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Abstract

Multireceiver authentication codes allow one sender to construct an au-
thenticated message for a group of receivers such that each receiver can verify
authenticity of the received message. In this paper, we give a formal defi-
nition of multireceiver authentication codes, derive information theoretic and
combinatorial lower bounds on their performance and give new efficient and
flexible constructions for such codes. Finally we extend the basic model to the
case that multiple messages are sent and the case that the sender can be any
member of the group.

1 Introduction

Multireceiver authentication codes (MRA-codes) are introduced by Desmedt, Frankel
and Yung (DFY) [6] as an extension of Simmons’ model of unconditionally secure
authentication [18]. Tn an MRA-code, a sender wants to authenticate a message for
a group of receivers such that each receiver can verify authenticity of the received
message. The receivers are not trusted and may try to construct fraudulent messages
on behalf of the transmitter. If the fraudulent message is acceptable by even one
receiver the attackers have succeeded. This is a useful extension of traditional au-
thentication codes and has numerous applications. For example a director wanting
to give instructions to employees in an organisation such that each employee is able
to verify authenticity of the message. Providing such service using digital signature
implies that security is based on unproven assumptions and the attackers have finite
amount of computational resources. In this paper, we will be only concerned with
the unconditionally secure model, that is, there is no computational assumptions or
limitations on the attackers’ resources.

A multireceiver A-code can be trivially constructed using traditional A-codes:
the sender shares a common key with each receiver and to send an authenticated
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message, constructs n codewords, one for each receiver, concatenates them and
broadcasts the result. Now each receiver can verify its own codeword and so au-
thenticate the message. In this construction collaboration of even n — 1 receivers
does not enable them to construct a message that is acceptable by the n'? receiver
simply because the n codewords are independently constructed. If we assume that
the size of the malicious groups cannot be too large, for example the biggest number
of collaborators is w — 1 (w < n), then we can expect to save on the size of the key
and the length of the codeword because codewords can have dependencies. This is
the basic motivation of studying MRA-codes that are more efficient than the trivial
one described above. DFY gave two constructions for (w,n) MRA-codes based on
polynomials over finite fields and finite geometries. DFY description of MRA-code
is basically an operational description of the system, that is the way the system
works. Kurosawa and Obana (KO) [13] studied (w,n) MRA-code, again using the
operational description of these codes, derived combinatorial lower bounds on the
probability of success in impersonation and substitution attacks, and characterised
Cartesian MR A-codes that satisfy the bound with equality. They showed that DFY
polynomial construction is in fact an optimal (smallest sizes of transmitter and re-
ceiver keys) construction.

In this paper we start by giving a formal definition of an MRA-code and use it to
derive information theoretic bounds on the probability of success in impersonation
and substitution attack against a single receiver for a general MRA-code. These
bounds are used to obtain lower bounds on the the number of keys of transmitter
and receivers, and also lower bound on the length of the transmitted codeword
in terms of deception probability of the system. This is followed by a review of
the known constructions of MRA-codes, pointing out their shortcomings and giving
constructions that alleviate these shortcomings. Finally we discuss two extensions
of MRA-codes, codes for multiple message transmissions and codes with dynamic
senders, and give constructions for each. In the concluding section we propose
possible extensions for this work.

The paper 1s organised as follows. Section 2 provides basic definitions and reviews
known results. In section 3 we define MRA-codes and derive information theoretic
and combinatorial bounds. In section 4 we first review DFY polynomial construction
and then propose a more flexible construction by combining an arbitrary A-code with
a cover-free family. In section 5 we consider two generalisations of our basic system
and give an efficient construction for each. Finally in Section 6 we summarise our
results and discuss open problems. Results presented in this paper were in part
presented at Eurocrypt ’98.

2 Preliminaries

In Simmons’ model of unconditionally secure authentication there are three partici-
pants: a transmitier (sender), a receiver, and an opponent. The transmitter and the
receiver share a secret key and are both assumed honest. The message is sent over
a public channel which is subject to active attack. Transmitter and receiver use an
authentication code which is a set of authentication functions f, indexed by a key
belonging to a set F. To authenticate a message called a source state and denoted
by s € S, using a key e, transmitter forms a codeword f(e,s) from a set M and
sends it to the receiver who can verify its authenticity using his knowledge of the



key.

Definition 2.1 An authentication code C is a {-tuple (S, M, E, f), where f is a
mapping from S x E to M,
f:SxE—M

such that f(s,e) = m and f(s',e) = m imply s = 5'.

In a systematic Cartesian A-code the codeword corresponding to a source state
s using e € FE is the concatenation of s and an authentication tag ¢ € 7: that is
m = (s,t). The receiver will detect a fraudulent codeword (s,t) if the tag that he
calculates for s using his secret key e is different from the received tag ¢.

The opponent can perform an impersonation, or a substitution, attack by con-
structing a fraudulent codeword and succeeds if the codeword is accepted by the
receiver. In impersonation the attacker has not seen any previous communication
while in substitution he has seen one transmitted codeword. A code provides per-
fect protection against impersonation if enemy’s best strategy is randomly guessing
a codeword. In the case of Cartesian A-codes, enemy’s probability of success is
Pr= % Perfect protection for substitution is defined in a similar way and requires
enemy’s best strategy to be randomly selecting one of the remaining codewords such
that the source state is different from the observed one. For Cartesian A-codes the
probability of success of the intruder is Pg = ﬁ

An extension of this model, proposed by Desmedt, Frankel and Yung (DFY)
[6], is when there are multiple receivers. The system works as follows. First the
key distribution centre (KDC) distributes secret keys to the transmitter and each
receiver. Next the transmitter broadcasts a message to all the receivers who can
individually verify authenticity of the message using their secret key information.
There are malicious groups of receivers who use their secret keys and all the previous
communications in the system to construct fraudulent messages. They succeed in
their attack even if a single receiver accepts the message as being authentic.

KO formalisation of (w,n) MRA-codes is as follows. Let Ey, Fs.., F,, denote the
set of decoding rules of receivers Ry, R,, and S and M denote the set of source
states and senders codewords, respectively. We will also use X to denote a random
variable defined on a set X.

Definition 2.2 ([13]) We say that (S, M, Ey,---, Ey) is a (w,n) multireceiver A-
code if forY(E;,, -+, F;,) and Y(e1, - -, ey),

P(E;, =ewl|Eiy =€1, -, Ei,_, = €y—1) = P(F;, = ey).

2%
Probabilities of success in impersonation and substitution attacks, Pr and Pg, for

(w,n) MRA-codes are then defined as

Pr = maxmax P(R; accepts m)

i m

Ps = E P(m)maxmax P(R; accepts m'|R; accepts m)
- R; m’
where maximum is taken over m’ such that the source state of m’ is different from
that of m. With these definitions, they derived the following bounds. Assume
e=|M|/]S].



Theorem 2.1 (Theorem 9 [13]) In a (w,n) MRA-code, P > 1/ /0. Equality holds
if and only if P(R;,, ..., R;, acceptm) = 1/¢ and P(R; acceptsm) = 1/ Y/l for any
m and any R;.

i

Theorem 2.2 (Theorem 10 [13]) In a (w,n) MRA-code without secrecy, if Pr =
1/ /¢, then Ps > 1/ ¥/¢. Equality holds if and only if
P(R , Ri, accept m'|Ry,, ..., R;, accept m) =1/¢

P(R; accepts m'|R; accepts m) =1/ /¢
for VR;,Ym and Ym' such that the source state of m is different from that of m’.

Theorem 2.3 (Theorem 11 [13]) In a (w,n) MRA-code without secrecy, if Pr =
Ps = 1/ %/, then |E;| > (%/Z)2 for ¥j. If equality holds, then each rule of Ej is
used with equal probability.

KO characterised Cartesian MRA-codes that satisfy Pr = Ps = 1/ /¢ and ob-
served that DFY polynomial construction is in fact an optimal construction and
has the least number of keys for the transmitter and the receivers and requires the
smallest size for the authenticator.

Definition 2.2 does not specify the relationship between the encoding functions
of the transmitter and the receivers and only requires the independence of receivers’
keys for any set of w receivers. This independence, as shown in Lemma 3.1, is
sufficient to ensure that the probability of success in impersonation attack by any w—
1 receivers against another receiver is the same as that by an (outside) opponent. We
give a general definition of MRA-codes in terms of commutative mappings, and for
(w,n) MRA-codes only require the success probability of attackers in impersonation
and/or substitution attacks to be less than one. However we do allow coalition of
insiders to have higher chance of success compared to an outsider. KO’s definition
of (w,n) MRA-codes corresponds to our definition of (w,n) MRA-codes that are
perfect for impersonation (see Lemma 3.1).

3 Model and Bounds

An MRA-System has three phases:

1. Key distribution: The KDC (key distribution centre) privately transmits
the key information to the sender and each receiver (the sender can also be

the KDC).

2. Broadcast: For a source state, the sender generates the authenticated mes-
sage using his/her key and broadcasts the authenticated message.

3. Verification: Each user can verify the authenticity of the broadcast message.

Denote by X; x --- x X,, the direct product of sets Xy,...X,, and by p; the
projection mapping of X7 x --- x X, on X;. That is, p; : X3 x -+ x X, — X
defined by p;(z1,29,...,2,) = ;. Let g1 : X1 — Y7 and g2 : X3 — Y3 be two
mappings, we denote the direct product of g1 and g2 by g1 X g2, where g1 x g5 :
X1 x X9 — V1 x Y3 is defined by (g1 x g2)(z1,22) = (91(21), g2(22)). The identity
mapping on a set X is denoted by 1x.



Definition 3.1 Let C = (S, M,E,f) and C; = (S,M;,Ei, f;), i = 1,2,...,n,
be authentication codes. We call (C;Cy,Ca,...,Cy) a multireceiver authentica-
tion code (MRA-code) if there ezxist two mappings 7 : B — Ej x -+ x E, and
7 M — My x - x M, such that for any (s,e) € S x E and any 1 < i < n, the
following identity holds

pi(7f(s,e)) = fi((1s x piT)(s,€)).
Let 7; = p;7 and m; = p;w. Then we have for each (s,¢) € S x E
mif(s,e) = fi(ls x 7)(s,€).

We assume that for each ¢ the mappings , : ¥ — FE; and m; : M — M; are
surjective. We also assume that for each code C; the probability distribution on
the source states of C; is the same with that in the A-code €, and the probability
distribution on E; is derived from that of £ and the mapping 7;.

Let T denote the sender and Ry, ..., R, denote the n receivers. In order to au-
thenticate a message, the sender and receivers follow the following protocol.

1. The KDC (or the sender) randomly chooses a key e € F and privately transmits
e to T and e; = m;(e) to the receiver R;, 1 < i< n.

2. If T wants to send a source state s € S to all the receivers, T' computes m =
f(s,e) € M and broadcasts it to all receivers.

3. Receiver R; checks whether a source state s such that fi(s,e;) = m;(m) exists. If
such an s exists, the message m is accepted as authentic. Otherwise m is rejected.

We adopt the Kerckhoff’s principle that everything in the system except the
actual keys of the sender and receivers is public. This includes the probability
distribution of the source states and the sender’s keys. From Definition 3.1 we know
that the probability distribution of the sender’s key induces a probability distribution
on each receiver’s key.

Attackers could be outsiders who do not have access to any key information, or
insiders who have some key information. We only need to consider the latter group
as it is at least as powerful as the former. We consider the systems that protect
against the coalition of groups of up to a maximum size of receivers, and study
impersonation and substitution attacks.

Assume there are n receivers Ry,...,R,. Let L = {i1,...i,} C {1,...,n},
Er=FE; x---x E;, and R, = {R;,,---, R;,}. We consider the attack from Ry, on
a receiver R;, where i & L.

Impersonation attack: Rp, after receiving their secret keys, send a message m to
R;. Ry is successful if m is accepted by R; as authentic. We denote by Pr[i, L] the
success probability of Ry in performing an impersonation attack on R;. This can
be expressed as

Pili, L] = P(mi ted by R; 1
r[7, L] nax max (mis accepted by R; | er) ()

where i & L.
Substitution attack: Rp, after observing a message m that is transmitted by the
sender, replace m with another message m’. Ry is successful if m’ is accepted by R;



as authentic. We denote by Pgl[i, L], the success probability of Ry, in performing a
substitution attack on R;. We have,
Psli, L] = max max max P(R; accepts m'|m,er) (2)
e €EEr meEM m'#ZmeM
The following two bounds are generalisations of Simmons’ bound [18] and Brick-

ell’s bound [4], when the attack is from a group of insiders who have access to part
of the key information.

Theorem 3.1 Let Pr[i, L] and Pg[i, L] be defined as in equation (1) and (2). As-
sume that M' # M, then

1. Py[i, L] > 2~ T(MiE|EL)
2. Pg[i, L] > Q_I(MI;EJM,EL).

Proof is given in the Appendix I.

Corollary 3.1

Pgli, L] > 2~ T (EBilM.EL),

Proof: The corollary follows from Theorem 3.1 by noting that I(M'; E;|M, Er) =
H(EllMa EL) - H(EZ|Ml:Ma EL)
O

A (w,n) MRA-code is an MRA-code in which there are n receivers such that no
subset of w — 1 receivers can construct a fraudulent codeword accepted by another
receiver. We note that in this definition, the only requirement is that the chance
of success of the attackers is less than one but it is possible that some coalition of
attackers can have a better chance of success than an outsider.

A (w,n) MRA-code is perfect for impersonation if the chance of success of any
group of up to w — 1 receivers in an impersonation attack is the same as an outsider.
Similarly, a (w,n) MRA-code is perfect for substitution if the chance of success for
any group of up to w— 1 receivers in a substitution attack is the same as an outsider.

Lemma 3.1 A sufficient condition for a (w,n) MRA-code to be perfect for imper-
sonation is that P(e;ler) = P(e;) for all w-subsets LU {i}, i ¢ L of {1,... n}.

Proof: Consider the A-code C; = (S, M;, E;), we define an authentication function
x(m;,e;) on M; x S; as

(my, i) = 1 if m; is authentic for the key e;
XSV €)= 0 otherwise.

We have P(m;(m) is valid in C;) = EeleEl x(m;(m), e;)P(e;). By the definition of
x1(m,e;,er) (see Appendix I), we know that for any given ey in accordance with
1r(e) = er and 7; = e;, x(mi(m),e;) = xr(m, e;,er). Thus we have

Prli, L] = maxmenm P(mis accepted by R;ler)
MaXmeM )_.,ep, X1(M, €, er)P(e;ler)
maxmenm ). ,cp, X(7i(m), e;)P(eiler)
Prli]



O

In the above lemma, Pr[i] is success probability of an outsider in impersonation
attack and is given by

Prli] = HI?E%( P(R; accepts m) = nrileaﬁ P(m;(m) is valid in Cj)

It should also be noted that a (w,n) MRA-code which is perfect for impersonation
is not necessarily perfect for substitution.
Let (C;Cy,...,Cy) be an MRA-code. Define Pr and Pgs as follows.

Ps = Lmu?ﬁ{Ps[i,L]}

where maximum is taken over all possible w-subsets LU {i} (i &€ L) of {1,2,...,n}.
In other words, P; and Pg are the best chance of a group of w—1 receivers to succeed
in impersonation or substitution attacks against a single receiver, respectively.

We define the deception probability of a (w, n) MRA-system as Pp = max{Pr, Ps}.

Theorem 3.2 Let (C;C4,...,Cy) be a (w,n) MRA-code. Assume that Pp < 1/q
and there is a uniform probability distribution on the source states S. Then

(1) |Eil > ¢%, for each i€ {1,...,n}.
(ii) | > ¢
(iii) 1M > ¢*|3].
The bounds are tight and there exists a system that satisfies the bounds with equality.

Proof: (i) For each (w — 1)-subset L of {1,...,n} and any ¢ € {1,...,n} where
i € L, by Theorem 3.1 and Corollary 3.1 we have

1

(=)? > P% > Pili, L)Ps[i, L] > 9—(I(M;Ei|Er)+H(E:|Er ,M)) _ 9—H(E:|EL)
q

> 9= H(Ei) 5 9-log|Ei| _ 1 ]

- - |Eil

It follows that |E;| > ¢2.
(ii) Assume that L; = {1,...;i— 1, i+ 1,...,w},i=1,..., w. We have,

1 - w
()2 > [ Pili, LPsli, L] > 220 ~H(PIELD
q i=1
> 9 Yo H(Ei|Ey,.  Eix) _ 9—H(E1,....By)
1
> 9-H(E) 5 9g—log|B| _ _—
- - |E]

Therefore, |E| > ¢?¥.



(iii) Since 7: F — Ej x - -+ x E, induces a mapping from E to Fy X -+ x Ey,
we have I(M; E) > I(M; Eq, ..., Ey). Tt follows that
9= I(MiE) « 9=I(MiEx,..Bw) _ 9= ) " I(MEi|E:, . Ey)

9= > I(ME|Ex,..Ei_1)

= HTI(M;E’lEl"”’E"l) < HPI[Z',Qi],
i=1 i=1

where @; = {1,...,i—1}. Since for each 1 < i < w, we have Pr[i, Q;] < Prl[i, L;] <
it follows that,

1
qJ
9= T(ME) — 9=(H(M)=H(MIE) _ 9-HODHOME) < (Lyw

g

Since S is assumed to be uniformly distributed, we know that H(M|E) = H(S) =
log |S|. Hence |M| = 298IM| > oH(M) > qw |G| which proves (iii).

The bounds are tight as it is easy to verify that they are satisfied by the DFY
polynomial construction. In this construction (briefly recalled in the next section),
we have Pp = 1/q, |E;| = ¢%, for all 1 < i < n, |E| = ¢ and [M| = ¢*|S] and so
the lower bounds are satisfied with equality.

O

Comparison of the bounds with KO’s bounds: Theorem 3.2 gives combina-
torial bounds on the size of the transmitter’s and receivers’ key spaces for general
(w,n) MRA-codes with or without secrecy when probability of deception is known.
It also lower bounds the required redundancy in terms of the deception probabilities.

KO derived a similar set of bounds (Theorem 9, 10, 11 in [13]) which only apply to
(w,n) MRA-codes without secrecy that are perfect for impersonation. In Appendix
IT we give a detailed comparison of the two sets of bounds.

4  Constructions

4.1 DFY Polynomial Construction

In [6], Desmedt, Frankel and Yung gave two constructions for MRA-codes: one is
based on polynomials and the other based on finite geometries. We briefly review
DFY’s polynomial construction because generalisations of this scheme will be dis-
cussed in later sections of this paper. Details of the geometric construction can be
found in [6].

Assume there is a sender T', and n receivers Ry, ..., R,. DFY polynomial scheme
works as follows. The key for T' consists of two random polynomials Py(z) and Py (z),
each of degree at most w—1, with coefficients in GF(q), where ¢ > max{|S|, n}. The
key for R; consists of Py() and Py(é). For a source state s € GF(q), T broadcasts
(s, A(z)) where A(z) = Py(x) + sPi(z). R; accepts (s, A(z)) as authentic if A(7) =
Py(%) + sPi(3). Tt is proved [6] that the construction results in a MRA-code with
Pp = 1/q and the following parameters:

1
IS| = =, |B:| =¢*, Vi€ {1,...,n}, |E| =2%", and |M| = ¢“|S]|.
q



Hence the bounds in Theorem 3.2 can be achieved with equality.

A trivial construction for MRA-codes, as mentioned in the introduction, requires
the sender to store many key bits and produces a long tag for the authenticated
message. DFY scheme significantly reduces the size of the key storage and the length
of the authentication tag. However the order of the field GF(g) must be chosen
bigger than the size of the source space and the number of the receivers. In fact ¢,
which can be thought of as the security parameter of the system, (Pr = Ps = 1/q),
determines the size of the key storage and the length of the authentication tag. This
makes the construction very restrictive because although it is acceptable to have
the key storage, and length of the tag, a function of the security parameter of the
system, but having the number of receivers and the size of the source bounded by
it, 1s not reasonable. In particular when the size of the source or the number of the
receivers are very large, Pr and Pg will be unnecessarily small and the key storage
of the sender and the receivers, together with the length of the authentication tag
will become prohibitively large.

In practice, we may deal with the scenarios where we are satisfied with deception
probabilities higher than 1/¢, but have limitation on key storage or communication
bandwidth. So it is desirable to look for constructions that can cater for such trade-
offs. In Section 4.2 we will give a construction that accommodates this situation.

4.2 A construction based on (n,m,w)-cover-free family

In this section we present a general construction for (w,n) MRA-codes by combining
an arbitrary A-code with an (n, m, w)-cover-free Family.

Definition 4.1 Let X = {z1,...,2nm} and F = {B1, ..., By} be a family of subsets
of X. We call (X, F) an (n, m,w) Cover-Free Family (CFF)if By ¢ B1U---UBy_1
for all Bo,B1,...,By_1 € F, where B; # B; if it £ j.

CFFs were introduced by Erdos et al in [8] and [9], further implicitly studied by
Fujii, Kachen and Kurosawa in [11] in connection with MRA-codes. An (n,w,2)
CFF is exactly a Sperner family. A trivial CFF is the family consisting of single
element subsets, in which case n = m. Non-trivial CFFs are those with n > m. A
good CFF is one that for given m and w, n is large. Finding good CFFs with the
largest possible n is believed to be a hard combinatorial problem [7]. Construction
of CFFs employs various areas of mathematics such as finite geometry, design theory
and probability theory, and is beyond the scope of this paper.

Assume that (X, F) is an (n,m,w) CFF and (S,7,F, f) is an A-code without

secrecy. We construct a (w,n) MRA-code as follows

1. Key Distribution: The KDC randomly chooses an m-tuple of keys (eq,. ..,
em) € E™, then privately sends (ey,...,en) to the sender T and e; to every
receiver R; for all j with z; € B;, 1 <i < m.

2. Broadcast: For a source state s € S, the sender calculates a; = f(s,¢;) for
all 1 < i < m and broadcast (s,a1,...,amn).

3. Verification: Since the receiver R; holds the keys {e; | for all j with z; €
B;}, R; accepts (s, a1, ..., an) as authentic if for all j satisfying z; € B;,a; =
f(s,€5).



Assume that the probabilities of impersonation and substitution attacks for the
underlying A-code, C, is P; and Pg, respectively, and let « = min{|Bo\B; U---U
By_1|; forall By,..., By—1 € F}.

Theorem 4.1 The above scheme is a (w,n) MRA-code and the probabilities of im-
personation and substitution attacks are (Pr)* and (Ps)®, respectively.

The proof of the theorem is straightforward. In this scheme the sender is re-
quired to store m[log|E]|] bits, and the receiver R; to store |B;|[log|E|] bits. The
authentication tag is of size m[log |7 |].

In [11], Fujii, Kachen and Kurosawa gave a definition of broadcast authentication
which can be seen as a special case of DFY definition of MRA systems. Fujii et al
also gave a construction for their broadcast authentication system which is a special
case of the above construction, when the cover-free family has constant block size;
that is |B;| = ¢,i=1,...,n.

An important property of this construction is that it allows a complex system,
such as a (w,n) MRA-code, to be constructed from two simpler ones, an A-code and
a cover-free family, such that the security of the former can be described in terms of
the properties and parameters of the latter. Another advantage of this construction
is its flexibility in choosing system parameters. That is w and n are determined
by the cover-free family while P and Pg are determined by the A-code and the
cover-free family and so it is possible to fix w and n but change the A-code to obtain
MR A-codes that provide the required protection. The following examples compare
this construction with that of DFY polynomial scheme.

Example 4.1 Assume that the size of the source state is only one bit (for example,
yes and no) and we need a (2,70) MRA-code with the probabilities of impersonation
and substitution attacks not greater than 1/2. Using DFY polynomial scheme we
need a finite field GF(q) with ¢ > 70; it follows that [logq] > 7, and so the sender
must store at least 28 bits and each receiver must store at least 14 bits. The length of
the authentication tag is at least 14 bits, and the probabilities of impersonation and
substitution attacks are (%)7 Now we use our construction. It is easy to see that
the Sperner family consisting of all 4-subsets of a set of 8 elements gives a (70,8, 2)
CFF. We define the underlying A-code C = (S,T,FE, f) as follows. Let S =T =
GF(2), E=GF(2)?, and f : Sx E — T be given by f(s,(e,e')) = e+se’. Then C
1s an A-code with P = Pg = % Applying our scheme, the sender and each receiver
need to store only 16 bits and 8 bits, respectively. The length of authentication tag
1s of 8 bits and the probabilities of impersonation and substitution attacks are both

1/2.

Example 4.2 Assume that the size of the source is very large, for example 2%° bits
(ie. |S| = 2220)‘ A direct computation shows that the DFY polynomial scheme for
(2,70) MRA-code requires that the sender and each receiver to store 22% and 221 bits,
respectively. The length of authentication tag is 2%' bits while the probability of im-
personation and substitution attacks is not greater that 1/2220‘ In many applications
the deception probability of around 1/2%° is an acceptable security level. Consider
an A-code that is constructed from a universal hashing family (see [22]) with the
following parameter: 220 bits of source state, 445 bits of authentication key, 20 bits
of authentication tag and the probability of impersonation and substitution attacks is
not greater than 1/2'°. Combining with the (70,8,2) CFF, our construction results

10



in a (2,70) MRA-code in which the key storages for the sender and each receiver are
3560 bits and 1780 bits, respectively. The length of the authentication tag is 160 bits
and the deception probability is bounded by 1/2'°.

We note that this construction is only suitable for the case when the number of
malicious receivers, compared to the total number of the receivers, is not very large.
This is due to the following result.

Lemma 4.1 ([9]) In a non-trivial (n,m,w) CFF, ﬂu;—_ll < n.

In [7], using probabilistic methods the authors proved that for small w, there
exist (n, O(logn), w) CFFs . Finally, we point out that in general the constructions
based on CFFs do not provide MRA-codes that are perfect for impersonation or
substitution.

5 Generalisations

The basic MRA-code can be generalised in a number of ways. In this section we
look at two possible generalisations.

5.1 MRA-codes for multiple message transmissions

In the basic model of MRA-codes, security analysis is for a single message transmis-
sion (only impersonation and substitution attacks are considered) and for a second
message no protection is guaranteed. To provide protection for multiple message
transmission one possibility is to use a new key after each message is broadcasted.
This is a very inefficient solution both in terms of going through a key distribution
phase after each message and the amount of key information required for each mes-
sage. In the following section we propose systems that use a single key distribution
phase for multiple message transmission, and compared to using a new key require
less key information per communicated message.

5.1.1 Generalised DFY scheme for multiple messages

Assume messages are all distinct and ¢ < |S|. The scheme consists of the following
steps:

1. Key distribution: The KDC randomly generates ¢ + 1 polynomials Py(z),
Pi(z),..., Pi(z) of degree at most w — 1 and chooses n distinct elements

21,22, -, 2, of GF(q). KDC makes z;’s public and sends privately (Py(2), Pi(z), - -, Pi(2))

to the sender 7', and (Po(z;), Pi(2;), -, Pi(z;)) to the receiver R;.

2. Broadcast: For a source state s, T' computes A;(z) = Po(z) + sPi(z)+ -+
s'Py(z) and broadcasts (s, As(z)).

3. Verification: R; accepts (s, A;(z)) as authentic if A;(z;) = Po(z;)+sPi(z;)+
<+ s Py(y).

Theorem 5.1 [17] The above scheme is a (w,n) MRA-code in which every key can
be used to authenticate up to t messages.
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To authenticate ¢ consecutive messages, using basic DFY scheme, 2¢ polynomials
are required while in the above scheme we only need ¢ 4+ 1 polynomials. So the key
storage for the sender and receivers are (¢ + 1)w[logq] bits and (w + 1)[log q] bits,
respectively, and are reduced to around half of that of DFY scheme. The length of
the authentication tag for both constructions are the same and equal to tw[logq]
bits.

5.1.2 Using Cover-Free Family Construction

To extend the construction of Section 4.2 to support multiple messages it is only
required to replace the underlying A-code by an A-code that provides protection
against spoofing of order ¢, ¢ > 1. In an spoofing of order t attack on an A-code, the
enemy has access to t authenticated codewords and wants to constructs a fraudulent
one. An A-code provides perfect protection against spoofing of order t if enemy’s best
strategy is randomly selecting one of the remaining codewords. It is straightforward
to see that in the construction given in Section 4.2, using an A-code that provides
protection against spoofing of order ¢ ensures that probability of success in spoofing
of order ¢ (which can be defined similar to A-codes) is equal to (P;)®, where P; is the
probability of success in spoofing of order ¢ for the A-code used in the construction.

By replacing the underlying A-code with a Wegman-Carter type construction
[1] one can obtain an MRA-code for multiple authentication using universal hash
functions.

5.2 MRA-codes with dynamic sender

An interesting extension of the model of MRA-code is when the sender is not fixed
and can be any member of the group. In this case key distribution is by a Trusted
Authority (TA) who is only active during key distribution phase. We call the sys-
tem MRA-code with dynamic sender. There are many applications for such systems.
For example providing authentication in group communication where members of a
group want to broadcast messages such that every other group member can verify
the authenticity of the received messages. It is worth noting that providing authenti-
cation in group communication is much more difficult than providing confidentiality
because in the former group members can participate in coordinated attack against
other group members while in the latter protection is only provided against outsider’s
eavesdropping.

Allowing the sender to be dynamic introduces the notion of authenticating with
respect to a particular identity. That is, to verify authenticity of a received message
a receiver must first assume an identity for the sender and then verify the message
with respect to this particular sender. An authenticated message in general carries
information that indicates its origin, together with its content information and hence
the system must provide origin (entity) authentication and message authentication
both. In other words the success of an attacker(s) could be by replacing the identity
information, or the message content.

5.2.1 The Model

In the model of MR A-code with dynamic sender, there are n users P = {Py, ..., P,},
who want to communicate over a broadcast channel. The channel is subject to
spoofing attack: that is a codeword can be inserted into the channel or, a transmitted

12



codeword can be substituted with a fraudulent one. An attack is directed towards
a channel, consisting of a pair of users {P;, P;}, P; as the sender and P; as the
receiver. A spoofer might be an outsider, or a coalition of w — 1 users. The aim of
the spoofer(s) is to construct a codeword that P; accepts as being sent from P;. We
assume that the TA is only active during key distribution phase. The system has
three phases.

1. Key Distribution: The TA generates and distributes secret information to
each user.

2. Broadcast: One of the users generates an authenticated message for a source
state of his/her choice, and broadcasts it.

3. Verification: Every user can verify authenticity of the broadcasted message
using their own secret information.

Definition 5.1 A (w,n) MRA-code with dynamic sender is a code for which no
w — 1 subset of users can perform impersonation and/or substitution atltack on any
other pair of users.

For the sake of simplicity, we assume that after the key distribution phase, each
user can only send at most a single authenticated message.
;, From the above definition, we make the following observations.

1. In a (w,n) MRA-code with dynamic sender during the key distribution phase,
the TA does not know which user is going to broadcast. That is there are n
users and everyone of them could be a sender.

2. A (w,n) MRA-code with dynamic sender is a (w’, n) MRA-code with dynamic
sender for any w’ < w.

3. We assume that a message is sent only once by a single sender. So a possible
attack is to change the origin information of codeword and leave the message
content intact.

A straightforward construction based on conventional A-codes is to give each
pair of users, {P;, P;} , a shared secret key. Note that now a user can generate
the authenticators for a message using the secret keys he shares with all P;s, and
broadcast the concatenation of them. In this case there are n(n—1)/2 pairs of users,
which means that a user has to store (n — 1) keys, and the TA has to generate and
store (n — 1)n/2 keys. The disadvantages of this scheme are the large amount of
keys stored by each user, together with the long tag for the authenticated message.
Our aim is to give more efficient constructions which reduce the key management
of both the TA and the users, and reduce the authenticator size, compared to this
trivial scheme.

5.2.2 Lower Bounds

To define Py and Pg in an MRA-code with dynamic sender, we note that because
every user can be a sender, when a message is received by a user P;, she/he must
first assume an identity for the sender and then verify the authenticity of the mes-
sage with respect to the assumed identity. The enemy is a set of w — 1 malicious
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users, Pr,,..., Pi,_,, who attack a pair of other users. For example, targeting the
pair {P;, P;}, results in P; accepting a fraudulent messages as being sent from P;.
In impersonation attack, P, ..., P,_, collude and try to launch an attack against
a pair of users F; and F;, by generating a message such that P; accepts it as au-
thentic and being sent from P;. We denote the success probability in this case by
Pr[m;i,j; L], where L = {Py,,...,Pi,_,}. Pris the best probability of success in
such attacks and is defined by
Pr = max max Pr[m;1,j; L],
Lij} m
where I U {i,j} runs through all (w + 1)-subsets of {1,2,...,n}.
In the substitution attack, there are two distinct cases.

1. Message substitution: After seeing a valid message m broadcasted by FP;, the
users {P;,, ..., P, _,} construct a new message m’ (m # m') such that P; will
accept m’ as being sent jfrom P;. We denote the success probability in this
case by Ps[m,m’;i,j; L], and the best probability of such an attack is denoted
by PS

message)

PS maXx Imnax PS[m:ml;i:j;L]:

{Li,j}m'#m
where I U {4, j} runs through all (w + 1)-subsets of {1,2,...,n}

message

2. Entity substitution: After seeing a valid message m broadcasted by P;, the
users {P;,,..., P, _,} construct a new message m’, not necessarily different
from m/, such that P; will accept m’ as being sent ;from P;:, where ¢ # i'. We
denote the success probability in this case by Ps[m, m’;i,7, j; L], and the best
probability of such an attack by

max max Ps[m,m’;i,7, j; L],

Sentity —
y S, ;
{L,i,i,j}m!,m

where L U {i,4, j} runs through all (w + 2)-subsets of {1,2,...,n}.

Now the probability of success in the substitution attack for the whole system 1s
defined as

PS = HlaX{PS PS

message ) entzty}'

Theorem 5.2 In a (w,n) MRA-code with dynamic sender, assume that P = Pg <
1/q and assume there is a uniform probability distribution on the source states S.
Then we have:

(1) |E;| > ¢*, for each i€ {1,2,...,n},
(ii) |M;| > q¥|S|, for each i€ {1,2,...,n},

where E; 1s the set of possible keys of P; and M; is the set of possible codewords
when P; is a sender, for alli € {1,2,...,n}. These are tight bounds and there exists
a system that satisfies them with equality.

Proof: For each i, 1 < i < n, P; is a possible sender and so the (w,n) MRA-
system with dynamic sender induces a (w, n—1) MRA-code, in which the probability
of success in impersonation and substitution attacks are both 1/q. By applying
Theorem 3.2, we obtain the required results. In Section 5.2.3 we will show that the
bounds are tight by giving a construction that meets them. O
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5.2.3 An optimal construction

Now we give a construction for a (w,n) MRA-code with dynamic sender, which is
based on symmetric polynomials in two variables. In [17] a (w,n) MRA-code with
dynamic sender using Blom’s key distribution scheme is proposed. The following
construction is a slightly modified version of the construction given in [17]. We show
that the construction has the minimum length of keys for users and the authenticator,
and meets the bounds in Theorem 5.2 with equality. We first briefly review Blom
key distribution scheme.
Blom key distribution scheme

Let ¢ > n be a prime power. The TA randomly chooses a symmetric polynomial,
F(z,y), with coefficients in GF(q) and of degree less than w. For 1 <i < n, the TA
computes the polynomial G;(z) = F(z,) and gives G;(z) to user P;, i.e., Gi(z) is
the secret information of P;. The key associated with the pair of users F; and Pj is
calculated as, k;; = G;(j) = G;(i). It is proved [2] that the scheme is uncondition-
ally secure against the collusion of w — 1 users in the following sense: the coalition
of any w — 1 out of n users, say F;,,..., P;, , has no information about the key k;;
for the pair 4, j, where 1,j & {i1, ..., 1y}

(w,n) MRA-code with dynamic sender based on Blom’s scheme
The (w,n) MRA-code with dynamic sender based on the Blom’s scheme, works
as follows. Let S be the set of source states and ¢ > max{|S|,n} be a prime power.

1. Key distribution: The TA chooses n distinct numbers ¢; in GF(q) (associate
a; to user P;, 1 <1 < n). These values are public and are used as identity
information for users. Then the TA randomly chooses 2 symmetric polynomials
of degree less than w with coefficients in GF(q),

where Ay 1s a w x w symmetric matrix for £ = 0,1. For 1 < ¢ < n, the TA
computes the polynomials

GM(JL‘):FZ(CL‘,CLZ'):(1,=’L‘,...,£L‘w_1)Ag . L £=0,1,

and gives the 2-tuple of polynomials, (Go;(z), G1;()), to user P;. This consti-
tutes the secret information of P;.

2. Broadcast: For 1 < i < n, assume that the user P; wants to generate the
authenticated message for a source state s € S. P; computes the polynomial

M;(z) = Goi(z) + sG1;(z) and broadcasts (s, a;, M;(z)).

3. Verification: The user P; can verify the authenticity of the message in the
following way. P; accepts (s, a;, M;(z)) as authentic and being sent from P; if
Mi(a;) = Goj(ai) + sG1j(ai).
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Theorem 5.3 The above scheme is a (w,n) MRA-code with dynamic sender with
P] = PS = 1/q.

Proof: Assume that after seeing an authenticated message (s, a;, M;(z)) broad-
casted by the user F;, the users P;,...,P,_1 want to generate a new message
(s',a;, M{(z)), where s’ # s such that the user P; will accepts it as authentic,
ie. M{(a;) = Goj(a;) + s'G1j(a;). First, we observe that for each m € GF(gq) each
user, say P, can calculate the polynomial Got(z)+mGi:(z) = (1,2, -, 2~ 1) (Ao +
1
a
mA;) . . Tt follows that for each m € GF(q), Py, ..., Py_1 can calculate a
ria
w x (w— 1) matrix D[m] such that the following identity holds

1 1
a R A

(Ao+mAy) | TN | =D (3)
o ay

Since (s,a;, M;(z)) is broadcasted, it follows that Py,...  Py,_1 know the following
polynomial

1
a;
g(z) = (1,2, 2" ) (Ag + s44)
al~?
By combining equation (3) and the polynomial g(z), P, ..., Py_1 can also calculate

matrices B and C' such that the following equations hold.

Ag+s4, = C (4)
1 1
a Aoy —1
(Ao + mAy) = D[m] for all m € GF(q) (5)

We claim that in the equations (4) and (5) above, knowing C and D[m] for all
m € GF(q) can not determine the 2-tuple matrices (Ag, A1). In fact, there exist ¢
distinct 2-tuple matrices (Ag, A1) satisfying equations (4) and (5). This is equivalent
to the following statement: There exists a 2-tuple matrices (Ag, A1) # (0,0) such
that the following equations hold

Ag+sA; = 0 (6)
1 1

(Ao+may) [ 7T =0 forallm € GF(g) (7)
ay™! a5y
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Indeed, consider the symmetric polynomial,

Flz,y) = (z—a1) (@ —aw-1)(y—a1) (¥ — aw-1)
1
= (1,2, -,mw_l)A y ,
y“’.‘1

where A is a w X w symmetric matrix and A # 0. We define Ag = —sA and A; = A,
then it is not difficult to verify that (Ag, A1) satisfies the desired properties.

We note that since (—sA, A) satisfy the equations (6), and (7), so is (—=rsA,rA)
for all » € GF(q). This implies that there are ¢ distinct 2-tuple symmetric poly-
nomials which are equally likely to be chosen by the TA. For each 2-tuple matrices
(Ag, A1) of the from (—rsA,rA), let

(1,11‘7',"',51‘17'1)_1)(140—1—8/141) . =d.

k-1
a;

Then it is straightforward to verify that d = 0 if and only if » = 0. This is equivalent
to that the ¢ distinct possible 2-tuple polynomials (Fy(z,y), Fi(z,y)) chosen by the
TA result in ¢ distinct values of the form Fy(a;, a;) + s’ Fi(a;, a;). Therefore the
probability of message substitution attack Ps,,_,,,,. is 1/¢. Similarly, we can prove
Pseniin, = Pr=1/q. O

We see that in this construction the size of each user’s key is |E;| = ¢*¥, for all
1 <i < n, and the size of codewords is M; = ¢**! = ¢¥|S|. Thus we have shown
that the bounds given in Theorem 5.2 are satisfied with equality.

6 Conclusions

Multireceiver authentication is an important cryptographic primitive in secure group
communication. In this paper, we formally defined MR A-codes and derived informa-
tion theoretic and combinatorial lower bounds on their performance. We reviewed
other works in this area and showed their relations to our work. We have presented
an efficient and flexible construction for MRA-codes by combination of a cover-free
family and an A-code. This construction generalises an earlier work by Fujii, Kachen
and Kurosawa. We also generalised Desmedt, Frankel and Yung (DFY) polynomial
construction for multiple messages transmission. Finally, we introduced the model
of multireceiver authentication code with dynamic sender, derived combinatorial
bounds for key and message sizes of such a system, and gave an optimal construc-
tion that meets the bounds with equality. Deriving information theoretic bound for
MRA systems with dynamic senders, and construction of systems with more than
one dynamic sender are interesting open problems. Another important direction to
generalise this work is to require MRA systems to provide secrecy against outsiders.
Study of MRA systems so far has been in the context of systems without secrecy.
Requiring secrecy of broadcasted message can also be seen as adding authenticity to
the known model of broadcast encryption [10]. This means that we require general
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multireceiver systems that reduce to MRA-codes and broadcast encryption systems
when only authenticity, or only secrecy, is required. A successful generalisation will
extend the known model of MRA-code by imposing an access structure on the set
of receivers such that only the authorised set of receivers can verify authenticity of
messages.
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APPENDIX I

Proof of Theorem 3.1
1. We define an impersonation characteristic function x;y on M x E; x EL by

1 ifmisavalidforee Fin C
xr(m, e, er) = such that 7;(¢) = ¢; and 7(e) = er
0 otherwise

From the definition of the impersonation attack we can express Pr[i, I] as

Pr[i, L] = m%P(m(m) is valid in Csler, € Fr)
me
= max ;Xj(m,ei,eL)P(eﬂeL)).
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For given L. C {1,...,n} and i & L, let P(m,e;, er) be the joint probability distri-
bution induced by the system. If x;(m,e;,er) = 0 then P(m,e;,er) = 0. Indeed,
if P(m,e;,er) # 0 then m is a valid message for e with 7;(e) = ¢; and 71(e) = ey,
which contradicts with the definition of xr(m,e;, er).

I(M; EzlEL)

E P(M,E;|Ey)
= LP(m,eier) P(M|EL)P(E:|EL)

_ ) P(m,eiler
Z P(m, e;,er)log P(mler )P(es]er)
meM,e,€E; e €EL

_ . P(ei|m,er)P(m|er
Z P(m,e;,er)log POne ) Pleer)
meM,e,€E; e €EEL

P(eilm,e
= Z P(m,er) ( Z P(e;|m,er)log W) .
meM e €EL o€ B
P(m,er )0

For each pair (m,er) with P(m,er) # 0, if x7(m, e;,e) = 0 then P(e;|m,er) = 0.
P(eilm,er) _
. 00 Pledlen) .
over E; in the above identity is restricted to all e; for which xr(m,e;,er)= 1. Thus

we have

In this case, P(e;|m,er)log 0. Tt follows that the summation taking

I(M; EZ|EL)
= > P(m,er) ( > Pleilm,er)xi(m, e er)
meM, e €EL ei€E
P(m,er)#0
. Pleilm,er)xi(m,eier)
log Pleiler)xr(m,ei,er) ) ’
By log-sum inequality we have
I(M; Ei|Er)
> Z P(m,er) ( Z P(@i|m,@L)XI(m,@i,@L))
mEM,eLEEL ei€li
P(m,er)#0
D Pleilmen)xi(moeier)
. log e, EF; )
Z P(eler)xr(m,ei,er)
ei€E;

For each pair (m, e, ), as we have noted before, if P(m,er) # 0 and xr(m, e;,er) = 0,
then P(e;|m,er) = 0. Tt follows that

Z P(e;|m,er)xr(m,e;,er) = 1.
e, €EF;
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and

Z P(esler)xr(m, e;,er) = P(m;(m)is valid in Cjler)

e, €EE;
We obtain
I(M; EzlEL)
> - Z P(m,er)log P(m;(m)is valid in Cjler)
mEM,eLEEL
= — Z P(er) Z P(mler)log P(m;(m)is valid in Cjler).
erL€EL meM
Since
PI[ia L]
S ' ) o '
> Z P(er) [Trgleaﬂ)}P(m(m) is valid in CZ|6L):|
e €E;,
> Z P(er) Z P(mler)P(m;(m)is valid in Ciler)|
e €E;, meM

by Jensen inequality, it follows

log Pr[i, I]

> Z P(er) Z P(mler) log P(m;(m)is valid in C;ler)
er€EL meM

> —I(M;Ei|EL).

Therefore, Pyli, L] > 2~ 1(MiEilEr)

2. In the substitution attack Rj, receives their keys from the sender, observe a
message m that is transmitted by T' and substitutes another message m’ for m. Ryp,
succeed if m’ is accepted by R; as authentic. We denote by Ps[i, L] the successful
probability that Ry perform substitution attack on R;. We have

Psli, L] = eILIlEaE}(L, 11;11&)} m'gsln%}e(M P(m;(m) is valid in C;|m,er)

Now we define a substitution characteristic function xs(m’, m,e;,er) by

, 1 xr(m' ejer) =land xr(m,e;,er) =1, m' # m,
Xs(m',m,eier) = { 0 otherwise.

We introduce a random variable M’ which only takes values when ys(m',m,e;
yer,) = 1. It follows that there is a joint probability distribution P(m’,m,e;, er)
such that P(m,e;,er) is the probability distribution given in the system and such
that if xg(m',m,e;,er) =0 and P(m,e;,er) # 0 then P(m',e;,er) = 0.
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I(M'; Es|M, Er)

P(M' Ei|M,Er)
= Ep(nmeq.en) 198 peammar o) POETIL B

= / . P(ml;ellmyeL)

= Do POwimoeien)log s SRt
m'EM',mEM
ei€Eier€EL

= Z P(m’,m,eL)P(ei|m’,m,6L) log P%’?,ﬂ,ﬁ;ﬁgf{lﬁ,ﬂff)

m'EM',mEM
ei€Bier € B,

= Z P(m/,m,er) Z P(e;|lm',m,er)
mIEMI,mEM e, €E;
eL €Er,P(m,m,er )#0

P(m'|m,er)P(ei|lm' ,m,er)
P(m'[m,er, )P(eilm,er)

-log
If P(m',m,er) # 0 then xs(m’, m,e;,er) =0 implies P(e;|m’, m,er) = 0, and so

(eilm',m,er)

P
P(e;|m’ iver)l =0.
(e;lm',m,e;,er)log Pleilm, cx) 0

Thus the summation taking over E; in the above identity is restricted to all e; for
which xg(m',m,e;,er) = 1. By log-sum inequality, we have

I(Ml; EilM, EL)

= Z P(m/,m,er) Z P(e;|lm',m,er)xs(m',m,e;,er)

m'EM,mEM ei€Ei

e €EL ,P(m' m,er)#0

. (log P<e1|m',m,eL)xS<m’,m,el,eL))

P(eilm,er)xs(m’,m,e;er)

! / !
> E P(m/,m,er) E P(e;|m',m er)xs(m',m,e; er)
m'EM,mEM ei€B;
er €EL ,P(m' ,m,er)#0
E P(el|ml7mveL)XS(ml7mvelveL)
iEF
log &€
E P(eilm,er)xs(m’ m,e;,er)

e, €EFE;

Again, if P(m',m,er) # 0 and xs(m',m,e;,er) = 0 then P(e;|m’',m,er) = 0. Tt
follows that

> P(eilm’,m ep)xs(m',m, e, er) = 1
e €E;
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and

Z P(eilm,er)xs(m’,m,e;,er) = P(m;i(m') is valid in C;|m, e )
e, €E;

So we have

I(M/;EZ'|M,EL)

> - Z P(m/,m,er)log P(m;(m') is valid in Cj|m, er)
m'eéM’' meM,er €Ey
= — E P(m,er) Z P(m/|er, m)log P(m;(m’) is valid in C;|m, er)
meM,er €EL m'eM’
Since
PS[ZaL]
> Z P(er) Z P(mler) Z P(m/|m, er)P(m;(m') is valid in Cj|m,er)
e €FL meM m'eM’
> Z P(er,m) Z P(m/|m,er)P(m;(m') is valid in Cj|m,er).

e, €EEL, meM m'eM’
By Jensen’s inequality, it follows

log Psli, L]

v

Z P(er,m) Z P(m/|m,er)log P(m;(m’) is valid in C;|M,er)
er,,meM m'eM’

> —I(M';E;|M,Er).

We obtain
Pg[i, L] > 2~ T(MEBIM EL),

APPENDIX II

In the following we give we comparison between bounds obtained in Theorem 3.2

and the bounds derived by Kurosawa and Obana in [13]. Let £ = %

1. In [13] the first part of Theorem 9 proves that

1
Pr>——.
T > i
We show that our Theorem 3.2 (iii) implies that
1
PD = HlaX{P],PS} 2 —

7k
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This is because assuming Pp = max{Pr, Ps} = 1/q and using Theorem 3.2
(iii), we have

1 S 1
M| > g[S = Pp =L+ > ¢/ 5L L

g~ M| e

Our result applies to general MRA-codes. KO result is stronger as Ps >
1/q implies Pp > 1/q, but only applies to MRA-codes that are perfect for
impersonation.

2. Theorem 10 and 11 in [13] in fact prove the following result(see also the intro-

duction in [13]).

Theorem .1 (KO [13]) For (w,n) MRA-code without secrecy, if Pr = Ps =
’”%/Z , then |E| > €% and |E;| > (¥/0)? for all 1 < i< n.

This result can be also obtained from Theorem 3.2. Indeed, since P; = Ps =
’”%/Z’ we have Pp = “”L\/Z = %, where ¢ = /¢ By our Theorem 3.2 (i) and (ii) it
follows that

|E:i > q* = (V0)*.
B> g™ = (V)™ = (t)°
proving the desired result.

This result applies to all (w, n) MRA-codes and does not require the code to be
perfect for impersonation, or the assumption that the code is without secrecy.

3. The second parts of Theorem 9, 10 and 11 in [13] do not have any counterpart

in this paper.
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