usually static:
members usually join at start-up, and remain signed on throughout. Furthermore, even if a member
leaves it is often not crucial to cryptographically disconnect it from the group. Bandwidth and
latency requirements vary from application to application, similarly to the case of single source
broadcast.

Authenticity of data and senderis the most crucial security concern. In some scenarios main-
taining secrecy of data and anonymity of members may be crucial as well; in many other scenarios
secrecy of data is not a concern at all. Although there is often a natural group owner that may
serve as a trusted center, it beneficial to distribute trust as much as possible.

Also here a simple approach to a solution uses a server that handles access control and key
management. Encryption, when needed, can be dealt with as above. Yet here the performance
requirements from the authentication mechanism are very different. In particular, in contrast with
the single sender scenario, here signing data packets may be prohibitively slow on the sender’s
machine. In addition, there are far less receivers, and the group members may be somewhat more
trustworthy. Also virtual conferencing applications are typically more tolerant to occasional and
local authentication errors. These considerations point to an alternative approach to solving the
multicast authentication problem. In the next section we describe this alternative approach.

3 Efficient Authentication Schemes

There are three approaches to authentication: information theoretic authentication, public key
signatures, and MACs. Attempts at designing information theoretically secure (also called un-
conditionally secure) authentication schemes for large groups of receivers [12, 31] are inherently
inefficient. Some of the suggested schemes could only be used for a single authentication, and they
all have storage (distribution) requirements which are in the same order as the total number of
messages that can be authenticated. Another information-theoretic scheme, of Blundo et al [7], can
be adapted for authentication, but requires storage which is exponential in the size of the multicast
group; therefore it cannot be applied for large groups.

Signatures: Public key signatures can be used for authentication. Such signatures are typically
long and require a significant computational overhead for computing the signature as well as for
verifying it. Their application for authenticating streams of data was investigated in [17] who
proposed a chaining mechanism that requires a single signature per stream. The constructions
of signature based authentication schemes for streams do not tolerate packet loss, and are thus
incompatible with TP multicast. Omne solution for that problem is to use costly re-transmission
mechanisms. An alternative approach which we propose is the following: consider the stream
where for each packet its one-way hash is concatenated. Then use an erasure-correction code to



protect these hashes (which are the values signed). The “Priority Encoding Transmission” (PET)
error-correction scheme [1] is especially appropriate for this task since it can efficiently provide
different error-correction capabilities for different parts of the transmitted message with a minimal
bandwidth overhead. It is therefore possible to efficiently ensure that the parts of the message
which are critical for authentication have good error-recovery capabilities. Therefore if sufficiently
many packets arrive then it is possible to verify the authenticity of each additional packet that
arrives (even if out of order).

A different proposal for dealing with packet loss was very recently proposed in [35] where other
chaining schemes were considered. A disadvantage of their of there proposal is that a large number
of bits should be added to each packet.

As for the signature scheme used, [17] considered RSA signatures and [35] examined the the
Fiat-Shamir signature scheme [15] (which has fast signature generation time). We remark that
elliptic curves based signature schemes [23] are also good candidates for use in authentication
schemes for streams, due to their short signature length.

For the remainder we discuss authentication methods based on MACs. We present new individ-
ual authentication methods which are more efficient (especially in the time to generate signatures)
than public key based authentication. We first present a description of a basic scheme, followed by
several major improvements (see a sketch of these improvements in the Introduction).

We describe authentication schemes based on MACs. A MAC is a function which takes a secret
key k and a message M and returns a value MAC(k, M). Very informally, it has the property
that an adversary that sees a sequence {M;, MAC(k, M;)} but does not know k, has a negligible
probability to generate MAC(k, M) for any m ¢ {M;}.* MACs are much more efficient than
signatures.

The schemes use a set of keys which are known to the source of the transmissions, and supply
users with subsets of these keys in a way which limits the probability that a coalition of users knows
all the keys of another user. The source computes for each packet MACs with each of its keys, and
attaches these MACs to the transmitted packet. Each receiver verifies the MACs which correspond
to the keys in its possession. A corrupt coalition of users cannot authenticate a message to another
user without knowing all the keys in its subset or breaking the MAC.

We consider the following salient resources consumed by an authentication scheme, which we
analyze for all the schemes we present: The running time required to authenticate a message and
to verify an authentication, T's and Ty, respectively. The length of the keys that the authenticator
and the verifier should store, Mg and My, respectively. The length of the authentication message
(the MAC or the signature), C'.

The security of MAC schemes

We distinguish between two types of attacks against a MAC scheme. One is a complete break,
where the attacker can authenticate any message of its choice (say, a key recovery attack). The
other attack allows the attacker to randomly authenticate false messages; here the attacker can
authenticate a given message with some fixed and small probability. Our schemes do not allow
complete break with higher probability than the underlying MAC scheme. Yet, we do allow for
random authentication errors with non-negligible probability (say, 2719 to 2729).

A bit more formally, we say that a MAC scheme is g-secure per message if no (probabilistic

*We do not specify the type of queries that the adversary can use. It might be able to see MACs with k of messages
chosen by other parties, or might be able to choose itself the messages M’ for which it would see MAC(k, M'). The
properties of whatever definition that is chosen propagate to our construction of an authentication scheme.



polynomial-time) adversary has a positive expected payoff in the following guessing game: the
adversary can ask to receive the output of the MAC on a sequence of messages my, ..., my of its
choice and then the adversary can decide to quit or to gamble. If it quits it receives a payment of $0
and if it gambles the adversary should choose a message m ¢ {mq,..., m;} and guess the value of
the MAC on this message. The adversary receives $(1 —¢) if it is correct, and pays $¢ if it incorrect.
In other words the adversary may guess correctly the value of the MAC with probability of at most
q, but (except with negligible probability) would not “know” that it has guessed correctly.

We believe that for most (but not all) systems a g-security per message where ¢ is small but not
negligible is sufficient (e.g. ¢ = 272). Note that the definition of “g-secure per message” assures
that the probability of a complete break is exponentially small. We call ¢ the authentication securily
per message.

3.1 The Basic Authentication Scheme for a Single Source
The basic scheme proceeds as follows:

e Denote by S the source of the transmissions. S knows a set of £ keys, R = (K7,..., K).
o Each of the recipients knows a subset of this set of keys: recipient u knows the subset R, C R.

o When S sends a message M it authenticates it with each of the keys, using a MAC. That is,
a message M is accompanied with (MAC(K;, M), MAC(K,, M),...,MAC(K,, M)).

e Each recipient u verifies all the MACs which were created using the keys in its subset R,. If
any of these MACs is incorrect then u reject the message.

ANALYsIS: Assume that an adversary knows the keys of a coalition of w corrupt users C' =
(uy,ug, ..., Uy), and tries to send a message M’ (which was not sent before) and authenticate it as
a message sent by 5. For every recipient w for which R, € U}’ R,,, the probability with which u
accepts the message is at most the probability of breaking a single MAC.

Let the total number of keys be £ = ewln(1/q), and for every (recipient,key) pair let the
probability that the key is included in the subset of the recipient be 1/(w 4 1), independently of
other pairs (it is therefore enough to use an (w + 1)-wise independent mapping of users to subsets).
Then it is straightforward to verify that for every user v and any coalition of w users, the probability
that R, is completely covered by the subsets of the coalition is at most g. The overhead of this
scheme is described in theorem 1.

Theorem 1 Consider the above scheme using { = ewln(1/q) MACs with different keys, and as-
sume that the probabilily of compuling the oulpul of a MAC withoul knowing the key is at most
q'. Let u be a user. Then the probability that a coalition of w corrupt users can authenticale a
message M to u is at most q + ¢ (the probability is taken over the choice of key subsets and over
the message).

The lengths of the keys are expected to be Mg = £ = ewln(1/q) basic MAC keys for the source,
and My = e#_lln(l/q) MAC keys for the receiver. The communicaltion overhead per message is
C = ewln(1/q) MAC outputs. The running time overhead is T's = wln(1/q) MAC computations

for the server and only about Ty = eln(1/q) MAC computations for the receiver.

Proof: Assume that the probability that the coalition can authenticate a message is more than
g+ ¢'. This probability is at most ¢ (coalition keys cover all the user keys), plus (1 — ¢) times the
probability of generating M AC(k, M) without knowing k. Therefore the probability of generating
MAC(k, M) without knowing k£ must be greater than ¢’. A contradiction. O



A nice feature of this construction is that the complexity does not depend on the total number of
parties but rather only on the maximum size of a corrupt coalition and the allowed error probability.
We remark that a similar idea was previously used by Fiat and Naor for broadcast encryption
(described in [2]) and by Dyer et al. for pairwise encryption [13].

The security is against coalitions of up to a certain number of corrupt recipients. It is possible
to construct schemes which are secure against any coalition, but are less efficient®.

The key allocation only guarantees that the union of the keys of a coalition does not cover the
keys of a user. The security of the scheme depends on the security of the MAC, since an insecure
MAC enables an adversary to generate correct MAC outputs even without knowing the required
keys. Stating the result of the theorem more clearly, the scheme guarantees that the event that all
the keys of a user are known to a corrupt coalition happens with probability at most ¢. In this case
the coalition can authenticate any message to the user. (It is therefore preferable that the mapping
between users and keys is kept secret to prevent the corrupt coalition from identifying to which
users it can authenticate false messages). Now consider a user whose keys are not covered by the
coalition: messages to this user can be authenticated by the coalition with probability at most ¢'.
Even more, in this case the coalition cannot check in advance (off-line) whether it can authenticate
a specific message. Therefore ¢/, the authentication security per message, can be rather large (e.g.
even ¢’ = 2719 might be reasonable for many applications).

IMPROVED SECURITY: A disadvantage of this type of security with a moderate value of ¢ is
that the probability that there exists a user which a coalition can always fool (because it knows
all of its keys) might be non-negligible. It is desirable to reduce the probability of such events.
A simple approach that achieves this property is to use ¢ times as many keys as in the previous
schemes (where ¢ is a small constant), and require the sender of a message to authenticate it with
a random subset of 1/c of its keys (the subset should be chosen by a publicly known (w + 1)-wise
independent hash function of the time of day). The number of keys held by each party is ¢ times
as large but the communication, generation, and verification overheads are as before. The choice
of the parameter ¢ defines a parameter d such that the following statement holds for every user
and every coalition of up to w corrupt users: with probability at most ¢* the user has less than
log.(1/q) keys which are not covered by the coalition. Then at each time and for each receiver there
is a probability ¢ that the coalition does not cover all the keys which are currently in use by the
receiver.

3.2 Smaller Communication Overhead

We now describe a scheme with a lower communication overhead. The idea behind it is that at a
similar cost to that of the basic scheme it is possible to ensure that the coalition does not know
log(1/q) keys of the user. Therefore each key can be used to produce a MAC with a single bit
output and the communication overhead is improved. The coalition would have to guess log(1/¢)
bits to create a false authentication and its probability of success is as before.

The basic scheme limited the success probability of a corrupt coalition to be ¢ + ¢’, where ¢’
is the authentication security per message. It is thus most reasonable to use ¢’ = ¢. The MAC
output must be at least log(1/¢’) bits long, which makes the communication overhead to at least
C = dewlog?(1/q) bits where d = In 2. The improved scheme achieves a communication overhead
of only 4ewln(1/q) bits.

“Here is a construction in which no coalition knows the key of any user: Straightforward probabilistic arguments
show that there is a system for n recipients in which the subset of no user is covered by the union of the subsets of
a coalition of size w. The system has a total of O(w2 In(n)) keys, where each recipient has a subset of expected size
O(wln(n)) (this corresponds to ¢ = (n - ("))_1.

w



The suggested scheme uses a MAC with a single bit long output. Current constructions of
MACs have much larger outputs. A recent work [29] shows that it is possible to generate a single
bit pseudo-random function from any MAC (or unpredictable function). It might also be possible
to design a designated MAC function with a single bit output. For the simplicity of the exposition
assume that for this MAC ¢’ = 1/2. If the keys of a corrupt coalition do not cover log(1/q) keys
of a user’s subset then the probability of the coalition succeeding in sending false messages to this
user is at most® ¢. In the suggested scheme the source uses { = 4ewln(1/q) keys where each key is
chosen to a user’s subset with probability 1/(w + 1). The following result is achieved:

Theorem 2 Consider a MAC with a single bil output for which the probability of generating
MAC(k, M) without knowing the key k is 1/2, and consider the above scheme using this MAC
with { = 4ewn(1/q) keys. Let u be a user. Then the probability that a coalition of w corrupt users
can authenticate a message M to w is al most 2q (the probability is taken over the choice of the

coalition, the user, and the message).
The length Ms (My) of the key of the source (a user) is { = 4ewln(1/q) (expected to be

My = 4ewL_Hln(1/q)) basic keys of a MAC with a single bit output. The communication overhead
per message is C = 4dewln(1/q) bits. The source should compute 4ewIn(1/q) MACs, whereas each

receiver should compute only about 4eln(1/q) MACs.

Proof (sketch): When keys are selected to the subsets with probability 1/(w + 1) the probability
that a specific key is contained in a user’s subset and is not covered by any of the w members
of the coalition is 1/(ew). Therefore the expected success probability of a corrupt coalition is
S o (f)(ew)_i(l —1/(ew))71271 = (1 — 1/(2ew))* ~ exp(—£/(2ew)). If we require this expected
probability to be at most ¢* then (following from the Markov inequality) with probability at most
¢ it happens that a coalition has a probability greater than ¢ to succeed in sending corrupt shares
to a recipient. O

3.3 Multiple Sources

The schemes we presented can be readily extended to schemes which enable any party to send
authenticated messages. In the extended schemes there is a global set of ¢ keys and every party
knows a random subset R, of these keys. When a party v sends a message it authenticates it with
all the keys in R,. Every receiving party v verifies the authentications that were performed with
the keys in the intersection between its subset and the subset of the sending party, i.e. with the
keys in R, N R,. It is straightforward to see that by using a total of w 4+ 1 as many keys as in the
single source schemes (and then each recipient’s subset is also w+ 1 times larger), and by choosing
keys to a party’s subset independently at random with probability 1/(w + 1), the schemes are as
secure as the single source schemes. Note that the communication and computation overheads are
as in the single source schemes since any source is expected to have the same number of keys as
before. The mapping of users to subsets can be obtained using a public (w + 2)-wise independent
hash function. Then every source can simply attach to its message a sequence of MAC outputs with
all the keys in its subset (without having to specify which key was used to produce each MAC),
and each receiver can individually find which of these MACs to check.

5More formally, assume that it is not possible to distinguish in polynomial time between the output of the MAC
and a random bit with probability better than 1/2 + e. Then, as [29] assures, one can use a “hybrid argument” to
show that it is not possible to distinguish between m MAC outputs and an m bit random string with probability
better than 1/2 + me.
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3.4 Dynamic Sources

We describe here a new scheme for multiple sources with the following properties:

e The total number of keys is as in schemes for a single source, but every party can send
authenticated messages.

e The scheme does not require the set of sources to be defined in advance or to contain all
parties. Rather, it allows to dynamically add sources.

e The scheme distinguishes between the set of sources and the set of receivers. Only coalitions
of more than w receivers can send false authenticated messages. Sources do not help such
coalitions. This property is useful if receivers are more trusted than senders, as might be the
case for example if the receivers are network routers and sources are common users.

e The scheme only provides a computational (rather than an information theoretic) security
that not all keys in the intersection of a source and a receiver’s subsets are known to a
coalition. However this is not a decrease in security compared to the previous constructions
since the keys are used in MACs which provide only computational security.

The new scheme uses a family of pseudo-random functions {fi} (see [26] or [4] for a discussion of
pseudo-random functions). It is based on a single source scheme and can be built upon the basic
scheme we described in Section 3.1 or the communication eflicient scheme of Section 3.2.

Initialization: The scheme uses ¢ base keys (ki,...,ks), where £ is exactly as in the single
source schemes (¢ = O(wlog(1/q)). Each key k; defines a pseudo-random function f,.

Receiver Initialization: Each party v which intends to receive messages obtains a subset R,
of base keys. Every base key k; is selected to R, with probability 1/(w + 1).

Source Initialization: Every party » which wishes to send messages receives a set of keys,
the set of second generation keys of w, Sy, = (fr;(w), fu,(w), ..., fr,(u)). Note that this set can be
sent at any time after the system has been set-up, and the identity or the number of sources does
not have to be defined in advance.

Message Authentication: When a party u sends a message M it authenticates it with all
the second generation keys in 5,. That is, YV & € 5, it computes and attaches a MAC of M with k.

Every receiving party v computes all the second generation keys of « which it can generate from
R,. Namely, it computes the set fr, (u) = {fe(u)|k € R,}. It then verifies all the MACs which
were computed using these keys.

The number of keys which are used and stored is as in the single source scheme. The work of
the sources is as in the previous schemes, and receivers only have the additional task of evaluating
f to compute a second generation key for each of the base keys in their subset (if consecutive
authenticated packets are received from the same source the receiver should compute the second
generation keys only when the first packet is received and use them for all the packets).

A very useful property of this scheme is that it enables a dynamic set of sources. New parties can
be allowed to send authenticated messages by giving them a corresponding set of second generation
keys. Another useful property of the scheme is that the set of sources can be separated from the set
of receivers, and no coalition of sources can break the security. This property is useful is receivers
are more trusted than sources. It also enables to give sources dedicated keys for authenticating
different messages. An attractive application of these properties is described next:
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An Application of a Dynamic Set of Sources

The scheme described above enables the set of sources to be dynamic, and prevents coalition of
sources from breaking the security. The following application uses these two properties: Assume
that it is required to authenticate the transmissions of a TV channel. The channel usually receives
programs from other companies which produce them. Traditionally these parties send the programs
to the center of the TV channel and then the programs are being transmitted from there to their
viewers. It is possible instead that each production company will transmit its programs to the TV
channel viewers (at the appropriate time) directly from its site, possibly using Internet multicast.
Then the channel can give each of its viewers a subset of base keys R,, and give the production
company which should transmit a program at time ¢ on date d the set Sq+ = (fi,(s,d), ... fx,(s,d))
of second generation keys. The company will authenticate the program using the keys in this set.
FEach viewer v will then compute the set fr (d,t) and check the MACs performed with these keys.
Note that although every production company might receive many authentication keys (for many
programs at different dates), no coalition of these companies can authenticate programs for which
they do not receive authentication keys from the TV channel. The TV channel does not have to
decide on the program table in advance, but rather at any time which is convenient.

3.5 Signatures vs. MACs: a rough performance comparison

Compared to the performance of public key signatures, our authentication schemes reduce the
running time of the authenticator dramatically. The running time of the verifier and the communi-
cation overhead are of the same order as with public key signatures (the exact comparison depends
on the size of the corrupt coalitions against which the schemes operate).

Recall the notation we use for the resources consumed by authentication schemes: The running
time required to authenticate a message and to verify an authentication, Ts and Ty, respectively.
The length of the keys that the authenticator and the verifier should store, Mg and My, respectively.
The length of the authentication message (the MAC or the signature), C.

Consider for example RSA signatures with an 1024 bit modulus. Recent measurements indicate
that a fast machine (200MHz power pc) signature (authentication) takes T's = 1/50 sec. and
verification time is Ty = 1/30,000 sec. For 768-bit DSS on a similar platform the numbers are
roughly T's = 1/40 and Ty = 1/70. In comparison, an application of the compression function
of MD5 takes about 1/500,000 of a second; an application of DES takes roughly the same time.
Future block ciphers and hash functions are expected to be considerably faster.

The schemes we introduce require the parties to apply many MACs with different keys to the
same message. Current constructions of MACs achieve both a hash of the input down to the
required output size, and a keyed unpredictable output. For the suggested schemes it is preferable
to perform a single hash down of the message, and then compute MACs of the hashed down value”.
Regarding HMAC [25, 5] as a reference MAC function, this implies that only one of HMAC’s two
nested keyed applications of a hash function should be used. In the terms of [5] this corresponds
to defining ¢ MACs with keys ky,..., k¢ as {NMAC} }le, where the key k is common to all
functions. Therefore in comparisons to public key operations we assume that a MAC takes a single
application of a compression function of the hash function in use (say, MD5), or equivalently a
single application of a block-cipher such as DES.

Furthermore, we believe that more efficient MACs could be designed for our suggested multicast
authentication schemes. In particular, these MAC functions would make use of the fact that they

"The initial hash down is also performed for public key signatures, since messages should be reduced to the size
of the public key modulus. Therefore we omit its computation time from the running time overhead of our schemes.
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can have a single bit output, and would have small amortized complexity (for evaluations of the
function on the same input and many keys). Authentication schemes based on such functions
should be considerably more efficient than the schemes based on HMAC.

In Table 1 we compare the overhead of RSA and DSS signatures to the overhead of the suggested
authentication schemes with some specific parameters. As mentioned above, we estimate that using
current technology about 500,000 MACs can be evaluated in a second (here we take into account
the fact that each message has to MACed with a number of different keys. Also, the communication
overhead of the basic and improved schemes are based on using only 10 bits out of each MAC. The
improved scheme is taken with parameter ¢ = 2. )

Auth. Ver. Comm. | Source Key Receiver Key
Units (ops/sec) | (ops/sec) | (bits)
RSA, 1024 bits 50 30,000 1024 2048 bits 1024 bits
DSS, 768 bits 70 40 1536 1536 bits 1536 bits
Basic scheme 2,650 26,500 1900 190 MAC keys | 19 MAC keys
w=10,¢g= 1073
Improved Security | 2,650 26,500 1900 380 MAC keys | 38 MAC keys
w=10,¢ = 1073
Low Comum. 660 6,600 760 760 MAC keys | 76 MAC keys
w=10,¢g= 1073
Perfect Sec. 200 2000 25,000 2500 MAC keys | 250 MAC keys
n=10%¢ =103

Table 1: A performance comparison of authentication schemes.

With this performance it seems that the signing time is much shorter in our scheme that with
public key signatures, and the verification time is of the same order as for RSA (and much faster
than DSS). However, as mentioned above, we believe that much more efficient MACs can be used
for our schemes. In particular, the Low Communication variant requires a MAC with only a single
bit output, which might be further improved.

In addition note that if public key signatures are used for authentication then each receiver
should store the verification keys of all sources, or alternatively the verification keys should be
certified by a certification authority and then the length of the authentication message and the
verification times are doubled.

The table describes the number of authentications and verifications that can be performed per
second, the communication overhead in bits, and the length of the key used by the source and the
receivers. The first two rows are for RSA and DSS signatures. The third row provides an estimate
for our basic authentication scheme, providing security of ¢ = 103 against coalitions of up to ten
corrupt users. The fourth row is for a scheme which uses more keys and thus reduces the probability
that the coalition knows all the keys of a user, but each authentication is performed with the same
number of keys. Then we present the performance of the communication efficient variant, in which
each MAC has a single bit output. Last is the performance of a scheme which guarantees that no
coalition knows all the keys of any user (its overhead seems too large to justify its use).
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4 Dynamic Secrecy — User Revocation

Once some common information has been set up for a group, secrecy can be obtained by encrypting
the messages that are sent to the group members. When a new member joins the group the common
key can be sent to it through using secure unicast. Alternatively, if the new member should not be
able to understand previous group communications then a new common key should be generated
and sent to the old group members (say, encrypted with the old common key) and to the new
member. The main problem arises when a member leaves the group. This member should not
be able to receive and comprehend future group transmissions. It should be assumed that some
members might try to receive and understand the group communication even after they leave the
group, for example in applications like pay-per-view in which only paying customers should be able
to receive transmissions. It is therefore not sufficient to ask members who leave the group to delete
the group key which they hold and to stop receiving the transmissions but rather it is essential
to change the key with which group communication is encrypted. This problem is known as user
revocalion or blacklisting.

Following we survey some solutions for the member deletion problem, and show how to reduce
the communication overhead of a particularly appealing construction based on binary trees [33].
We also describe how to enhance this construction against a new type of attack.

4.1 User Revocation Schemes

A trivial solution for the member revocation problem is for each group member to share a secret
key with a center which controls the group. When a member is deleted from the group the center
chooses a new common key with which future multicast messages should be encrypted, and sends
this key to every group member, encrypted with the secret key that is shared by the center and
the member. This solution does not scale up well since a group of n members requires a key
renewal message with n — 1 new keys. This overhead prevents this solution from being applicable
to large scale applications or even to smaller scale applications in which the groups are dynamic
and members are leaving groups very often.

A more advanced solution was suggested by Mittra [28]. In his scheme the multicast group
is divided into subgroups which are arranged in a hierarchical structure. There is a single group
securily controller but each subgroup has a group security intermediary which is responsible for
maintaining security in the subgroup. A different key is associated with each subgroup and known
to all its members, but its security intermediary also knows the key of a subgroup in an upper
layer of the hierarchy. When a group member is deleted the only key to be changed is the key
of the subgroup to which it belonged, and the communication overhead is relatively small (the
situation is more complex if a subgroup security intermediary leaves the group). However, this
solution introduces many possible points of failure, the security intermediaries. A corrupt or a
malfunctioning intermediary affects the operation and the security of the subset of the network for
which it is responsible, or even of the entire network.

There are suggestions to use public key technology, namely generalized Diffie-Hellman construc-
tions, to enable communication efficient group rekeying [8, 32]. However, for a group of n members
these suggestions require O(n) exponentiations. For most applications this overhead is far too high
to be acceptable in the near future.

A totally different solution was suggested by Fiat and Naor [14] and was motivated by pay-TV
applications. It enables a single source to transmit to a dynamically changing subset of legitimate
receivers from a larger group of users, such that coalitions of at most k£ users cannot decrypt the
transmissions unless one of them is a member in the subset of legitimate receivers. This scheme
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can be used to send new group keys when a group member leaves. The communication overhead of
this re-keying messages is O(k log? klog(1/p)), where p is an upper bound on the probability that
a coalition of at most k users can decrypt a transmission to which it is not entitled. This scheme
also requires each user to store O(log klog(1/p)) keys. The main drawback in applying this scheme
for Internet applications is that the security is only against coalitions of up to k users, and the
parameter k substantially affects the overhead of the scheme. If k is not too large then it might not
be too hard to organize a group of more than & colluders, and on the other hand large values of k
incur a large overhead. It should also be noted that this scheme is only suitable for a single source
of transmission, but this obstacle might be overcome if all users trust the owner of the group and
all communication is sent through a unicast channel to this owner and from there multicasted to
the group (as is the case for example in CBT routing).

4.2 A Tree Based Scheme

Tree based group rekeying schemes were suggested by Wallner et al. [33] (who used binary trees),
and independently by Wong et al. [34] (who consider the degree of the tree nodes as a parameter).
We concentrate on the scheme of [33] since it requires a smaller communication overhead per user
revocation. This scheme applied to a group of n users requires each user to store logn + 1 keys. It
uses a message with 2logn — 1 key encryptions in order to delete a user and generate a new group
key. This process should be repeated for every deleted user. The scheme has better performance
than the Fiat-Naor broadcast encryption scheme in case the number of deletions is not too big.
It is also secure against any number of corrupt users (they can all be deleted from the group, no
matter how many they are). A drawback of this scheme is that a group member must receive all
the update messages that are sent by the group owner when users are deleted, in order to continue
to be able to decrypt the group transmissions. If a member does not receive messages for a while,
for example when it is disconnected from the network, it must first receive all the update messages
that were sent while it was disconnected. This might incur a considerable overhead and also affect
the reliability of the scheme.

We next present an improvement to the scheme of [33] which halves the communication over-
head. Although this is only an improvement by a (relatively small) constant it might be significant
for many applications®. In addition we present a new type of attack to which the scheme of Wallner
et al. is susceptible, and against which our scheme is secure.

4.2.1 The basic scheme

The following scheme was suggested in [33]:

Setting: Let ug, ..., u,—1 be n members of a multicast group (in order to simplify the exposition
we assume that n is a power of 2). They all share a group key k£ with which group communication
is encrypted. There is a single group controller, which might wish at some stage to delete a user
from the group and enable the other members to communicate using a new key &', unknown to the
deleted user.

Initialization: The group controller associates the group members to leaves of a binary tree in
the following way. The root of the tree is marked v.. The two descendants of a node v; are marked
v;o and v;1. The tree is of depth logn, and user u is associated with the leaf v, (the marking is

®Independently, McGrew and Sherman [27] have presented a tree based rekeying scheme which has the same
overhead as ours. However, the security of their scheme is based on non-standard cryptographic assumptions and is
not rigorously proven. In comparison, the security of our scheme can be rigorously proven based on the widely used
assumption of the existence of pseudo-random generators [36, 6].
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Figure 1: The tree key data structure (the keys of ug are encircled).

a log n bits binary number). The group controller associates every node v; with a random key ;.
Fach user u is given (through a secure channel) the keys of the nodes in the path from its leaf to
the root, i.e. logn + 1 keys. For example, if there are 8 users then user ug is associated with leaf
vooo and receives keys kggo, koo, ko, ke (see Figure 1). Since all users receive the root key k. it can
be used as the group key and encrypt the group communication. (Note that the only purpose of
the tree is to map users to keys, it is completely unrelated to the communication network).

User deletion: Suppose that the group controller needs to remove user u from the group.
Without loss of generality assume that u = ug and that there is a total of 8 users and therefore u is
mapped to leaf vggg (it is easier to describe the removal of a specific user than to describe the general
case, but it is easy to infer the general case from this example ). The group controller chooses new
random values k{y, k), k. to the keys in the path from leaf vggo to the root. It communicates them
in the following way which enables every user u’ # wug to learn the new values in the path from its
leaf to the root (e.g. user v; will learn the new value k. of the root key, whereas user v; will learn
the new values k{, k{), k.). (See Figure 2).

The group controller sends the value k{, encrypted with kgo1. It sends k{, encrypted with the
new key of its left child, &y, and also encrypted with the (old and unchanged) key of its right
child, ko1. It also sends k. encrypted with k{, and k. encrypted with k. The deleted user ug
cannot decrypt any of this values whereas any other user can decrypt exactly all the values in the
intersection between the path from its leaf to the root and the path from leaf vggg to the root. For
example, user uy can decrypt k{, using koo1, then decrypt k{ using k{, and decrypt k. using k{.

Analysis: Each user should store logn + 1 keys. The group controller should send a message
of 2logn — 1 key encryptions in order to remove a user from the group and change the group key. If
more than a single user should be removed the above procedure is repeated for each of the removed
users.

4.2.2 Smaller communication overhead

It is possible to decrease the communication overhead of the previous scheme by a factor of two.
We first give a simple description of the construction using a function f with “good properties”,
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Figure 2: The transmission of new values to the keys surrendered to ug.

and then give a formal description of the scheme, of the same complexity, for which we can prove
security. The proposed scheme is also immune to an attack to which the basic scheme is vulnerable.

The initialization of the scheme is as in the scheme of [33]. Let f be a function with “good
properties”. Then when a user (say user ug of leaf vggg) is deleted, a random value r is chosen to
be the key associated with its parent node vqg, i.e. k{; = r. The new key of node vy is k), = f(r),
and the new root key is k. = f(f(r)). The group controller sends the value r encrypted with kgo1,
the value f(r) encrypted with kg;, and the value f(f(r)) encrypted with k; (see figure 3). Each
user can now decrypt only one of these values, but can also use f to generate from it all the values
in the path from it to the root. For example, user u; can decrypt k{, = r, and then can generate
k{ = f(r) and k. = f(f(r)). The communication overhead is therefore only logn.

Following we describe the scheme more formally. Let f be pseudo-random generator which
doubles the size of its input [36, 6]. The security of the user deletion scheme can be formally
reduced to the security of f. Denote by f(z)|r, f(z)|r the left and right halves of the output
of f on an input z. For our example the group controller generates a random value rgg, defines

00 = f(roo)|lr and 19 = f(r00)|r, and sends rop encrypted with kgpy. It defines k{ = f(ro)|z and
re = f(70)|r, and sends 7o encrypted with k1. It defines kL = f(r.)|z and sends r. encrypted with
k1. Note that as in the “simplified” exposition, any user is able to compute exactly the new keys
which it requires. For example, user uy decrypts roo using kgo1, and then computes ki, = f(700)|z,
ko = f(f(roo)r)|L, and kz = f(f(f(roo)|r)IR)|L-

Advantages of the new scheme: This construction halves the communication overhead of
the basic scheme and its security can be rigorously proven. It has an additional advantage: In
the scheme of Wallner et al the group controller chooses the group key (the root key), whereas is
our construction this key is the output of a pseudo-random generator. Suppose that there is an
adversary which can break encryptions performed with a subset of the key space (for example keys
is which certain bits have a linear dependency), and furthermore that this adversary has gained
temporary control over the group controller (e.g. when the controller was manufactured). Then if
the scheme of [33] is used the adversary might corrupt the method by which the group controller
generates keys such that the root key would always be chosen from the “weak” subspace. However,
if our scheme is used and would utilize a secure pseudo-random generator f, then it is impossible
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Figure 3: The transmission of new values to the keys in the improved scheme.

to find values r such that the root key f(f(---(r)---)is in the weak key subset, except by running
an exhaustive search.
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