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Abstract

TP Multicast has proven to be an effective communication prim-
itive for best effort, large-scale, multi-point audio/video confer-
encing applications. While the best-effort transport of real-time
digital audio/video is a relatively straightforward and well un-
derstood problem, many other applications like multicast-based
shared whiteboards and shared text editors are more challenging
to design because their underlying media require reliable trans-
port, i.e., a “reliable multicast” protocol. The design of scalable
end-to-end reliable multicast protocols has unfortunately proven
to be an especially hard problem, exacerbated by the enormous
degree of network and system heterogeneity present in the Inter-
net. In this work, we propose to tackle the heterogeneity problem
with a hybrid model for reliable multicast that relies in part on
end-to-end loss recovery mechanisms and in part on intelligent
and application-aware adaptation carried out within the network.
In our framework, a network of application-aware agents — or Re-
liable Multicast proXies (RMXs) — use detailed knowledge of ap-
plication semantics to adapt to the effects of heterogeneity in the
environment. We identify three key issues that must be addressed
by this framework. First, to allow the RM applications to adapt
to a wide range of network conditions and client capabilities, the
RMXs must intelligently perform bandwidth and data adaptation
to best suit the clients’ and applications’ requirements. Second,
to allow applications to customize the RMX behavior based on
the concepts of Application Level Framing (ALF), we must de-
fine an application API for controlling and manipulating RMXs.
Finally, we define and evaluate a software architecture for dynam-
ically deploying RMXs in the wide area.

As a preliminary demonstration of the efficacy of this ap-
proach, we have implemented a prototype RMX for a shared
whiteboard application for hand-held PDAs. We rely on an im-
plementation of the Scalable Reliable Multicast (SRM) protocol,
libstm that we have built at Berkeley. We have built a number of
applications on top of this reliable multicast library and plan to
evaluate the usefulness of RMXs for these applications.

1 Introduction

The Internet multicast backbone, or MBone [16, 15], forms
the conduit for the “IP multicast forwarding service,” an
extension of the traditional, best-effort Internet datagram

model for efficient group-oriented communication. In IP
Multicast, each source’s data flow is delivered efficiently
to all interested receivers according to a multicast rout-
ing tree. For large-scale group communication, the band-
width savings afforded by multicast are enormous, and con-
sequently, a large and growing number of multimedia con-
ferencing tools [27, 37, 23, 36, 22] have been developed that
exploit multicast and the MBone.

Though multicast applications reap enormous performance
benefits from the underlying multicast service, they are fun-
damentally challenged by the heterogeneity that is inher-
ent in the disparate technologies that comprise the Internet,
both within the end systems and across the network infras-
tructure. Table 1 shows the high variance in client and
network capabilities today. End devices range from sim-
ple palm-top personal digital assistants (PDAs) to power-
ful high-end desktop PCs, while network link characteristics
can vary by many orders of magnitude in terms of delay,
capacity, and error rate. Although technology continually
advances the low end of the heterogeneity spectrum, the gap
between low-end and high-end systems will inevitably exist
far into the future. Hence, any software system designed
to function well across such a wide range of characteristics
must adapt to the needs of its environment.

When network heterogeneity convolves with the multi-
cast communication model, a communication source is po-
tentially confronted with a wide range of path characteristics
to each receiver, e.g., different delays, link rates, and packet
losses. Consequently, that source cannot easily modulate
its data stream in a uniform fashion to best match the re-
source constraints in the network. For example, if the source
sends at the most constrained bit rate among all paths to
all receivers, then many high-bandwidth receivers experi-
ence performance below the network’s capability, whereas
if the source sends at the maximum possible bit-rate, then
low-bandwidth paths become congested and receivers be-
hind these congested links suffer. A source cannot simply
transmit a stream at a uniform rate and simultaneously sat-
isfy the conflicting requirements of a heterogeneous set of
receivers.

A number of promising works have addressed the prob-
lem of multicast heterogeneity in the particular case of real-
time audio/video data, and each of these solutions generally
falls into one of two categories: end-to-end adaptation based



| System Characteristic | Low-end | High-end |
Machine Hand-held PDA High-end Desktop machine
CPU Speed 16MHz 450 MHz

Screen Resolution

160x160 2-bit gray-scale

1600x1200 24-bit true-color

Memory Capacity

2 MB physical
64 KB address space

128 MB physical
4 GB address space

Network Bandwidth

28.8 modem connection

100 Mb/s Ethernet

Network Latency

200-400 ms wireless [2]

1 ms ethernet

Table 1: End-client and Network Heterogeneity

on layered media [50, 41, 10, 38] or proxy-based transcod-
ing embedded within the network [55, 5]. In the former
approach, a source encodes its signal in a layered repre-
sentation and stripes these layers across multiple multicast
groups. In turn, receivers individually tune their reception
rates by adjusting the number of groups they receive. As
a result, heterogeneity is accommodated since each receiver
sustains the maximum rate that the network supports.

In the proxy model, media gateways are situated at strate-
gic points within the network and actively transform media
streams to mitigate bandwidth heterogeneity and client di-
versity. By placing a proxy between the source and sink
of data, we can accommodate network bandwidth variation
through format “distillation” [19] and optimize the alloca-
tion of bandwidth across flows using intelligent rate adapta-
tion [3, 5]. Moreover, the proxy can translate the underlying
media representations to enable communication among oth-
erwise incompatible clients.

Unfortunately, not all applications are amenable either to
layered representation or to transformational compression.
Moreover, unlike audio and video, where media streams are
ephemeral and packet loss can be gracefully accommodated
by momentarily degrading quality, many applications like
group whiteboards or shared text editors rely upon “persis-
tent state” and thus require that all data eventually reaches
all interested receivers, i.e., such applications require a “re-
liable multicast” (RM) transport [17, 52, 35]. Coping with
network heterogeneity in these cases is more challenging
compared to the unreliable case because the goals for relia-
bility imply that information cannot be discarded to create
a heterogeneous set of transmission rates. In other words,
the source is fated to run at an average rate at or below the
most constrained receiver’s rate.

In this work, we propose a twofold solution to this prob-
lem by (1) relaxing the semantics of reliability, and (2)
decoupling the members of the reliable multicast session
through a proxy-based communication model. In relaxing
the semantics of reliability, we lift the constraint that all
receivers advance uniformly with a sender’s data stream.
To this end, we leverage the Application Level Framing
(ALF) protocol architecture [13], which says that applica-
tion performance can be substantially enhanced by reflect-
ing the application’s semantics into the design of its net-
work protocol. Thus, to accommodate network heterogene-
ity for reliable multicast, we allow each receiver to define
its own level of reliability and to decide how and to what
degree individual application data units (ADUs) might be
transformed and compressed thereby admitting a scenario

where receivers “tap” into the multicast session at a variety
of rates. To support these semantics, the end-client must
be able to interact with a network infrastructure that sup-
ports receiver-directed reliability and programmable trans-
formation. We thus adopt a proxy architecture, where com-
putational and protocol bridging elements are embedded
within the network, and end-clients interact with these com-
ponents to customize their transport decisions in a fine-
grained, application-specific fashion.

Although significant work has been carried out with re-
spect to proxy architectures for web access and real-time
media gateways, to our knowledge, the proxy concept has
yet to be applied to the rate-adaptation problem for reliable
multicast. This work proposes a general software architec-
ture, based on Reliable Multicast proXies (RMX), which
allows heterogeneity to be accommodated in the context of
reliable multicast. This framework is based on the following
design principles:

e The proxies utilize a divide-and-conquer strategy to
split a large and complex heteregeneous problem into
many smaller and simpler homogeneous sub-problems.

e The proxy components exploit application-specific in-
formation to optimize the client/network adaptation
process.

e The transport protocol is tuned for specific environ-
ments by making explicit use of knowledge from the
session and application layers. This form of cross-layer
optimization enables better performance and smarter
adaptation.

e We leverage the semantics of the data when creating
data adaptation algorithms. For example, lossy com-
pression is a powerful form of dynamic data adapta-
tion [19] that can give much better results than general
lossless compression schemes by discarding data which
would not be usable by a low-capability client (e.g.,
image resolution can be reduced for a smaller screen
size).

This is accomplished by logically partitioning the multi-
cast session into a number of clouds of “pseudo-homogeneous
members. Each cloud has a representative RMX that acts as
the communication gateway between the cloud and the rest
of the session. Figure 1 shows a typical RMX configuration.
Such a configuration effectively localizes the problems that
are exacerbated by heterogeneity, such as congestion control,
loss recovery, bandwidth allocation, etc. This framework re-
quires the following key issues to be addressed:

)



Mechanism We define an architecture for reliable multi-
cast using proxy components spread across the net-
work. We describe an abstract model for an RMX,
and use this model to demonstrate the ability of the
framework to adapt to network and client heterogene-

ity.

Control We discuss means to allow applications to control
and manipulate RMXs in order to tailor them accord-
ing to the principles of ALF. We propose a scheme for
adaptive bandwidth allocation that takes into account
receiver and application interest in the RMX decisions.

Deployment We investigate the issues related to dynamic
placement of RMXs at appropriate locations in the
network. Ratnasamy et al. [45] have proposed a scheme
called the Group Formation Protocol (GFP) for dy-
namically grouping receivers within a multicast session
that appear to see correlated losses from the source.
We use this as a basis for figuring out optimal place-
ment of RMXs.

Applications We build upon this framework to support a
range of reliable multicast applications such as shared
electronic whiteboards, software distribution, informa-
tion dissemination and web caching. We will evaluate
the performance of the framework in the context of
these applications.

The RMX framework is designed to allow the use of dif-
ferent reliable multicast protocols in the various clouds in
the session. However, in order to best exploit the princi-
ples of Application Level Framing, we plan to concentrate
our initial efforts on Scalable Reliable Multicast (SRM) [17]
which was specifically designed to accomodate application
semantics in its transport protocol. We build upon libsrm
[42], an implementation of SRM developed at Berkeley.

Our preliminary exploration into the rich space of the
RMX infrastructure is described in [12]. In that paper, we
discuss some initial work on the RMX abstract model and
present a prototype implementation of an RMX for enabling
reliable multicast sessions such as shared electronic white-
boards for impoverished devices like the PalmPilot PDA.

The rest of this proposal is organized as follows. Section
2 describes our architecture for the RMX infrastructure. In
Section 3 we discuss an abstract model for an RMX and
the various functions that the RMX performs. Section 4
presents a prototype RMX implementation. We describe our
strategies for controlling and customizing RMXs in Section
5 and discuss how the ALF philosophy affects the RMX de-
sign. We talk about deployment issues in Section 6. Finally,
Section 8 lists some related work, and Section 9 presents our
research agenda for this dissertation.

2 An Architecture for Heterogeneous Reliable Multicast

In the unicast world, TCP has proven to be the protocol
of choice for most applications that require reliable unicast
communication. TCP was designed to be a generic trans-
port protocol for reliable unicast communication: it provides
a simple ordered reliable data stream. Although several re-
searchers have proposed similar generic transport protocols

for reliable multicast communication [52, 35, 31], Floyd et
al. [17] demonstrate how different multicast applications
have widely different requirements for reliability, and hence
propose a scheme for reliable multicast that can take into
account these diverse application needs. Some applications
may require ordered delivery while other may not care while
still others may care about complete reliability for only a
subset of the application’s data. Although it is possible
to design a protocol taking into account the worst-case re-
quirements, such a protocol would not be optimized for spe-
cific applications. To overcome this weakness of “one size
fits all” type of protocols, Clark and Tennenhouse [13] pro-
posed a protocol architecture called Application Level Fram-
ing (ALF) that explicitly includes the application’s data se-
mantics in the design of the transport protocol. ALF claims
that the best way to design a protocol that can meet the
diverse reliability requirements of applications is to directly
involve the application in the reliability and loss recovery
mechanisms of the protocol. The application is best suited
to make the most intelligent decisions with respect to what
portions of the data space are required to be reliable and
what sort of ordering constraints are needed.

The Scalable Reliable Multicast (SRM) protocol [17] lever-
ages these ALF principles in its design of a reliability proto-
col for multicast. It builds upon the basic IP multicast de-
livery model—best-effort delivery to a dynamic group of re-
ceivers with possible duplication and reordering of packets—
and builds reliability on an end-to-end basis. By allowing
a receiver to selectively repair portions of the data stream,
it effectively accounts for the application’s semantics in the
design of its network protocol. While conceptually the de-
sign of a receiver-reliable transport protocol seems straight-
forward, realizing a toolkit/library for such an application-
specific protocol can run into problems with using tradi-
tional transport primitives. Primitives such as sequence
numbers hide the structure of the application’s data space
from the transport protocol. In order to allow the transport
protocol to be fine-tuned to the needs of the application, we
use a richer naming scheme—SNAP—that is more amenable
to ALF [43]. This is discussed in more detail in Section 5.1.

While SRM provides the basic building blocks for an end-
to-end reliable multicast framework, it has no support for
dealing with heterogeneity in the network and in end-client
devices or applications. Dealing with congestion and band-
width management is essential to the operational success of
a wide-area reliable multicast protocol. The SRM toolkit
(libsrm) built at Berkeley [42] provides a basic mechanism
for a fixed bandwidth constraint over the aggregate session.
This works only as long as the bandwidth constraint is low
enough to suit the most poorly connected client. Obviously,
this solution does not work well when the session consists of
a range of network and client characteristics.

Unicast congestion control over the wide area even in
the face of heterogeneity is easier to manage than that for
multicast. In the unicast case, there is a single path from
the source to its destination and a feedback loop between
the sender and the receiver that can be used to detect and
react to congestion. The problem gets much harder in the
multicast arena where there can be multiple senders, multi-
ple communication paths, and competing congestion on the



Boston

Wide-area
network

Figure 1: The RMX Architecture.

paths to the different receivers. This multiplicity of paths
and the possibility of multiple congestion points along inde-
pendent sections of the paths imposes great difficulty on the
design of an end-to-end congestion control scheme for reli-
able multicast. A good congestion control algorithm should
try to match the load imposed by the end-systems to the
resources available within the network and to dynamically
adapt the load to changes in network characteristics. Re-
searchers have proposed various congestion-control mecha-
nisms for multicast that can co-exist with TCP [57, 59].
However, all of these schemes suffer from limitations: most
are single-source-based schemes, and none of the schemes
address the issue of bandwidth heterogeneity along the mul-
ticast distribution tree. As outlined in Section 1, this het-
erogeneity compounds the problems of multicast congestion
control.

A crucial requirement for tackling the heterogeneity prob-
lem in multicast sessions is some scheme for exploiting the
structure and topology of the underlying multicast distribu-
tion tree. By explicit knowledge of the underlying topology
we can deal with the heterogeneity in the network with a
divide and conquer approach: creating multiple groups of
colocated receivers arranged in a hierarchy to essentially
localize the effects of congestion and network heterogene-
ity. In this way, one large heterogeneous and difficult prob-
lem is split into multiple smaller homogeneous sub-problems.
By topologically clustering the entire multicast session into
clouds of colocated homogeneous members, we can reduce
the wide-area heterogeneous congestion control problem into
a simpler problem of rate adaptation within homogeneous
clusters.

Figure 1 shows a picture of an architecture for wide-area
reliable multicast using proxies to mitigate the effects of het-
erogeneity. The entire multicast session is split into a num-
ber of clouds of essentially homogeneous participants based
on topological proximity. Each cloud contains a represen-
tative proxy agent that deals with the heterogeneity issues
across clouds. The RMX may be a designated receiver from
the group of session participants, or a specialized agent that

is strategically placed in the network to service this group
of participants.

The various RMXs that are spread across the network
may communicate with each other over a global multicast
channel, or may be connected to each other via unicast links.
The networking research community has studied the effects
and behavior of unicast congestion control in protocols such
as TCP, and these are well-understood and robust systems.
‘We can leverage this work in the design of a usable wide-area
reliable multicast architecture by relying on a robust unicast
protocol for communicating across RMXs over the wide-area
and relying on simple local-area multicast congestion control
schemes within each cloud.

The feasibility of the RMX architecture depends upon
the ability to group session participants into topologically
sensitive clusters. This requires information about the un-
derlying multicast distribution tree that the IP service model
deliberately hides from higher transport and application lay-
ers. We describe a Group Formation Protocol [45] for infer-
ring the distribution tree structure and its application to our
architecture in more detail in Section 6.

3 An Abstract Model for an RMX

Based on the principles outlined earlier, we present a generic
model for reliable multicast proxies. Figure 2 shows the dif-
ferent components of the RMX model. The RMX splits
the session into multiple proxied session. Essentially, the
RMX separates the cloud of clients that it serves—the proz-
ied session—from the rest of the global session. The Global
Session Agent serves as the interface to the main multicast
session. The protocol adapter is the core of the RMX, and
uses the transformation engines to assist in converting the
data store between the formats of the main session and the
proxied session. Finally, the prozy agent serves as the inter-
face to the proxied session.

The global agent is the proxy’s interface to the reliable
multicast session. It participates in the RM session on be-
half of the RMX clients, handles the details of the commu-
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Figure 2: The RMX Model.

nication protocol, and recovers lost data by requesting the
missing data units from other members of the session. Con-
ceptually, the global agent builds a data store of all “objects”
that are part of the reliable session. The data store is up-
dated whenever data is received either from the RM session
or from the proxied session. When the global agent receives
a data object, it adds it to the data store. If the data store
is updated with data from the proxied session, the global
agent propagates the data to the multicast session.

The data store is a “soft” copy of the reliable multicast
data associated with the session. The global agent uses the
loss recovery mechanisms built into the protocol to construct
the data store. In the event that the store is lost due to a
system crash, it can be regenerated by recovering the lost
data from other agents in the reliable multicast session.

The protocol adapter and proxy agent provide the inter-
face to the proxied session. The proxy agent implements the
actual communication protocol to the clients. This protocol
may be another instance of a reliable multicast session us-
ing the same or some other RM protocol, or a totally differ-
ent communication protocol such as TCP. The design of the
proxy agent is driven by ALF principles and depends largely
on the characteristics of the proxied clients and network.
For example, clients that do not have multicast support can
use a unicast protocol agent that provides a tunnel between
the multicast session and the client. On the other hand,
an RMX agent might simply carry out congestion control
by limiting its transmission rate according to application-
specific policies. In this case, two instances of the same RM
protocol run on both sides of the proxy and another RM
agent communicates with the proxied session.

The protocol adapter is the most sophisticated compo-
nent of the RMX model. Not only does it provide the requi-
site functionality for heterogeneous environments, but it also
relies heavily on ALF to achieve reasonable performance.

3.1 The Protocol Adapter

The protocol adapter, which is interposed between the data
store and the proxy agent, orchestrates all data transfor-
mations to best adapt the multicast communication for the
environment at hand. The adapter relies upon three core

forms of dynamic adaptation: rate adaptation, data trans-
formation, and protocol conversion.

3.1.1 Rate Adaptation

A rate-limiting adapter reduces the rate at which data flows
from the RM session to the proxied session and vice versa.
Clients that are connected to the MBone via low-bandwidth
links can use this form of RMX to participate in RM ses-
sions without getting overwhelmed by data arriving at a
faster rate than they can handle. Section 3.1.2 describes
how application semantics can assist in rate adaptation by
controlling the data that is transmitted across the network.

Rate-limiting adapters also provide a mechanism for con-
necting low-bandwidth clients to an RM session that uses
rate-based congestion control. In the face of widely vary-
ing network connectivity, traditional congestion control al-
gorithms [57, 39] effectively limit the overall bandwidth of
the session to that of the slowest client. But, by interposing
a rate-limiting proxy between the low- and high-bandwidth
clients, we alleviate this problem, effectively splitting the
RM session into independent partitions. The proxy par-
ticipates in both sessions and limits the data rate in the
low-bandwidth session. The proxy may use an indepen-
dent algorithm in the low-connectivity region, and because
the sessions are decoupled in this fashion, low-bandwidth
clients do not adversely impact the reception rates of the
well-connected session participants.

3.1.2 Data Transformation

Since the protocol adapter is tightly coupled to the applica-
tion, it can exploit application-level knowledge to transform
data objects while shuttling them between the data store
and the proxied session. Data transformation serves two
important purposes. First, it allows the proxy to adapt the
data according to the clients’ device characteristics as clients
may be incapable of handling certain data types. For exam-
ple, many PDAs do not support standard image formats
such as JPEG and GIF and instead use simple bitmap rep-
resentations. The protocol adapter can convert these more
complex data types into representations that an unsophisti-
cated client can easily understand.



Second, active data transformation allows the system to
carry out rate adaptation through compression, which can
either be lossy or lossless depending on the nature of the un-
derlying data. Images and video data are prime candidates
for lossy compression, since much of the color information
and resolution can be reduced or discarded, often without
degrading the information conveyed by the image. This form
of lossy compression is particularly helpful when the client
devices are physically incapable of handling color or high
resolution, and such information would be discarded at the
client in any case. For data that cannot tolerate any loss, the
protocol adapter uses lossless compression. An even better
form of dynamic data adaptation involves the use of progres-
sive data formats such as progressive JPEG [58] (or any of a
multitude of research codecs based on sub-band transforms
[47, 51] or hierarchical vector quantization [10]); with such
formats, the adapter initially generates a low quality image
for the client and gradually fills in higher quality information
in the background.

The protocol adapter uses specialized transformation en-
gines to perform these conversions. These engines can often
be built from off-the-shelf code such as image conversion and
compression algorithms and data compression routines.

3.1.3 Protocol Conversion

While the data transformation stage described above mod-
ifies the representation of individual objects or groups of
objects to meet bandwidth constraints, the protocol con-
version stage, in contrast, bridges together diverse protocol
families running in different sub-sessions across the network.
Our premise is that the different regions of a diverse net-
work environment might be best served by an equally di-
verse range of reliability mechanisms and each such region
should be optimized by locally deploying the most suitable
protocol, e.g., hop-wise ARQ might be appropriate to effec-
tively accommodate the high loss-rates of a series of radio
links, while SRM [17] works well in a high-bandwidth LAN,
and Lorax [31] is better for a wide area topology arranged as
a tree. To this end, the RMX framework allows us to seam-
lessly integrate a diverse set of protocols running across a
disjoint set of network clouds.

RMX supports two different variants of protocol conver-
sion: transport-level conversion and application-level con-
version. In transport-level conversion, the protocol adapter
acts as a bridge between two different transport protocols,
such as a reliable multicast protocol like SRM and some
other protocol, say TCP. This allows multicast-incapable
clients (e.g., behind an ISDN or modem line) to access a re-
liable multicast session. Though one could argue that thin
clients such as PDAs should include multicast in their net-
work stacks, the fact is that many simply do not, and in-
stead, we rely upon our protocol adapter to provide a unicast
tunnel to such clients.

Transport-layer protocol adaptation is not limited to con-
version between multicast and unicast protocols as the RMX
can also mediate among different flavors of reliable multi-
cast. By exploiting application-specific knowledge, the pro-
tocol adapter can provide interoperability across the wide
range of reliable multicast protocols that are in use in re-
search and commercial communities, e.g., Scalable Reliable

Multicast (SRM) [17], Pretty Good Multicast (PGM) [52],
Reliable Multicast Transport Protocol (RMTP) [35], etc.

In contrast to transport-layer conversion, application-
layer conversion modifies the actual application objects to
mitigate fundamental semantic discontinuities across diverse
applications. In this case, the entire application-level data is
transformed from one format to another. Examples of such
adaptation include the following:

e Consider two desktop applications designed to imple-
ment a shared whiteboard. These applications, if de-
signed without a common standard, will use completely
different protocols and data formats for communica-
tion within the session. We can build an RMX to
bridge the gap between these two applications. Such a
proxy must maintain two data stores, one for each ap-
plication format, and the protocol adapter must intel-
ligently map objects and operations in one data store
to the other.

e A second scenario is a proxy for communicating with
computationally impoverished clients. Such a client
(say, a PDA) may be too limited to handle the full
complexities of the application data. Hence the proxy
must convert the entire data store to a much simpler
representation before relaying it to the client. We elab-
orate on this in section 4.3.1 while discussing our ex-
ample prototype.

4 A Prototype: Shared Whiteboard Proxy for PDAs

We now use a specific example to describe the design and
implementation of a prototype RMX system, while demon-
strating our use of Application Level Framing to tailor the
RMX model to a specific application. We use a shared white-
board proxy as our motivating example. The proxy is used
to enable whiteboard applications for hand-held devices such
as PDAs.

The original electronic shared whiteboard application,
wb [36], was developed at the Lawrence Berkeley Labora-
tory. Based on their experiences with wb, researchers at UC
Berkeley have built a second-generation whiteboard tool,
mediaboard [54]. This application allows a diverse set of
media to be created and displayed interactively by a group
of users sharing a multicast session. A mediaboard session
consists of a shared presentation space that is divided into a
number of canvas pages. It supports traditional whiteboard
data types such as line drawings and text, and adds support
for other media such as images and postscript files.

The mediaboard has been designed with desktop and
laptop PCs as the main usage platform. We explore the ex-
tension of this application to small hand-held devices or per-
sonal digital assistants (PDAs). Most PDAs are too limited
in their capabilities to be able to handle the complexities of
the mediaboard protocol on their own. For example, while
the 3COM PalmPilot PDA [1] has a 64 kilobyte code size
limit, the binary for the desktop version of mediaboard is sev-
eral megabytes in size. Given these technical limitations of
PDAEs, it is not feasible to create a stand-alone mediaboard
client on current generation PDAs.



‘We were able to implement the client mediaboard within
the severe limitations of our PDA platform by making exten-
sive use of the ALF principles. The RMX handles most of
the complexity of the reliable multicast protocol, requiring
little more from the PDA than a simple drawing canvas.

4.1 The PDA Client

The mediaboard client on a PDA must be able to sup-
port the standard whiteboard features such as creating, cut-
ting, pasting, and moving objects in the shared presentation
space. It should allow the user to browse through existing
pages without having to communicate with the proxy every
time the user switches to a new page. Moreover, given the
physical limitations of the PDA screen, it is important that
the client be able to pan around the current page and zoom
in and out to different levels of granularity. We used the
3COM PalmPilot [1] as our testbed. Figure 3 shows screen-
shots of the desktop and PDA versions of the mediaboard
application.

4.2 The mediaboard Proxy

In this section, we analyze the individual components of the
RMX model and demonstrate how we specialize them to the
requirements of this application. Most PDA clients, includ-
ing the PalmPilot, do not support multicast; hence the proxy
agent for the mediaboard RMX must map the unicast world
of the client to the multicast session. To preserve reliability,
we use TCP for communication between the clients and the
proxy. For every client connected to the proxy, the proxy
agent maintains a connection object which encapsulates the
per-client state at the proxy. It contains up-to-date infor-
mation about the client’s device characteristics, the current
page, and the current zoom level. The protocol adapter uses
this information to assist it in the adaptation process.

The global agent participates in the mediaboard session
on behalf of all clients. It is built using the SRM framework
that was developed for the desktop mediaboard application.
The global agent joins the multicast group for the media-
board session and uses the desktop mediaboard protocol to
communicate with the rest of the session. It deals with losses
that occur in the session, and uses the reliability machinery
in the protocol to request lost data objects and repair them
[17]. Each data object in the mediaboard protocol is a “com-
mand” that performs a certain action on the shared drawing
space. Commands are associated with a specific page and
client in the session.

When the global agent receives mediaboard commands
from the multicast session, it adds them to the data store.
The data store is organized hierarchically in order to sepa-
rate the data associated with the various pages and clients
in the session. Similarly, when the proxy agent receives data
from the PDA client, it hands the data over to the protocol
adapter which in turn adds mediaboard commands to the
data store. The global agent picks these commands up from
the store and sends them to the rest of the session.

The protocol adapter implements the details of the me-
diaboard protocol and provides the interface to a simplified
protocol that is used for communication with the PDA.

4.3 The Protocol Adapter

The protocol adapter for the mediaboard proxy implements
all three aspects of adaptation discussed in section 3.1.

4.3.1 Protocol Conversion

The proxy agent uses TCP to communicate with the PDA
clients. The protocol adapter provides a bridge between the
TCP and SRM sessions. Moreover, to ensure that the client
implementation is as straightforward as possible, the proto-
col adapter handles all the complexities of the mediaboard.
The client, instead, receives only a sequence of simple draw
operations (draw-ops). The protocol adapter transforms the
entire data store of mediaboard commands into a “pseudo-
canvas” by executing each command and storing its result
in the canvas. The draw-ops on the pseudo-canvas are what
is transmitted to the PDA. For example, to eliminate any
unnecessary state at the client, all undo operations are per-
formed entirely by the protocol adapter and are converted
into appropriate draw-ops before sending them to the client.

Since a client may join a mediaboard session at any time
in the life of the session, the protocol adapter must be able
to replay all past events that have happened on the pseudo-
canvas. Hence, the canvas caches a history of the effects of
all mediaboard commands in memory. When a new client
joins the session, it can replay this history.

4.3.2 Data Transformation

In addition to converting mediaboard commands into sim-
pler draw-ops, the protocol adapter also converts individual
data objects according to the requirements of the clients.
The PalmPilot can handle simple draw operations such as
lines, circles, rectangles, text, etc. However more complex
objects such as images and postscript are too difficult for
the PDA to digest on its own. We look at each of these in
the following sections.

Image and Postscript conversion: The mediaboard uses
the Web standard formats GIF and JPEG for images,
which the PalmPilot cannot understand. Implement-
ing decoders for these formats on the PDA is too com-
plex and time-consuming. Instead, we rely on decoders
in the proxy. Internally, the PalmPilot uses a simple
bitmap representation for images. The proxy converts
mediaboard images directly to the PDA’s native rep-
resentation before sending them. Similarly, the proxy
must convert postscript data either to images in the
PDA’s native format or into plain text that can be
easily displayed by the client.

The protocol adapter uses specialized image transfor-
mation engines to assist it in the conversion. We have
implemented an image converter using code developed
by Paul Haeberli [21]. The image converter is opti-
mized for the PalmPilot’s screen characteristics. In
addition to format conversion, it performs lossy com-
pression by scaling down the images according to the
zoom level on the client, the screen resolution of the
client, and the color depth of the client’s screen. The
processing steps consist of image resizing, sharpening,
adding noise, and dithering.
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Figure 3: The desktop and PDA mediaboard applications.

Other data types: The protocol adapter also assists the
client for seemingly simpler data types such as ar-
rows and fonts. Drawing an arrow requires trigono-
metric calculations using floating point numbers. The
PalmPilot has no built-in floating point hardware and
emulation software is either not installed or too slow.
Hence the protocol adapter computes the arrow coor-
dinates and sends them as part of the draw-op to the
client. Similarly, since the client cannot understand
the X Windows-based fonts that are used by the medi-
aboard protocol for text objects, the protocol adapter
converts these font names into reasonable native PDA
fonts.

Zooming: Since most PDA screens are extremely small, we
support zooming to multiple levels on the client can-
vas. This enables the user to view the session data
at different levels of refinement. The client can handle
scaling of simple objects (lines, rectangles and ellipses)
on its own. For scaling complex objects, it relies on the
proxy. Whenever the user switches zoom levels on the
client, it communicates this state change to the proto-
col agent on the proxy. The protocol adapter is notified
of this change, and it recomputes new font mappings
for the new zoom level. In addition, the client may
request the proxy to send some or all of the displayed
images and postscript at the new zoom level. The pro-
tocol adapter recomputes the new bitmap representa-
tions at the new zoom level and sends them over to
the client.

4.3.3 Intelligent Rate Limiting

Since the proxy has complete knowledge of the client’s state,
the protocol adapter can perform intelligent forwarding of

data from the mediaboard session to the client. Lossy image
compression is one such mechanism that we use.

By eliminating redundant draw-ops before sending data
to the client, we further reduce the number of bytes that
must be sent over the low-bandwidth link to the client. For
example, if an object has been placed on the canvas and
later deleted, the canvas will refrain from sending any in-
formation to the client about that object. Similarly, if an
object has been moved multiple times, all move operations
are combined into a single draw-op before sending it to the
client.

Lastly, the protocol agent keeps track of the current page
that each client is viewing. The protocol adapter sends only
the data associated with that page to the client. All other
data is kept buffered in the pseudo-canvas until the client
actually switches to a new page. At that time, the protocol
adapter collects all new data on that page, packages it into
draw-ops, and sends them to the client.

5 Control: Configuring and Manipulating RMXs

Our prototype RMX is very tailored to a specific application:
a shared electronic whiteboard for PDAs. Although it uses
ALF principles to involve the application in its decisions, it
does so in a very ad hoc manner and it is not easy to gener-
alize the prototype to other applications. Application Level
Framing presents two conflicting requirements for the design
of a generic framework. On the one hand, we need to spe-
cialize the RMX according to specific application needs, but
on the other hand, we do not wish to implement a new RMX
for every new application and client-type. What is required
is a common well-defined interface between the application
and the proxy that can be used to specify application poli-
cies to the RMX. We rely on two separate mechanisms to
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achieve this:

e A common naming scheme for objects in the reliable
multicast data space that is consistent for both the
application and the proxy.

e An ability to customize specific components of the
RMX by injecting specialization code into the RMX.

‘We now look at these two mechanisms in detail.

5.1 Hierarchical Data Naming

The ALF principles require that an application be able to
control the behavior of the reliable multicast transport pro-
tocol. However, if we use traditional schemes for naming
protocol data units, such as sequence numbers like in TCP,
we would lose a lot of semantic information and structure
that an application may desire in order to intelligently con-
trol the transport protocol. For example, if the transport
library detects that it is missing data associated with se-
quence numbers 4567 through 6012 and queries the appli-
cation as to whether it should repair the missing data, the
application has no idea what those sequence numbers cor-
respond to in its own data space. Similarly if the transport
library has a flat sequence space, it becomes harder for the
application to specify flexible ordering contraints. For ex-
ample, an application that is trying to retrieve many images
that are part of a web page may require ordering within each
image, but no ordering constraints across images. With a
flat sequence space in the transport library, the structure
of the various images in the application’s data space is lost
in the transport layer and it becomes difficult to implement
such flexible ordering schemes.

These examples argue for a sematically richer and more
structured naming scheme in the transport protocol. If the
application can embed its own semantic information into the

structure of the transport protocol’s name space, then it be-
comes much easier for the receiving application to control
the protocol behavior. In [43], Raman et al. proposed a Scal-
able Naming and Announcement Protocol (SNAP) for the
SRM framework. SNAP defines a hierarchical namespace
that is used to identify data objects between the application
and the transport protocol. Structuring data hierarchically
allows the application to define different delivery and re-
liability semantics for different portions of the namespace.
Figure 4 shows how a SNAP hierarchy is organized.

An Application Data Unit (ADU) is the smallest unit of
data that the application can meaningfully handle. The ap-
plication hands ADUs to the transport protocol and expects
them to be delivered atomically to the receivers. ADUs can
be of arbitrary size. Large ADUs may be split into multi-
ple packets by the transport protocol. However, it is the
job of the protocol to reassemble the ADUs at the receiver
before handing them up to the application. Every ADU is
mapped into a container. A SNAP namespace consists of a
hierarchy of containers. Applications map all of their data
into the hierarchy. The transport layer assigns each con-
tainer within a namespace a unique identifier. Applications
can attach their own labels to containers. The labels can be
arbitrary application level tags such as URL-like strings or
< attribute,value> tuples that describe the data. Such labels
allow the receiving application to determine the semantics
of the container hierarchy. A container can refer to other
containers or ADUs or both. Within a container ADUs are
organized into a flat sequence space.

As an example, a whiteboard [36] source may create a
namespace consisting of a root container and many second-
level containers, one for each page in the session. Operations
on a particular page in the session are ADUs within the
corresponding container. The application can associate the
page label with the container identifier that is generated by
the transport layer.

Each data source in the group creates its own indepen-



dent namespace. This simplifies consistency issues that may
arise with multiple sources trying to update the same names-
pace. Containers within each namespace are the unit of se-
lective reliability: a receiving application can choose to ap-
ply different reliability and ordering semantics to different
containers. Applications can also use the naming scheme to
instruct the RMX to prioritize containers or ADUs within
containers based on receiver interest or capabilities. Effec-
tively, the common naming scheme allows us to split the
policy decisions for adaptation from the mechanisms and
allow the applications to specify different policies via the
hierarchy of containers and ADUs.

5.2 Code Injection: Customizing the RMX

Although a common naming scheme between the application
and the RMX is a step towards a generic RMX framework,
we still need application-specific code in the RMX to assist
in the adaptation process. For example, applications may
wish to specify transformation routines to convert data ob-
jects on the fly inside the RMX before they are downloaded
to the clients. These transformations depend heavily on the
individual applications under consideration as well as the
client devices that the RMX is serving. In order to allow
for such application-specific code modules, the RMX must
provide a well-defined interface for injecting specialization
“code” into the RMX in the form of applets. These ap-
plets may be written in a full programming language script
such as Java or Tcl. The applets can customize individual
RMX components according to the specific needs of the end
application or client device.

Dynamic code uploading introduces a number of hard
issues such as code safety, resource sharing, etc. A number
of researchers are trying to address these issues [14, 53]. For
the purpose of this research, we will not focus on these issues.

5.3 Dynamic Bandwidth Adaptation

We now look at how we would apply these mechanisms to
the design of a generic RMX for dynamic bandwidth adap-
tation across a range of applications. Given the heterogene-
ity across the network, we need to adapt to the varying
bandwidth requirements across the different clouds of par-
ticipants. Since some participants may be interested in high
data rate streams of content, while others may not be able
to handle the high rates, the RMXs need to intelligently
throttle the bandwidth across the bottleneck links and po-
tentially adapt the content (by transcoding it down to lower
rates, etc.).

Application semantics are key to being able to fine-tune
the bandwidth adaptation process to best suit the individ-
ual client/application needs. Depending upon the applica-
tion content, various schemes can be used to dynamically
adjust the data rate and/or prioritize the data objects to be
transmitted across the bottleneck links. Layering of the data
stream is one approach [50, 41, 10, 38]. The data stream is
split into a number of layers, each layer adding a level of
refinement to the previous layers. The basic layer is suffi-
cient to recreate a low quality version of the original data;
the refinement layers add more detail. Another approach to
receiver-driven bandwidth adaptation is a consensus-driven
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scheme [3]. In such schemes, receivers vote on which data
objects are more important than others; the RMX gathers
these votes and prioritizes the data objects according to the
aggregate votes. In addition to bandwidth adaptation, the
RMX can be tuned to specific network or application condi-
tions. For example, an RMX serving a network cloud that
is known to have a high error rate (e.g. a wireless network)
can be programmed to adjust its data stream to adapt to
these specific conditions. Forward error correction is one
example of a scheme that can be used in high error-rate
situations, rather than strict ARQ-based schemes, to allow
receivers to reliably receive the data without having to wait
entire round-trip times. Another example of a scheme that
works well in high error-rate conditions is the Digital Foun-
tain coding scheme [9]. In this scheme, the sender injects
a stream of distinct encoding packets into the network; the
key property of a digital fountain is that the source data can
be reconstructed at a receiver intact from any subset of the
encoding packets that is equal in length to the source data.
We concentrate on consensus-driven schemes for band-
width adaptation in RMXs. The Hierarchical Data Naming
scheme gives us a convenient way to allow the application
to hook into the bandwidth adaptation process by allowing
end-clients to mark specific containers and/or ADUs are im-
portant or as having higher priority than others. Each end-
participant can periodically send in its votes for the priori-
ties to associate with specific data objects or groups of data
objects within the session. The RMX aggregates these votes
and assigns priorities to the containers and ADUs within
the SRM namespace. It uses these priorities to schedule
individual ADUs to be transmitted to the session partici-
pants. Higher priority ADUs are given a larger portion of
the available bandwidth, while lower priority ADUs may be
suppressed or delayed. In addition, the RMX can be pro-
grammed to transcode specific ADUs to reduce their size
or to convert them into progressive representations (such
as progressive JPEG [24] for still images). An object that
is converted into a progressive format can be split up into
multiple sub-objects, one for each layer of the progressive
representation. The lowest layer is assigned a high prior-
ity so that it reaches the end-clients immediately while the
enhancement layers slowly trickle down at lower rates.

6 Deployment of RMXs

A crucial aspect of the RMX architecture is the ability of the
framework to dynamically deploy RMXs in the appropriate
places in the network. Owur initial work on the framework
assumes static organization of RMXs. The prototype has
been built on top of AS1 [4], a framework for supporting
network-based services for transcoding, archiving, proxying,
etc. of multimedia content. We look at the Active Service
approach initially presented in [4] and extend that work for
our architecture. We also look at a dynamic protocol for
topological clustering of clients in a multicast session—the
Group Formation Protocol (GFP) [45]. We plan on investi-
gating the usefulness of GFP for our architecture.



6.1 Active Services

A number of researchers have proposed the use of agents
deployed in the network for providing a variety of services
to users, for example, web proxies, audio/video transcod-
ing gateways, firewalls, etc. The RMX is an example of a
network agent that operates on the reliable multicast data
stream and manipulates it to support various client and
application classes. Although these agents are embedded
within the network infrastructure, an important feature of
a large class of such agents is that they are created, config-
ured, manipulated, and controlled at the application layer
by employing application-specific protocols.

The existing IP service model does not provide any mech-
anisms for deploying such agents at appropriate places in the
network. In [4], Amir et al. have proposed a programmable
service architecture built on top of the existing IP infrastruc-
ture that allows users to install and run agents at strategic
locations in the network. Our prototype RMX relies on this
Active Service framework for deploying mediaboard proxies.
The framework is implemented on top of a cluster of nodes
within the network. Clients can request for specific service
agents (servents) to be launched within the cluster to handle
a mediaboard session. The Active Service framework hides
the issues of scalability, fault tolerance, and robustness from
the servents; the servents only need to deal with providing
the actual service.

6.2 The Group Formation Protocol

Although the Active Service framework provides the basic
mechanisms for deploying RMXs in the network, it does
not provide the right primitives for grouping homogeneous
clients within a reliable multicast session into topologically
sensitive clusters as described in Section 2. Moreover, once
the session has been partitioned into groups, we need to pick
appropriate locations within each group to place RMXs.

Once again, the IP service model is a “hindrance” to solv-
ing this problem. The IP service model was explicitly de-
signed to hide the topology of the underlying network from
the end-points. However, to effectively organize the clients
within an RM session into groups that can adapt to band-
width congestion along bottleneck links, that is exactly what
is required. The question then arises: is it at all possible to
discover topological information in an end-to-end manner
given that the existing IP service model deliberately hides
topology. In [44], Ratnasamy et al. prove that it is indeed
possible and present an inference algorithm that determines
the logical topology of the multicast routing tree. The algo-
rithm gathers loss statistics for the receivers in the multicast
session and estimates the multicast distribution tree based
on losses along the shared paths between receivers. However,
the algorithm’s assumption of global knowledge of losses at
all receivers precludes its inclusion in a practical protocol
framework.

In [45], Ratnasamy et al. build upon their initial tree-
inference work and present a more practical protocol build-
ing block—a distributed Group Formation Protocol (GFP)—
to produce a topologically-sensitive protocol primitive. Us-
ing GFP, participants in a multicast session self-organize
into a multi-level hierarchy of groups where the hierarchy is

congruent with the multicast tree topology from the source
of the session.

6.3 Using GFP for the RMX framework

In order to properly deploy RMXs in the network, it is cru-
cial that all colocated homogeneous receivers that share the
same loss sub-tree be coordinated in their actions such as
tuning to the same RMX. Moreover, it is important that
the RMXs be placed intelligently and dynamically at the
right points in the network. We can leverage GFP to solve
these problems. By building a hierarchy of groups that cor-
respond to the different colocated homogeneous sub-trees,
we can ensure coordination. Also, GFP picks a representa-
tive member for each group; the representative is typically
the member that is closest to the source in that group. This
member is an ideal place for deploying RMXs.

However, in its current state, GFP generates topology
information based on source-rooted trees for single source
sessions. We plan on investigating the extension of GFP for
multi-party sessions. Using GFP as a basic building block,
we plan to implement a dynamic deployment algorithm for
RMXs that exploits the topology information generated by
GFP.

7 RMX Applications

‘We plan on implementing bandwidth adaptation RMXs that
can serve a variety of reliable multicast applications; we plan
to build a deployment framework that can dynamically place
these RMXs at strategic locations in the network. In order
to test the flexibility of the framework, we have included a
range of applications varying from interactive drawing tools
to bulk data transfer applications.

Shared Electronic Whiteboards We have already built
a prototype RMX for shared electronic whiteboards
across a range of client devices. We plan on extending
this work to support bandwidth adaptation and con-
gestion management for large scale wide-area white-
board sessions.

Information Dissemination PointCast-like applications that

deliver stock quotes, news headlines, etc. to clients are
examples of a periodic data stream that needs to be de-
livered reliably to session participants. A key distinc-
tion of such applications is that information is in some
sense “real-time”; once new information is available,
the old data becomes obsolete and no longer needs to
be reliable.

Software Distribution This is an example of a bulk data
transfer application. The requirements for bandwidth
adaptation for such applications are very different from
the previous two examples. Most software consists of
binary images that cannot be transformed or trans-
coded in a lossy manner to a lower bit-rate to adapt
to lower bandwidth capacities. However, at the same
time, they do not have strict time constraints like in-
teractive applications.

We plan on using these applications as a testbed for the
efficacy of the RMX architecture.



8 Related Work

The notion of proxies as intermediaries between clients and
servers is not new. Numerous proxy mechanisms have been
proposed for HTTP [26]. The HTTP proxy mechanism was
originally designed for implementing security firewalls. It
has since been used in a number of creative applications, in-
cluding Kanji transcoding [48], Kanji-to-GIF transformation
[60], application-level stream transducing [8, 49], and per-
sonalized agent services for web browsing [6]. It has been
used to hide the effects of error-prone and low-bandwidth
wireless links [19, 34]. Bruce Zenel [61] applies the proxy
mechanism to the mobile environment: filters on an inter-
mediary host drop, delay, or transform data moving between
mobile and fixed hosts. However, the filters are part of the
application, complicating their reuse and making it awkward
to support legacy applications. Proxies have been used as
caching and pre-fetching agents [7, 40] to hide latencies in
fetching data from across the network. In the context of
multicast, [5] is a proxy framework for real-time audio/video
data. The InfoPad project [25] used an extreme approach
with proxies: move all intelligence into the infrastructure
and use the PDA simply as a dumb terminal.

Partitioning of application complexity between the client
and infrastructure has been used in other situations. A re-
lated project, TopGun Wingman [18], uses an infrastructure
proxy to support a simplified web-browser on the PalmPilot.
[56] have proposed the use of a simplified document format
(HDML) to reduce the complexity of PDA application. The
Rover system [28] provides a distributed object model that
presents a queued RPC mechanism for disconnected opera-
tion and object migration. For example, simple UI code can
be migrated to a mobile client, where it uses queued RPC
to communicate with the rest of the application running on
the server.

Content layering is another scheme that has been widely
used to tackle heterogeneity in multicast environments [50,
41, 10, 38]. Layering typically involves encoding the source
data into multiple layers; the base layer provides an approx-
imate representation of the original data, each additional
layer provides more information about the original data.

Various flavors of reliable multicast protocols have been
proposed in the research community. Pragmatic General
Multicast (PGM) [52] relaxes the reliability requirements
by using a sliding window-based model where reliability is
guaranteed only as long as the data is within the current
window. If applications desire greater reliability, they build
on top of this basic mechanism. Tree-based protocols such
as RMTP [35] organize group members into a hierarchical
tree structure and aggregate acknowledgments at midpoints
in the network. Each branch in the tree has a designated
receiver to receive acknowledgments from its children and
aggregate them upwards to the sender. Raman et al. are
investigating a general framework for a reliable multicast
transport [42] that take into account application semantics
to optimize the protocol performance and behavior.

In addition to ARQ-based schemes for reliable multicast,
a number of specialized encoding schemes have been pro-
posed that can avoid the need for requests for retransmis-
sion and the consequent round-trip latency that is intro-
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duced. Foward error correcting codes are an example of
such schemes. Rizzo et al. [46] describe a Reliable Mul-
ticast data Distribution Protocol (RMDP) that relies on
FEC techniques to adapt to client and network heterogene-
ity. Digital Fountain [9] is another scheme that encodes data
in a form that it can be reconstructed from any subset of the
encoding packets that is equal in length to the source data.
In combination with a clever layering strategy, this scheme
can be used to service a heterogeneous set of receivers, with
each receiver being able to receive the encoded fountain at
whatever rate best suits its network capacity.

In the arena of multicast congestion control, a num-
ber of schemes have been proposed [57, 59]. Most of these
schemes, however, deal only with a single-source session and
do not handle bandwidth heterogeneity very gracefully. Re-
cently, Balakrishnan et al. have proposed an architecture
for generic congestion management that provides conges-
tion control service to the transport layer: a host’s different
communication streams use a Congestion Manager service to
determine when they can send and at what rate. However,
their work does not yet address the issues related to multi-
cast congestion control. Amir et al. [3] present a receiver-
driven scheme for dynamic bandwidth adaptation that relies
on receiver interest to drive the bandwidth allocation pro-
cess.

A few other researchers have proposed the use of intelli-
gent computing in the network to assist in the design of reli-
able multicast protocols. Active Reliable Multicast (ARM)
[30] uses the concept of “active routers” that can perform
customized computation on behalf of the end-points. They
provide best-effort soft-state storage and perform the follow-
ing functions: data caching for local retransmission, NACK
fusion/supression, and partial multicasting for scoped re-
transmission.

Although the Active Networks initiative [53] provides a
network service model where all routers in the network can
act as computation engines on behalf of the end-clients to
implement services such as RMXs, we can get a lot of the
benefits associated with Active Networks without having to
deploy a brand new network architecture by resorting to
application-level service frameworks such as those proposed
by [4, 11, 20]. These systems provide an application-level
interface to deploy network-based services for performing
intelligent computing on behalf of end-clients.

Many researchers have proposed solutions for the prob-
lem of finding appropriate locations for deploying these net-
work services, Brian Levine [32] use IGMP MTRACE pack-
ets to allow receivers to obtain their path to the source of
a multicast group; receivers use the multicast path informa-
tion to determine how to achieve local error recovery and ef-
fective congestion control. Self-organizing Transcoders (SOT)
[29] are a scheme for dynamic adaptation of continuous-
media applications to varying network conditions by allow-
ing groups of co-located receivers that experience losses due
to a bottleneck link to elect a representative transcoder for
local repair. [33] describe an algorithm for finding the op-
timal placement of multiple web proxies among a set of po-
tential sites under a given traffic pattern.



9 Research Agenda

Phase 1 (0-6 months)

e Finish implementation of MBv2, a shared electronic
whiteboard, built on top of libsrm.

e Design and implement a dynamic bandwidth adapta-
tion RMX for MBv2. Extend the RMX for other ap-
plications such as Information Dissemination and Soft-
ware Distribution.

e Target INFOCOM 2000 (submission deadline: July
1999)

Phase 2 (6-12 months)

e Design and implement the wide-area deployment ar-
chitecture. Implement GFP (or equivalent protocol)
and build the RMX architecture on top of it.

e Preliminary evaluation of the RMX architecture.

e Target SIGCOMM 2000 (submission deadline: Jan-
uary 2000)

Phase 3 (12-18 months)

e Evaluate wide-area performance of the RMX architec-
ture and the dynamic deployment algorithms.

10 Summary

We have proposed to design, build, and evaluate an archi-
tecture for reliable multicast applications that can adapt to
the heterogeneity that is inherent in the wide-area Internet.
We identify three types of heterogeneity that we will ad-
dress: network heterogeneity (bandwidth and latency vari-
ations from Gigabit ethernet to low capacity wireless links),
client heterogeneity (ranging from powerful desktops and
workstations to impoverished PDAs), and protocol hetero-
geneity (wide range of reliable multicast protocols, multicast
availability, etc.).

Our proposed solution relies on intelligent adaptation
agents in the network (Reliable Multicast proXies or RMXs)
that can help mitigate the heterogeneity problems by acting
as intermediaries between the source and the consumer of
the data and dynamically adapting the content and/or the
rate of the data to best suit the clients’ needs and inter-
ests. We will look at three key issues associated with this
architecture:

Mechanisms: We will define an abstract model for an RMX
and use this model to demonstrate the framework’s
ability to adapt to heterogeneity.

Control: We will build a control framework for dynami-
cally manipulating the RMXs and configuring them to
current client and network conditions. We rely on a
flexible hierarchical naming scheme (SNAP) to identify
objects within the application’s name space. We use
dynamic code injection to specialize individual RMX
components for custom operation.
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Deployment: We will build upon the Group Formation
Protocol and the Actice Service ideas to design a de-
ployment framework for dynamically placing RMXs
within the network. Using GFP as a building block,
we will define a protocol for dynamically clustering re-
ceivers into topologically sensitive groups and electing
appropriate locations in the network to place RMXs.

We plan on implementing three different kinds of appli-
cations on top of this framework: an interactive conferencing
tool (shared whiteboard), a bulk data transfer application
(software distribution), and a periodic information applica-
tion (information dissemination: stock quotes, news head-
lines, etc.). We plan to use these applications to evaluate
the efficacy of our approach.
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