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The IP Multicast service model extends the traditional best effort
Internet datagram delivery service for efficient multi-point packet
delivery. However, in spite of a decade of research on multicast
protocols and applications, a globally deployed multicast service is
nowhere in sight, hindered by multitudes of problems such as man-
ageability, lack of a robust inter-domain multicast routing protocol,
scalability, and heterogeneity. In this work, we propose a new mod-
el for Internet multicast where we view multi-point delivery not as
a network primitive but rather as an application-level infrastruc-
ture service. Our architecture relies on a collection of strategically
placed network agents that collaboratively provides the multicast
service for a session. Clients locate a nearby agent and tap into the
session via that agent. Agents organize themselves into an over-
lay network of unicast connections and build data distribution trees
on top of this overlay structure. This model effectively partition-
s the client set into a number of small data groups interconnected
by robust unicast links. We call this communication model scatter-
cast and the network agents that are central to this model Scatter-
Cast proXies or SCXs. We present a protocol called Gossamer for
grouping clients with SCXs and building an overlay mesh of uni-
cast connections across SCXs. We demonstrate the efficacy of our
architecture via a set of simulation experiments that show that the
latencies incurred and redundant packet duplication in transmitting
data over the scattercast mesh are low.
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The Internet multicast backbone, or MBone [7, 8] has been the re-
search community’s vehicle for efficient multi-point communica-
tion since its introduction ten years ago. IP multicast is an ex-
tension of the traditional best-effort Internet datagram model for
efficient group-oriented communication where each source’s data
flow is delivered efficiently to all interested receivers according to
a multicast distribution tree.

However, in spite of a decade of research on multicast proto-

cols and applications, IP multicast is yet to take off. Although it
has been available for research through the experimental MBone
network, and has recently been implemented in many commercial
routers, most ISPs are still reluctant to enable it in their domains.
A number of crucial problems have impeded the global deployment
of IP multicast. We summarize some of them below:

� In [9] and [21], the authors cite a number of problems that
are inherent in the current IP multicast service model. These
problems, including group management, lack of access con-
trol, absence of a good inter-domain multicast routing proto-
col, and distributed multicast address allocation, have proved
to be a significant barrier to wide-spread commercial deploy-
ment of IP multicast.

� Moreover, the heterogeneity in the Internet makes it difficult
to build multicast applications that can simultaneously sat-
isfy the conflicting requirements of the wide range of client
devices and networks that span the entire Internet.

� Finally, like IP unicast, the multicast service model provides
only best-effort packet delivery. Richer services such as reli-
able, sequenced delivery and congestion control are relegated
to higher transport or application layers. However, unlike in
the unicast world where TCP addresses these issues for most
applications, in the multicast domain, these problems are far
more complex and much harder to address in the context of
a single generic transport protocol

Recently, protocols such as IPv6, BGMP/MASC [22], and GLOP
addressing [28] have attempted to address some of these issues.
Researchers have also proposed changing the underlying multicas-
t service model itself (EXPRESS [21] and Simple Multicast [31])
to better manage some of the above problems. However, none of
these solutions address the crucial issues of heterogeneity, reliabil-
ity, and congestion control, which remain a stumbling block for the
success of multicast services. Moreover, as new protocols are in-
vented to patch problems inherent in the multicast service model,
the underlying network layer gets more and more complex.

One of the reasons for the success of the Internet is its sim-
plicity and consequent robustness. In keeping with the principles
of end-to-end design [34], the Internet was explicitly designed to
leave the core network layer technology simple, robust, and easy
to understand, and to migrate all complex services to higher layers.
The unicast datagram forwarding service is easily amenable to this
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separation. On the other hand, we believe that the IP multicast ser-
vice model is too complex to be implemented satisfactorily entirely
as a network primitive. In this work, we thus distinguish between
the notion of IP multicast as a network layer primitive and multi-
point data delivery as a higher level network service. Rather than
assume the existence of a global multicast “dial-tone,” we view IP
multicast as an efficient protocol building block that need not be
available everywhere. We instead build multi-point delivery as an
infrastructure service that leverages well-understood and robust u-
nicast transport protocols and couples them with IP multicast for
efficient multi-point data delivery. Separating multi-point delivery
into a higher-level infrastructure service allows us to keep the net-
work layer primitives simple and easy to manage.

Our architecture for Internet multicast partitions a heteroge-
neous set of session participants into disjoint data groups. Each
data group is serviced by a strategically located network agent. A
collection of network agents collaboratively provides the multicast
service for a session. Clients locate a nearby agent and tap into the
multicast session via that agent. Agents organize themselves into
an overlay network of unicast connections and build data distribu-
tion trees on top of this overlay structure. We call this communica-
tion model scattercast

�
and the network agents that are central to

this model ScatterCast proXies (SCXs). Figure 1 depicts the vari-
ous components of the architecture.

Recently, researchers have proposed migrating the multi-point
delivery functionality entirely to the end-clients that participate in
the multicast session without any support from the network [13,
42]. Although the motivation for that work is similar to ours, we
believe that without explicit support from the infrastructure, it is
not possible to build practically deployable multi-point distribution
systems that can scale well beyond a few hundred to a few thou-
sand clients. In scattercast, each SCX can support many simul-
taneous clients, so even a session consisting of a hundred SCXs,
each servicing a hundred clients, will result in a total session size
of ten thousand. We believe that such infrastructure support is vital
to the success of a multi-point delivery architecture and it needs to
be an integral part of the architecture, rather than something that is
patched in at a later time.

Just as the network layer Internet architecture provides a well-
defined structure for IP routing and for peering of IP networks, so
also this new scattercast service requires an infrastructure architec-
ture that imposes structure on the peering model for SCXs and the
interaction across SCXs, and between SCXs and clients. At the
core of scattercast is a topology management protocol called Gos-
samer that SCXs use to locate each other in a decentralized man-
ner and to self-configure themselves into an adaptive and efficient
overlay mesh of unicast interconnections. SCXs run a variant of a
distance-vector routing protocol on top of this mesh structure and
effectively build reverse-shortest-path distribution trees.

By migrating the multicast service to higher layers, scattercast
keeps the underlying network model simple and straightforward.
Moreover, the problems that plague IP multicast are either elimi-
nated or mitigated due to application-level intelligence. For exam-
ple, there is no need for a global distributed IP-level multicast ad-
dressing scheme. Scattercast sessions have application-level names
that are independent of the underlying network routing protocols.
With the scattercast model, routers do not need to maintain com-
�
The term scattercast is borrowed from prior work by Ratnasamy et al.[32] on a

delivery-based model for multicast communication.

plex group management state; this state is migrated to higher layer
SCXs. Additionally, SCXs can impose application-specific access
control restrictions to determine who is allowed to send or receive
data in the session.

By explicitly using application-level agents in the network, s-
cattercast also allows for a scenario where SCXs can use applica-
tion semantics to adaptively modify the content in order to suit the
needs of the clients. This property of scattercast is very useful to
tackle the heterogeneity that plagues IP multicast applications and
to build complex services such as reliability and congestion control
on top of this architecture. In [5], the authors leverage the scatter-
cast architecture to provide such application-specific reliable mul-
ticast service in the face of extreme heterogeneity. In Section 4, we
provide an outline of how our architecture allows us to build such
complex services and applications.

We note that Gossamer is certainly not the only self-configuration
protocol that is possible for scattercast. It is the result of our ini-
tial experimentation with building the various components of the s-
cattercast architecture. Although scattercast simplifies the network
model by migrating complex multicast protocols to higher layers,
it suffers from the drawback that its data distribution trees are not
as efficient as native router-supported multicast. Yet, our architec-
ture strives to build an efficient overlay mesh so that the resulting
performance hit for the data distribution trees is minimal. Our sim-
ulation experiments demonstrate that the average delay from the
source to receivers in scattercast is typically within twice that for
native multicast or direct unicast from the source to the receivers.

In the rest of this paper we describe the service model for our
architecture and discuss the design of the various components of
the architecture. Section 2 describes the details of our architec-
ture. Section 3 describes the Gossamer protocol. In Section 4, we
discuss how our architecture allows us to build more complex ser-
vices such as reliable delivery and congestion control on top of this
framework, and describe example applications. Section 5 presents
an evaluation of the Gossamer protocol and the status of our imple-
mentation. Finally, we summarize some related work and present
future work and our conclusions.

�������
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The scattercast architecture embeds in the network a collection of
agents that together provide the scattercast service. Figure 1 illus-
trates the various components of the architecture. Clients (sources
or receivers) wishing to participate in a scattercast session commu-
nicate with a nearby SCX and tap into the session via that SCX.
SCXs self-configure themselves into an overlay structure for data
distribution across the wide area.

��� �����
	�� ��� � � ��� � � ���

Each scattercast session has an explicit URL-like unique name.
The name is used to identify the session and to distinguish be-
tween sessions. Session names are of the form scattercast:
//creator-identity/session-name. The creator identi-
ty is used to avoid collisions in the session name-space. The sim-
plest form of creator identity is the domain name of the agency that
creates the session. For example, a multimedia seminar announce-
ment may have the name scattercast://cs.mydomain.
edu/multimedia-seminar/.
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Figure 1: The scattercast architecture. Clients communicate with

SCXs either via locally scoped multicast groups or via unicast.

SCXs form a mesh of unicast interconnections between themselves.

A single scattercast session may consist of multiple indepen-
dent data streams, each with its own transport requirements. For
example, some streams may require reliable data delivery while
others may be satisfied with best-effort performance. Application-
s may also wish to split different media types into separate data
streams. For example, a real-time Internet broadcast may be com-
posed of a video and an audio stream. Scattercast uses the notion
of data channels to separate such independent streams. Each da-
ta channel has an associated well-known numeric identifier. When
sources transmit data packets, they include the channel identifier
in the packet header. Scattercast uses this identifier to route the
data over the appropriate channel. This notion of multiple channel-
s within the same scattercast session allows us to reuse the same
scattercast overlay network for different types of data streams.

The scattercast service model requires both sources and receiver-
s to explicitly join the session. Moreover, sources must explicitly
announce their intent to send data. The underlying scattercast pro-
tocols use this information to build efficient source-rooted data dis-
tribution trees.

Each client (source or receiver) attaches to a nearby SCX and
interacts with the rest of the session via that SCX. Each SCX, in
turn, simultaneously serves many clients. As shown in Figure 1,
clients communicate with their SCX using multicast if possible,
otherwise they revert to unicast connections to the SCX. Across
SCXs, data is transmitted using an overlay structure of unicast con-
nections. These data transport connections may be UDP, TCP, or
some other unicast transport protocol depending upon the require-
ments of the channels for that session.

Typically, SCX lifetimes are limited to those of their clients. An
SCX is created on demand for a specific session and it dies when all
of its clients leave the session. We note that although clients may
join and leave a scattercast session at a rapid rate, since an SCX
serves a number of clients, it remains part of the session as long as
it has at least one client to serve. We assume that, in general, SCXs
join and leave a scattercast session at a relatively slow rate.

As described above, the scattercast service model results in a
two-tiered communication model—communication between clients

and SCXs, and inter-SCX communication. In the rest of this sec-
tion, we address some of the issues raised by this model. In partic-
ular, we look at the following questions:

� How do clients discover scattercast sessions?

� What is the environment that SCXs run in?

� How do clients locate a “nearby” SCX?

� How do clients attach to the scattercast session via the SCX?

We leave the discussion of the details of the inter-SCX communi-
cation to Section 3.

��� ��	 � 	 � � � � � 	 ��� � ��� ��� � � � � � � ���

� SCATTERCAST
name=”scattercast://creator-identity/session-name” �

� DESCRIPTION �
An optional textual description of the session
goes here

� /DESCRIPTION �

� CHANNEL id=”numeric-identifier” �
� DESCRIPTION �

An optional textual description for this channel
� /DESCRIPTION �

� TRANSPORT unicast=”unicast-protocol-name”
multicast=”multicast-protocol-name”/ �

� /CHANNEL �

� CHANNEL id=”numeric-identifier” �
...

� /CHANNEL �

� RENDEZVOUS �
rendezvous-point-location
...

� /RENDEZVOUS �

� /SCATTERCAST �

Figure 2: Format of a scattercast announcement.

Scattercast sessions can be advertised either on the web or us-
ing a special well-known scattercast session in a manner similar
to the Session Announcement Protocol (SAP) [19] used on the M-
Bone. Scattercast announcements are represented using the Ex-
tended Markup Language (XML) [3]. The announcement contain-
s all the necessary parameters that pertain to the session. Fig-
ure 2 shows the format of a scattercast announcement. Each an-
nouncement must include the name of the session, one or more

� CHANNEL � sections, and a
� RENDEZVOUS � section. As

described in Section 2.1, each
� CHANNEL � section includes the

numeric identifier associated with the channel and the types of
transport protocols that the channel should use for communication

3



across SCXs and between clients and SCXs. Unicast protocol de-
scriptors may be UDP, TCP, or some other unicast transport proto-
col, while multicast protocol descriptors may be UDP or some reli-
able multicast protocol such as SRM [11]. The

� RENDEZVOUS �
section lists one or more rendezvous points that SCXs use to find
each other. We discuss the details of the rendezvous mechanisms
in Section 3.4.

��� � 	������ � � � �
� � � � � �

In order for the scattercast service to be viable, it is crucial to ad-
dress the question of where SCXs reside and what conditions they
operate under. As an infrastructure service, SCXs must remain
highly available and robust against failures. To address these is-
sues, we rely on strategically located service clusters for hosting
SCXs. These clusters consist of commodity workstations typical-
ly housed at ISP points of presence. Clusters are an efficient and
cost-effective way of providing robustness and availability to the
scattercast service. We assume the existence of a cluster manage-
ment platform that provides the function of creating SCXs when
required and ensuring that the SCXs remain available and recover
from faults. Various such cluster service platforms have been pro-
posed in the research community [1, 4, 12, 16]. We rely on the
Active Service platform for hosting SCXs. The details of this clus-
ter platform can be found in [1]. For the purpose of this discussion,
it is sufficient to note that the cluster platform deals with the actu-
al details of launching SCXs when required, monitoring them for
faults, and recovering from failures when necessary.

��� � � � � 	 ��� �
	 	 � 	����

In order for clients to receive data from the scattercast session in an
efficient manner, it is imperative that they attach themselves to an
SCX that is close to them. With a potentially large number of SCX-
capable cluster platforms spread across the Internet, clients need
a way to locate the closest SCX. This is a well-studied research
problem, and we identify a few solutions:

Static configuration: Clients may be statically configured with the
location of their closest cluster platform. This mechanism is
simple to implement, but does not permit automatic discov-
ery of new nearby cluster platforms.

Auto configuration: A modification to the static configuration scheme
is to use a statically configured DNS name to identify the
local cluster platform (e.g. scattercast.mydomain.
edu), or a script akin to web-proxy auto-configuration script-
s [26]. The WPAD (Web Proxy Auto Discovery) Draft [15]
describes a number of mechanisms for discovery of network
services based on DHCP [10], SLP [38], or DNS queries [18,
17]. These mechanisms do not require the client to know the
exact names of the cluster platform machines, but still do not
account for dynamic network changes.

Transparent DNS redirection: A more sophisticated approach re-
lies on using special DNS names that are resolved differently
for different clients based on the clients’ location. This ap-
proach is used by the Sandpiper Networks’ Footprint web
caching service [35].

The basic idea is to construct a redirection framework that
manages a special DNS domain, say redirect.scatter-
cast.net, and resolves client queries for that domain into
an address for a scattercast cluster that is closest to the clien-
t. The redirection framework is composed of an elaborate
network of probes that monitor the Internet building a real-
time network map that identifies the delays between different
parts of the network. Using this map, the redirection frame-
work can easily identify the closest scattercast cluster for any
client. Thus the client always manages to find a nearby clus-
ter without any pre-configuration.

Explicit application-level redirection: Using DNS resolution for
redirecting clients to appropriate clusters can be plagued by
problems due to clients caching stale addresses. Old clusters
may no longer be offering the scattercast service, new clus-
ters may have cropped up that are closer to the client, or net-
work conditions might have changed. This can be addressed
by using an explicit application-level redirection mechanism
such as that used by HTTP.

Although the redirection framework approach for locating scat-
tercast clusters is superior, our prototype scattercast implementa-
tion relies on static client configuration. The Sandpiper Footprint
service [35] has implemented a proprietary system that includes a
well-designed redirection sub-system, and a practical deployed s-
cattercast architecture should utilize that work.

������ � � � � � � � ��	�� � � ��� �

Once a client has discovered the nearest scattercast service plat-
form, it contacts the cluster and makes a request for an SCX. The
request includes the session announcement for the session that the
client is interested in and an indication of whether the client is a
source of data or not. The cluster creates a new SCX if needed
and returns the location of the SCX, including a unicast IP address
and port number as well as a locally scoped IP multicast group that
can be used if multicast connectivity is available between the client
and the SCX. The client initially attempts to communicate with the
SCX over the IP multicast group, but reverts to unicast communi-
cation if that fails. This allows us to leverage the efficiency of IP
multicast in the local domain when it is available.

As long as the client is part of the session, it sends periodic
KEEP ALIVE messages to the SCX. It announces its imminent
departure via an AM LEAVING message. The SCX uses this mes-
sage (or the loss of KEEP ALIVE messages) as an indication of the
client’s death. When all clients of the SCX have left the session, the
SCX too leaves the session.

�� � ����	 � � ��� ��� � � ��� 	������ � � � � � � � 	 ��� � �

In addition to communication between clients and SCXs, a crucial
part of the scattercast architecture is the set of mechanisms that
SCXs use to construct an application-level overlay distribution net-
work, and to transmit data on top of this overlay structure. We now
present Gossamer, our protocol for constructing and maintaining
this overlay topology. The goal of Gossamer is to build an efficient
data distribution tree from the source of data. The simplest way of
distributing data across SCXs is to construct a unicast star topolo-
gy rooted at the source SCX (i.e. the SCX to which the source of
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data is attached). This simplistic approach however has the dan-
ger of resulting in excessive network load near the source. With a
star topology, the source SCX will simply perform an � -way uni-
cast transmission of the data to all destination SCXs. Since each
packet is duplicated multiple times at the source SCX, the band-
width requirements on the physical Internet links near the source
SCX can be excessive. In order to limit the amount of duplicate
packets traversing any physical link across the network, Gossamer
should build smarter distribution trees where the source SCX trans-
mits data only to a handful of nearby SCXs which in turn forward
the data towards the rest of the session. In other words, Gossamer
distribution trees should restrict the degree of any single SCX node
depending upon its bandwidth capabilities. We note however that
such a degree-restricted tree will result in longer delays for certain
SCXs than the corresponding delays in the original unicast star.
The goal of Gossamer then is to build a degree-restricted spanning
tree across SCXs while at the same time keeping the average delay
between the source and all destinations at a minimum.

We can define the problem more formally as follows:

GIVEN: A set of Internet nodes
�

that represent SCXs participat-
ing in a scattercast session, a source SCX ��� �

, and node
degree constraints ���	��
����� �������

. We can build an ab-
stract distance graph ����� ������� that is the complete graph
over the set of SCX nodes. The cost of edge ��� � � �! #"�� � is
set to the unicast distance between nodes �$� and �  (assum-
ing shortest path symmetric Internet routing).

FIND: A distribution tree % , which is a spanning tree of the graph
� such that & � , the degree of node � � � �

in % is at most
�'� , and % ’s total cost ( is the minimum ) among all possible
such trees, where ( is defined as the sum of path lengths in
% between the source � and all other nodes.

The problem of constructing minimal degree-constrained span-
ning trees of graphs is known to be NP-hard [14]. Moreover, the
problem remains NP-hard even in the specific case of complete
graphs. Hence we need to rely on heuristics to solve the above
problem. However, it is difficult to compare the performance of
the heuristic approach to the optimal solution, since computing the
optimal tree is prohibitively expensive. But, we do know that the
cost of the optimal tree is bounded by the cost, (+*-,/.�0 , of the cor-
responding unicast star topology, % *-,�.10 , rooted at the source � . We
can use this bound as a metric for evaluating the performance of the
heuristic approach. We also note that, in terms of path lengths, this
cost (2*-,/.�0 is equivalent to the cost incurred for a source-rooted IP
multicast routing tree (assuming shortest-path and symmetric inter-
net routing).

���  ��3 ��	�� ��� � 	 ��� �54�� � � 	76 � � � ����� � ����� � � 	 � � � 	 � 	 	�� � ��� �

� � 	 � � � � � �

In order to be practically deployable, any heuristic that we devel-
op must be entirely decentralized and must be able to cope with
a dynamically changing membership of the set

�
. The ultimate

goal of Gossamer is to construct spanning trees for data distribu-
tion. Although it is possible to construct such a tree across SCXs8

Note that minimizing the total cost 9 is equivalent to minimizing the average

delay.

Application

Data Distribution

Routing

Mesh Management

Figure 3: Gossamer Protocol Layers.

directly, Gossamer instead first builds a richer mesh structure made
up of unicast connections across SCXs, and on top of this mesh,
runs a routing protocol to compute source-rooted reverse shortest
path distribution trees. The reasons for this are two-fold. First, the
mesh provides redundancy to the scattercast topology, making it
more resilient to failures than a simple fragile tree structure. If an
edge or node in the topology fails, the routing algorithm automat-
ically constructs new paths by routing around the failure. Second,
routing algorithms have built-in mechanisms to deal with detection
and avoidance of loops in the distribution paths. This makes con-
struction of loop-free distribution trees much simpler.

Since the data distribution trees have degree constraints, we im-
pose similar constraints while constructing the mesh. This ensures
that the shortest path trees that are built by the routing and data
distribution protocols on top of this mesh automatically satisfy the
degree constraints.

Figure 3 shows the different layers involved in the Gossamer
protocol. At the bottom is a mesh management layer that deals
with the basic topology construction and maintenance. The rout-
ing layer runs a distance vector routing protocol on top of the mesh
and provides input to the mesh management layer in order to assist
in optimizing the mesh, and as a consequence, the paths between
the sources and the receivers. The data distribution layer constructs
distribution trees based on routing information extracted from the
routing layer and deals with the forwarding algorithms that are used
to disseminate the data. Finally, any application-specific computa-
tion may be performed on top of the Gossamer layers.

We now look at the details of the Gossamer protocol starting
with a brief overview of the entire protocol.

��� � 3 �
����� � � �;: � � � � � ��<
When an SCX joins a session, it uses a variant of a network re-
source discovery protocol proposed by Harchol et al. [20] to dis-
cover other mesh members. It uses the set of rendezvous points
listed in the session announcement to bootstrap the discover pro-
cess. As the SCX encounters new nodes, it selects some of them to
be its neighbors in the mesh. As defined by the degree constraints,
each SCX has a target number of neighbors that it attempts to con-
nect to in the mesh. In order to ensure that nodes can insert edges in
the mesh without requiring any explicit coordination across nodes,
we split the degree constraint at each node into two: a maximum
number ( � � ) of edges that the node is allowed to insert from it to
other nodes, and a maximum number ( � ) ) of edges that it is willing
to accept from other nodes. As long as we ensure that � ) �=� � ,
any new SCX node joining the mesh will eventually find some � �
nodes that have room to accept connections from it. We use the
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notation
� � � , � ) � to represent these degree constraints, effectively

resulting in a total degree constraint of � � � � ) .
Rather than pick a random set of � � neighbors, each node uses

a local optimization algorithm to choose neighbors that will result
in better distribution trees. The trees themselves are constructed
by running a distance vector routing protocol on top of the mesh
topology. Each node maintains a routing table with an entry for
each source SCX. The data distribution layer uses this routing in-
formation to construct source-rooted reverse shortest path distribu-
tion trees.

We now look at some of the details of the mesh construction
and tree building algorithms.

��� � � ��� ��� � ��� ��� � � 6 � � 	 � ��� �
�5474 � �
When an SCX joins a session, it uses a variant of the Name Drop-
per protocol proposed by Harchol et al. [20] to discover other SCX
nodes. We note that it is not required for SCXs to have complete
and accurate information of mesh membership at all times. An
SCX (say � � ) initiates the Name Dropper algorithm by discover-
ing a small set of mesh members through some startup rendezvous
mechanism. Let us denote by ����� � � the set of other SCXs that � �
knows of. Periodically, � � performs a discovery round. During
this round, it picks a random node �  ��� ��� � � and sends a DIS-
COVERY message to it. This message includes a bounded random
list � ��� � �
	 ����� � � . When �  receives the message, it merges
this list into its own set � ���  � of known nodes. In addition, it re-
turns a DISCOVERY RESPONSE message that includes its own
list � ���� ��	 � ���� � . � � in turn merges this list into its own set
����� � � , and thus gradually learns of all or most of the other nodes
in the system.

Our discovery algorithm described above differs from the orig-
inal Name Dropper proposal in two ways. The original algorith-
m transmits membership information in only one direction ( � ��� � �
sent to �  ) during a round. By incorporating an exchange in both
directions, we allow for a newly joining � � to quickly discover a
number of other SCXs. This, however, comes at the cost of in-
creased communication cost. The second difference is that, to min-
imize communication overhead, we limit the size of the lists ex-
changed at each round. We have not analyzed the effects of this
bounded list size on the performance of the Name Dropper algo-
rithm. However, in practice, our simulation results described in
Section 5.2 demonstrate the practical usability of the algorithm.

��� � � � � � �� � � ���

The Name Dropper algorithm assumes the existence of a bootstrap-
ping rendezvous mechanism to initiate the discovery process. We
rely on well-known rendezvous points for this purpose. Each scat-
tercast session has associated with it one or more rendezvous points
that are advertised in the session announcement. These rendezvous
points are SCXs that remain alive and are part of the session for
the entire duration of the session. When a new SCX joins the ses-
sion, it initializes its mesh membership set ����� � to the list of ren-
dezvous points for the session. Using the Name Dropper algorithm
described in the previous section, it can eventually discover all the
other nodes in the mesh.

The redundancy introduced by multiple rendezvous points en-
sures that new SCXs can join the mesh even in the face of ren-

dezvous point failure. We note, however, that even if all rendezvous
points in the session fail, existing mesh members can continue to
operate; the only functionality that is lost is the ability for new
SCXs to join the session.

������	���� � � 	�� � �

When an SCX leaves the session, it floods a time-stamped notifi-
cation to the rest of the mesh. This allows the remaining SCXs to
remove this node from their membership set � ��� � . The departing
SCX sends the notification to its immediate mesh neighbors who
in turn propagate it to the rest of the session. Since the mesh is
not loop-free, SCXs use the time-stamp in the notification to detect
duplicate copies of the notification and stop forwarding the copies.
In addition to leaving a session explicitly, an SCX may fail with-
out any warning. In such a situation, its neighbors in the mesh
will detect the failure and notify the rest of the session. To detect
neighbor failure, neighboring nodes in the mesh exchange periodic
KEEP ALIVE messages. Loss of these messages is an indication
of failure. Upon receiving an SCX leave/failure notification, other
SCXs mark that SCX as dead in their membership list, and trigger
updates in the routing layer.

It is possible that the death of an SCX causes the mesh to be
partitioned. Although such an occurrence will be rare, it must be
dealt with and the mesh repaired. In order to detect mesh partitions,
we rely on a periodic HEARTBEAT that is generated by one of the
rendezvous points and propagated over the mesh. The rendezvous
points run a simple distributed election algorithm and pick one of
themselves as the heartbeat generator. As long as every SCX in
the session continues to receive this heartbeat, the entire mesh is
connected. Loss of heartbeat messages indicate a potential mesh
partition, and the SCX that detects the loss attempts to heal the par-
tition by re-contacting the heartbeat generator. It is possible that a
large number of SCXs that are partitioned from the heartbeat gen-
erator detect the partition at the same time. To prevent all of them
from contacting the heartbeat generator simultaneously, we use a
randomized damping interval before the SCX attempts to heal the
partition. In the event that the heartbeat generator itself has died,
the remaining rendezvous points elect a new heartbeat generator
and the healing process continues.

����� � � � � : 4 ��� � �  	 ��� � �

So far we have not discussed any mechanisms for ensuring that the
mesh constructed by Gossamer actually results in efficient distribu-
tion trees. Let us now look at some of the algorithms that Gossamer
employs to optimize the mesh over time. In this discussion, we as-
sume that the routing layer runs a limited form of distance vector
routing, where the routing table contains only a small number of
entries: one for each source of data.

The goal of the mesh optimization algorithm should be to im-
prove the quality of the mesh. Since the eventual goal of Gossamer
is to build efficient data distribution trees, the optimization algo-
rithm should attempt to add edges that will result in an effective
improvement of the routes towards the sources of data and remove
edges that are not as useful.

SCXs periodically probe other mesh nodes to evaluate the use-
fulness of adding new edges. A node � � probes another node �  
using a REQUEST STATUS message. The STATUS response
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optimize( �  ) �
Let

� � (set of neighbors of � � ) ���  
For each � � � �

Let C.F.[ � ] � compute cost function( � )
"
Let ���-� � � � node with maximum C.F.
Let � � hysteresis value
If ( � � � �� ) then

reject �  
Else if (C.F.[ � ] � C.F.[ �  ] ��� ) then �

accept �� 
reject �

"
Else reject �  

"

Figure 4: Algorithm used by � � to determine whether to accept
�  as a neighbor.

from �  contains a copy of the current routing table of �  and a
CAN ACCEPT flag that indicates whether �  has room to accept
a connection from � � . The state of this flag depends upon whether
�  has reached its limit, � ) , of connections it is willing to accept
from other nodes. � � uses this status information to evaluate the
usefulness of �  as a neighbor over its current set of neighbors.

If � � has not yet filled its limit � � of edges it is allowed to add,
it will accept �  as a neighbor. But, if � � already has � � neighbors,
then in order to accept �  , it will have to remove one of its existing
neighbors. � � runs an optimization algorithm that evaluates the
“cost” of all of its neighbors and �  . In order to realize efficient
data distribution trees, the mesh needs to be optimized for efficient
routes from receivers to source SCXs. The cost function takes this
into account and computes the cost of routing to the various sources
via the individual neighbors. Figure 5 shows the cost function used
as input to the optimization algorithm which itself is described in
Figure 4. The SCX will accept �  as a neighbor only if �  ’s cost
function is less than that of one of its existing neighbors by at least
� . � is a hysteresis value that allows us to trade off the stability of
the mesh versus the level of optimization. A higher value of � will
result in fewer changes to the mesh structure, but may result in a
less efficient mesh. After preliminary experiments, we have set the
hysteresis value to 0.15 times the number of known source SCXs.

��� � � ��� ��� �
	 � 	 6 � �
On top of the mesh, the routing layer runs a variant of a distance
vector routing protocol. Sources announce their intent to send data
to their SCX. The source SCX immediately creates a zero-length
routing table entry to itself in its local routing table. This entry
gets advertised to the rest of the session via periodic routing update
messages that neighboring SCXs exchange with each other. Each
SCX maintains a routing table that contains one entry per source
SCX. In order to detect routing loops and avoid the counting-to-
infinity problem [6], each SCX stores in its routing table entries the
complete path from it to the source SCX. When a node attempts
to select a better route based on a routing update received from a
neighboring SCX, it first checks to ensure that it is not already part

compute cost function( � ) �
Let C.F.[ � ] = 0.0
For each source � in � � ’s routing table �

Let C.F.[ � ]
� � normalized cost � of routing to �

via �
"
If ( � � ’s routing table is empty) then �

Let C.F.[ � ] � normalized cost � of the edge
between � � and �

"
Return C.F.[ � ]

"
� Note: Normalized routing cost is defined as the cost of the route
to � via � divided by the maximum of the corresponding such
costs for all �
	+� � (see Figure 4 for definition of

�
). Similarly

the normalized edge cost is defined as the ratio of the cost of the
edge between � � and � to the maximum of the corresponding edge
costs for all � 	 � � . We note that the normalized cost is always a
value between 0.0 and 1.0.

Figure 5: Algorithm used by � � to compute the cost function
for node � .

of the neighbor’s path, thus avoiding routing loops.
The routing protocol relies on unicast distances between nodes

as the metric for the routing protocol. Each node in the mesh run-
s a simple ping experiment to determine its distance to its mesh
neighbors. A ping experiment consists of a small sequence of time-
stamped packets that the node sends to its neighbor. When a neigh-
bor receives the ping packets, it simply reflects them back to the
sender. The sender uses the average time difference between send-
ing the packets and receiving the responses to compute the round-
trip times and thus the one-way distances.

����� � 	 ��	 � � �����
� ������� � �

Gossamer uses the routing tables generated by the routing layer
to construct source-rooted reverse shortest path data distribution
trees. The trees are built out of an independent set of transport
connections that are separate from the control connections used by
the mesh construction and routing protocols. A separate tree is con-
structed for each channel in the session. The session announcement
specifies the form of transport connections that each channel uses.

Data forwarding occurs as follows. Data is forwarded at the
Application Data Unit (ADU) level. Applications define their own
notions of packet boundaries, and all data forwarding in scattercast
respects these ADU boundaries. Each ADU consists of a Gossamer
header that identifies the source of data, the source SCX, the numer-
ic channel identifier, and the length of the ADU payload. At each
node � � , when an ADU is received on a channel from a neighbor
�  , it is forwarded only if �  is the next hop in � � ’s route towards
the source SCX. Every ADU that passes this reverse-path check is
forwarded to all those neighbors that use � � as their next hop for
routing towards the source SCX.

Transient changes in the distribution tree due to routing updates
may result in temporary disruption of data flow. To minimize any
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data loss during a route change, data continues to be forwarded
along the old route for a short while until the downstream SCX
starts receiving data along the new route.

� � ��� � ��� � 	�	�� � � � � � � � � � �54 ��� 	 � 	 � � � � � 	 ���

Scattercast provides the basic mechanisms to enable multi-point
communication in the wide area. Our architecture alleviates many
of the problems associated with IP multicast. By using a URL-like
naming scheme for scattercast, we eliminate the need for a glob-
ally distributed network layer multicast addressing scheme. Since
scattercast sessions include the identity of the creator as part of
the session name, name collisions are trivially avoided. Scatter-
cast also eliminates any need for complex per-group state main-
tenance at routers, and instead migrates this state to application-
level SCXs where it can be more easily handled. Additionally, with
application-level intelligence in SCXs, the scattercast model allows
SCXs to implement application-specific access control restriction-
s to determine who is allowed to participate in the session and to
send data within the session.

Additionally, the presence of application-level agents makes it
possible to build more complex higher-level services such as relia-
bility, congestion control, and heterogeneous communication. Al-
though a number of protocols such as RMTP [23], SRM [11] and
PGM [36] have been proposed to build reliability on top of the
best-effort IP multicast service, they are all fundamentally chal-
lenged by the heterogeneity that exists across the Internet. In the
multicast domain, a communication source is potentially confront-
ed with a wide range of path characteristics to each receiver, for
example, different delays, link rates, packet losses, and competing
congestion on the paths to the different receivers. This multiplicity
of data paths and the possibility of multiple congestion points along
independent sections of the paths imposes great difficulty on the de-
sign of an end-to-end scheme for reliable multicast. TCP-friendly
multicast congestion control schemes [39, 40] typically only work
with single-source sessions, and do not satisfactorily accommodate
bandwidth heterogeneity across the multicast distribution tree.

The scattercast architecture explicitly allows applications to ad-
dress these problems of heterogeneity and congestion control that
cripple traditional reliable multicast protocols. Rather than rely
on traditional notions of bit-level reliability, scattercast allows for
the notion of semantic reliability, that is, reliability of information
rather than that of the representation of the information. SCXs can
use application-level knowledge to alter the content dynamically
or to adapt the rate and ordering of data objects. For example,
an SCX that feeds data down a bandwidth-constrained link may
convert bandwidth-intensive data such as images or video to low-
er bit-rate versions before transmitting them down the constrained
link. Moreover, scattercast can leverage the robust and congestion-
friendly behavior of well-known unicast transport protocols such
as TCP to assist in wide-area inter-SCX communication. SCXs can
provide intelligent congestion management via techniques such as
buffering, on-the-fly transcoding to a lower bit rate, or explicit con-
gestion notifications to upstream SCXs to slow down their trans-
mission rates.

In [5], the authors describe a framework for providing reliable
multi-point communication based on the scattercast architecture.
As described above, they rely on application-specific customization
of SCXs to assist in the reliability protocol. They refer to the scat-

tercast proxies used for reliable communication as Reliable Multi-
cast proXies or RMXs. The details of how SCXs/RMXs are cus-
tomized on a per-application basis to provide application-specific
reliability are described in [5]. RMXs implement end-to-end relia-
bility on top of the scattercast framework using a PGM-like mech-
anism [36]. Loss recovery is initiated by sending a retransmission
request upstream towards the source. Intermediate RMXs aggre-
gate retransmission requests. They first attempt to recover the data
themselves, and if that fails forward the request towards the source.
The authors describe the details in [5].

� �  	 � 	 � � � � � 	 ��� � 474 � � � 	 ��� � � �
To illustrate the viability of the scattercast architecture, we are in-
vestigating a range of applications. We now look at two specific
applications that we are building on top of the scattercast architec-
ture: a reliable shared electronic whiteboard, and an Internet audio
broadcast application.

The shared electronic whiteboard allows a diverse set of me-
dia to be created and displayed interactively by a group of users.
Our whiteboard application is based on similar previous tools such
as wb [27] and mediaboard [37]. A whiteboard session consist-
s of a shared presentation space that is divided into a number of
canvas pages. It supports data types such as line drawings, text,
images, and postscript files. Each data object on the whiteboard
is encoded and transmitted as an independent ADU. The applica-
tion uses the Scalable Reliable Multicast (SRM) protocol [11] to
achieve reliability in the local multicast groups between multicast-
capable clients and their SCXs. It relies on TCP for unicast data
transmission across SCXs and between multicast-incapable clients
and their SCXs. As the ADU flows through the SCX network, it
may be transformed on the fly in order to mitigate the effects of
heterogeneity across the range of participating clients. For exam-
ple, an image may be transcoded to a lower bit-rate representation
for faster transmission across a low bandwidth link. We convert
images to a progressive JPEG representation; this allows SCXs to
transmit each scan of the progressive image independently, and to
decide how many scans to transmit and how fast to transmit each
of them. The details of the whiteboard application and the data
transformations that can be applied to the whiteboard ADUs are
described in [5]; we port their work on RMXs for whiteboards to
our architecture.

The second application that we are building is an Internet audio
broadcast tool. We use MP3 (MPEG 1 or 2 Layer III Audio) as
the underlying audio format. The source broadcasts MP3 frames
to the entire session through its SCX. Users wishing to “tune” in-
to the broadcast use standard MP3 clients such as mpg123 [29] or
WinAmp [30]. SCX cluster platforms export an HTTP interface
to the MP3 clients. A client tunes to a specific broadcast by con-
tacting its local cluster platform and including the web address of
the broadcast’s session announcement. The cluster platform in turn
redirects the client to the appropriate SCX for that broadcast. SCXs
too export an HTTP interface through which the MP3 frames are
streamed to the clients. If the client is capable of using multicast
to receive MP3 broadcasts (e.g. WinAmp with a multicast plug-
in [25]), it may directly communicate with its SCX using a locally
scoped multicast channel.
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� � � 	 � ��	 ��� � �

In this section, we evaluate the behavior of our architecture with
respect to the mesh structure and the data distribution trees that
Gossamer produces. We rely on simulation experiments to evaluate
the operation of our protocol. The main metric that we use for
evaluation is the total cost ( of routing from a source over the
Gossamer distribution network. As described in Section 3, ( is
defined as the sum of path lengths in the distribution tree between
the source SCX and all other SCXs. The length of each path in the
tree is the sum of the unicast distances between the pairs of nodes
that make up the path. We compare this cost to the cost ( *-,/.�0 of
routing over the unicast star topology from the source SCX to all
other nodes, that is, the sum of the unicast distances between the
source SCX and all other nodes. We use the cost ratio

�
��������� as our

performance metric.

���  	 � � � � 	 ��� � � 	�� ���74
We implemented Gossamer in a simple protocol simulator. The
simulator implements the Name Dropper discovery algorithm, the
mesh optimization algorithms, and a distance vector routing proto-
col for building data distribution trees. The input to the simulator
is an internet topology generated using the Georgia Tech Topology
Generator [41]. We used the Transit-Stub model to generate our
experimental topologies. Each topology consisted of 1000 nodes
and approximately 4200 edges.
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Figure 6: Percentage of nodes that have discovered (a) at least

90% of the other nodes, and (b) all of the other nodes v/s time.

The simulator assumes shortest path internet routing and ac-
cordingly computes unicast distances between nodes in the topol-
ogy. Some of these nodes are selected at random as SCX nodes
and the Gossamer protocol is run across these nodes. The sim-
ulator does not take into account the effects of any cross traffic
and queueing delays on the behavior of the protocol. In the next
few sections, we present the results of our experiments to evalu-
ate the performance of Gossamer in a range of environments. In
each of our experiments, there is a well known rendezvous SCX.
All remaining SCXs join the session at a random instant within the
first five seconds of the experiment. Unless mentioned otherwise,
each session consists of a hundred SCXs and one randomly cho-
sen source SCX, and each SCX has a node degree constraint of

�
3,4 � . SCXs execute the Gossamer algorithms every 5 seconds.

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80

Time (seconds)

P
er

ce
n

ta
g

e 
o

f 
kn

o
w

n
 n

o
d

es

Figure 7: Percentage of nodes discovered by a single SCX v/s

time.

The routing layer performs routing updates every 30 seconds. The
experiment ends when there are no changes to the mesh structure
for at least 100 seconds.

��� � � 	 � ��� �
�5474 � ��3 � � ��� � � 	 � � �

Figures 6 and 7 depict the performance of the Name Dropper re-
source discovery algorithm during an experiment consisting of 100
SCXs. In our experiment, we restricted the size of the membership
set � ��� � exchanged during each DISCOVERY round to 30. From
Figure 6, we see that all nodes discover at least 90% of the rest of
the nodes within the first 20 seconds of the experiment. Over 85%
of the nodes discover everyone else within the first minute of the
experiment. The rest of the nodes discover everyone else within
the first 2 minutes. Figure 7 shows the behavior of the Name Drop-
per algorithm for a single randomly chosen SCX in the experiment.
The SCX rapidly discovers most of the other nodes in the session.
The rate of discovery tapers off for the last 5% of the nodes. This
indicates that the session participants quickly discover each other
and can start forming a mesh structure. We will see how the discov-
ery time for Name Dropper scales with increasing session size in
Section 5.4. Let us now see how the mesh construction algorithms
behave.

����� � � � � � � � ����� � � ��� � �

Figure 8 shows the variation of cost ratio
�

��������� for each distribu-
tion tree during the progress of an experiment involving 5 source
nodes. We notice that over time, the cost ratio progressively de-
creases for each of the five distribution trees. Within about 300
seconds all of the cost ratios mostly stabilize to their final value.
Initially, the SCXs attempt to locate other nodes and to determine
their utility as neighbors. Slowly over time, as they discover their
optimal neighbors, the mesh stabilizes into its final overlay struc-
ture.

Figure 9 demonstrates the distribution of cost ratios for stable
meshes over a large number of experiments. We ran 100 exper-
iments over 25 different topologies. As earlier, each experiment
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had 100 SCXs and 5 sources. The cost ratios are measured for
each source once the mesh structure has stabilized. The y-axis
represents the number of experiments that resulted in a cost ratio
between

����� ���
of the corresponding x-axis value. As seen from

Figure 9, the distribution of the cost ratios is centered around 1.65,
that is, the cost of routing data on the scattercast distribution tree
is typically 1.65 times that of directly unicasting the data from the
source SCX to the other nodes. For a small number of experiments,
the cost ratio was as low as 1.35 or as high as 2.35.

In Figure 10, we study the stabilization properties of Gossamer.
The figure shows the cumulative distribution of the average number
of changes made to the mesh per node. Each edge that is added to
or removed from the mesh is counted as two changes, one for each
node in the edge. We notice that most of the changes to the mesh
topology occur in the initial stages of the experiment. Within about
300 seconds, the mesh stabilizes to almost its final structure.

In Figure 11, we demonstrate the effectiveness of the Gossamer
distribution trees in limiting the number of duplicate copies of data
that any internet link needs to carry. We ran a single experiment and
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Figure 10: Cumulative number of edge changes per node in the

mesh structure over time. Each edge that is added or removed

is counted as two changes, one for each node in the edge.

computed the number of physical links in the underlying internet
topology that carried duplicate data copies. The x-axis represents
the number of data copies that any link may see, and the y-axis rep-
resents the number of links that carry a certain number of copies.
We notice that most links carry only one copy of the data; in the
Gossamer distribution tree, 153 of the physical links carry only one
copy, and in the unicast star topology 177 links carry a single copy.
However, in the unicast star topology, links near the source suffer
from excessive packet duplication. As seen from Figure 11, at least
two links carry over 95 copies of each data packet in the unicast
star topology. On the other hand, with the Gossamer mesh struc-
ture, no link carries more than 14 copies of the data. Thus, we see
that Gossamer is quite effective in limiting the packet duplication
overhead in comparison to naive unicast.

��� � 	 � 	 � � �
	 � ��� 	�� � � �

The above experiments depict the behavior of Gossamer for a fixed
number of SCXs and a fixed node degree. We now look at how
the protocol operates as we vary these parameters. For all of the
following experiments, we compute each data point by running 25
independent simulations and computing the average and the 95%
confidence interval.

Figure 12 shows the scaling behavior of the Name Dropper al-
gorithm. The x-axis plots the session size in terms of the number
of SCXs and the y-axis plots the time when all of the SCXs in
the session have discovered at least 90% of the other SCXs. As
expected, the time to completion of the Name Dropper algorith-
m increases with increasing session size. We note that our Name
Dropper performance scales essentially linearly as opposed to the� �	��
�5) � � performance for the original algorithm in [20]. This is
due to the fact that we use a bounded list size during each DISCOV-
ERY round unlike the original algorithm which exchanges the en-
tire membership set ����� � in each round. This penalty is incurred
to limit the communication overhead in each round.

Figure 13 shows the variation in cost ratio across a range of
session sizes. For a small number of SCXs, most of the SCXs are
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directly connected to the source, and hence the cost ratio is low.
As the number of SCXs increases, most SCXs receive data through
other transit SCXs, thereby resulting in a higher cost ratio. We mea-
sured the cost ratio for sessions with up to 350 SCXs. For most fair-
sized sessions, the cost ratio remains within 1.6 and 1.9. Figure 14
shows how the cost ratio varies with node degree. As expected, the
cost ratio decreases with increasing node degrees. As the node de-
gree increases, the depth of the distribution trees decreases, thereby
decreasing the cost of routing over the tree.

Finally, Figure 15 shows the variation in the running time of
the algorithm with respect to the total number of SCXs. We note
that, as shown in Figure 10, although the mesh may not stabilize for
a long time, most mesh changes occur early on and subside fairly
quickly; only a small number of nodes continue to optimize their
connections for a while. Figure 15 shows that the time it takes for
the mesh to stabilize increases with increasing number of SCXs.
This is expected since a larger session size implies more SCXs to
discover and more SCXs to attempt to optimize for. In Section 7,
we discuss some techniques that we are planning to investigate for
improving the stabilization time of the Gossamer protocol.

��� � � � 4 � � � ��� ��	 ��� � � 	 ��	 �����

We have implemented a preliminary prototype of our scattercast ar-
chitecture. The SCX implementation is built on top of the Active
Service [1] cluster platform framework. The cluster platform takes
care of the details of launching a new SCX and providing robust-
ness and fault tolerance to SCXs. We rely on web advertisements
of scattercast sessions. Clients download session announcements
from the web and join the session via their local SCX cluster plat-
form. Although Section 2.4 outlines a number of mechanisms for
finding the local SCX cluster platform, for simplicity, we have im-
plemented static configuration. The cluster platform location is ei-
ther read from a well-known location (e.g. a file in /etc on Unix
or a registry property on Windows) or passed to the application on
the command-line. SCXs implement most of the features of the
Gossamer protocol, which they use to self-organize into an overlay
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structure. We are currently building applications on top of this ar-
chitecture. We have implemented the shared electronic whiteboard
tool and are currently implementing the Internet audio broadcast
application described in Section 4.1.

� � ��� 	 � � ��� � ���

The Endsystem Multicast [42] and Yallcast [13] research projects
have proposed similar multi-point data distribution frameworks that
build distribution trees purely on an end-host basis. Like scat-
tercast, both Endsystem Multicast and Yallcast address the inef-
fectiveness of IP multicast for content distribution. They rely on
self-organizing protocols for constructing distribution trees out of
unicast tunnels across end-hosts participating in the multicast ses-
sion. Like scattercast, Endsystem Multicast builds a mesh structure
across participating end-hosts and then constructs source-rooted
trees by running a routing protocol. On the other hand, Yallcast di-
rectly builds a spanning tree structure across the end-hosts without
any intermediate mesh structure. Although this approach avoids the
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Figure 15: Time to stability v/s session size.

redundant edges that a mesh structure incurs, it requires expensive
loop detection and avoidance mechanisms, and is also extremely
fragile and susceptible to partitions.

The main difference between our approach and that of Yallcast
and Endsystem Multicast is the explicit use of infrastructure ser-
vice agents—SCXs—in our architecture. Although it is possible to
incorporate proxies into Endsystem Multicast and Yallcast, SCXs
are an integral aspect of the scattercast architecture. We believe that
for such a framework to scale well beyond a few hundred clients,
infrastructure support will be absolutely crucial. A fully decentral-
ized end-host-only self-organization protocol will not scale beyond
a few hundred or a few thousand participants. On the other hand,
since scattercast proxies can simultaneously serve many clients, we
believe that one or a small number of proxies per ISP will be suffi-
cient to serve a large client population.

The scattercast architecture germinated from prior work by Rat-
nasamy et al. [32]. They defined a delivery-based model for reli-
able multicast communication where receivers organize themselves
into a multilevel hierarchy of disjoint multicast delivery groups.
Data transmission is achieved by unicasting data between group

representatives which in turn multicast data to their delivery group.
Such a delivery model enables the data delivery process to be tai-
lored to match the homogeneous network characteristics within in-
dividual delivery groups. In [33], Ratnasamy et al. use a multicast-
tree-inference algorithm to build a protocol building block—a dis-
tributed Group Formation Protocol (GFP)—that allows receivers to
self-organize into a source-rooted hierarchy of disjoint multicast
groups where the hierarchy is congruent with the native multicas-
t tree topology. However, this protocol relies on the existence of
a global multicast control channel, which scattercast explicitly in-
tends to avoid.

The Adhoc Multicast Routing Protocol, AMRoute [24], is an
approach for multicast in mobile adhoc networks that creates bidi-
rectional shared trees for data distribution using only group senders
and receivers as tree nodes. Unicast tunnels are used as tree links
to connect neighbors on the user multicast tree. Thus, AMRoute
does not need to be supported by network nodes that are not in-
terested in or capable of multicast and group state cost is incurred
only by group senders and receivers. However, unlike scattercast,
AMRoute does not attempt to optimize the distribution tree in any
form. Scattercast, on the other hand, explicitly relies on Gossamer
to build an efficient overlay network for data transmission.

In [2], Bauer et al. compare a number of heuristics to find effi-
cient degree-restricted multicast trees in the presence of constraints
on the copying ability of the individual switch nodes in the network.
Although some of these heuristics may be applied to construct dis-
tribution trees in scattercast, we believe that the mesh-first approach
used by Gossamer is superior to directly building spanning trees.

Reliable multicast transport protocols such as RMTP [23] orga-
nize group members into a hierarchical tree structure for aggregat-
ing acknowledgments at midpoints in the network. Each branch in
the tree has a designated receiver (DR) to receive acknowledgments
from its children and aggregate them upwards to the sender. The
scattercast architecture is similar to RMTP in that it groups clients
around an SCX just as RMTP groups receivers around DRs. But
RMTP uses its tree structure only for acknowledgments and recov-
ery of lost data; all initial data transmission happens over a global
multicast group. Scattercast, on the other hand, relies on tunneled
distribution trees for data transmission as well.

� ��������� � � � � �

We have implemented a preliminary prototype of the scattercast
architecture. Although our simulation experiments demonstrate the
efficacy of the architecture, we plan to conduct experiments using a
deployed system in a real network. We plan to deploy our prototype
across the wide area to evaluate its performance and its scalability
especially in the face of real world traffic.

We are currently investigating extending the Gossamer protocol
to allow for multi-level Gossamer meshes in order to achieve bet-
ter scaling properties. SCXs in the local area participate in a local
Gossamer protocol independent of the rest of the session. A small
number of representative SCXs from the local area also participate
in a higher level Gossamer protocol with other SCXs across the en-
tire Internet. This ensures that the topmost level consists of fewer
SCXs and hence can stabilize to its final mesh structure relative-
ly quickly. The lower-level SCXs only interact with their nearby
SCXs and are not affected by the behavior of the rest of the ses-
sion.
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Although scattercast currently permits only source-rooted trees,
it is possible to extend this to bidirectional shared trees. Sources
that wish to use a shared tree can explicitly include the root SCX
for the shared tree in their packet headers. Gossamer will then route
the data over the explicitly specified shared tree. Such shared trees
are especially useful for scenarios containing a large number of
participants, all of whom are generating packets. For example, in
order to implement a reliability protocol such as SRM, RMTP or
PGM on top of scattercast, receivers in a scattercast session may in-
termittently transmit ACK or NACK packets, and may potentially
respond to retransmission requests. In such a situation, it is ad-
vantageous to use the distribution tree rooted at the source as a
bidirectional shared tree for the ACK, NACK, and retransmission
traffic. In the future, we plan to investigate the use of Gossamer for
constructing such bidirectional shared trees.

� 	 � � � 	 � 6

We have presented an architecture for Internet content distribu-
tion that relies on application-level intelligence embedded within
the network infrastructure rather than on network layer multicas-
t primitives to provide efficient multi-point data distribution. Our
architecture, which we call scattercast, makes use of a collection
of intelligent network agents (ScatterCast proXies or SCXs) that
collaboratively provide the multicast service for a session. Clients
participate in the session via a nearby SCX by either using local-
ly scoped IP multicast groups or direct unicast connections to the
local SCX. SCXs organize themselves into an overlay network of
unicast interconnections and build data distribution trees on top of
the overlay structure.

By migrating the multi-point delivery functionality out of the
network layer to a higher infrastructure service layer, scattercast
maintains the simplicity of the underlying network model. More-
over, scattercast simplifies the design of complex reliability and
congestion control protocols by allowing for application-specific
adaptation to deal with the heterogeneity that typically cripples tra-
ditional reliable multicast protocols.

Scattercast relies on a protocol called Gossamer to build an ef-
ficient overlay structure. Our simulation results show that the la-
tencies incurred by transmitting data over the scattercast mesh are
typically within 1.6 to 1.9 times those associated with directly u-
nicasting or multicasting the data from the source to the various
destinations. At the same time, the mesh generated by Gossamer
substantially limits the bandwidth usage of the physical Internet
links in comparison to naive � -way unicast.

The scattercast architecture is a first step towards a new ap-
proach for content distribution that explicitly moves application in-
telligence into the network infrastructure, while at the same time
maintaining compatibility with the existing IP architecture. We be-
lieve that as the Internet evolves, architectures similar to scattercast
based on intelligent application-aware network components will
become increasingly prevalent. Our experience with scattercast can
provide valuable input for the design of such next-generation Inter-
net architectures.
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