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Abstract

A Framework for Interactive Multicast Data Transport in the Internet

by

Suchitra Raman
Doctor of Philosophy in Computer Science

University of California at Berkeley

Professor Steven R. McCanne, Chair

The remarkable growth of the Internet as the a data transmission medium has in part been enabled
by the simplicity and scalability of the core Internet Protocol (IP), which is used for addressing
and routing unicast data packets through the network. The IP service model does not provide any
packet delivery guarantees, but rather provides a “best-effort” contract, and leaves it to higher lay-
ers to provide enhanced services using this basic service. Today, the de facto transport protocol on
the Internet is the Transmission Control Protocol (TCP) [109, 128]. TCP was designed primarily
for applications such as telnet, a remote terminal application, and ftp, a file transfer application,
which require data to be delivered reliably and in an ordered manner. While the TCP abstraction
and protocol are indeed invaluable for transporting simple data types in telnet and ftp, as well as
other applications with straightforward reliability requirements, two notable changes make the TCP
approach inappropriate both with respect to its restrictive delivery semantics as well as its internal
algorithms for loss recovery. First, TCP is not compatible with extensions to the basic IP service
model for providing network-layer multicast. Second, the emergence of rich media types and appli-
cations creates a need for transport protocol requirements that are not satisfied by TCP’s restricted
semantics. The newer applications are interactive and handle these special media types in special
ways. For example, an image viewer that does not rely on TCP may handle JPEG image data deliv-
ered out of order and reconstruct missing portions using interpolation techniques, thereby enhancing
the interactivity to the end user. Such applications require sophisticated delivery semantics and are
not best served by an overly restrictive protocol such as TCP. What is required here is a transport
protocol whose semantics can be tailored by the application for efficient network transmission.

Our approach to solving these issues is a soft state-based interactive multicast data trans-
port protocol framework. We present a model for “soft state” as an end-to-end construct that enables
loose state synchronization between sender and receivers. We treat protocol control state at the end
points as “soft” by not requiring that it be perfectly consistent at all instants. This allows us to
avoid tight sender-receiver synchronization, as in TCP-like instantaneous receiver acknowledge-
ments. Our soft state-based transport protocol provides a relaxed reliability, instead of TCP-like
deterministic reliability.

Second, to accommodate heterogeneity among receivers and network paths, we allow
receivers to tailor the semantics of reliability. Hence, a receiver incapable of or uninterested in
processing portions of the data stream may refrain from receiving it reliably. We do not rely on the
transport-level sequence space, but rather, use application-specific namespaces to express receiver
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preferences while requesting retransmissions. This application-level namespace is exposed to the
transport protocol and is used by the receiver to selectively retrieve specific data items. The use of
such a common “vocabulary” to describe data puts the application in control of loss recovery.

Finally, since many new data types including certain image formats can be processed and
rendered out of order at the receiver, we do not enforce a TCP-like delivery order on the data stream.
Instead, we provide out-of-order delivery to the receiving application and demonstrate its benefits
for image delivery. This specific technique is also applicable to unicast transmission and we design
and implement an interactive image transmission protocol for use in the World Wide Web.

These techniques form the bases of the new transport protocol framework for interactive
multicast data transport. Our transport protocol is layered on top of UDP [108] in the protocol
stack, and we have implemented it as a user-level library called libsstp, a library for soft state-based
transport protocol. We also present probabilistic analyses of the performance of our protocol in
terms of the performance of the basic algorithms for loss recovery, using “slotting and damping,” as
well as the tradeoffs involving consistency and bandwidth consumption.

Professor Steven R. McCanne
Dissertation Committee Chair
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Chapter 1

Introduction

I will finish what I sta
— Bart Simpson’s chalkboard exercise,

The Simpsons, Episode 8F05

1.1 Motivation

The last decade has seen a significant amount of research and commercial activity on
the Internet. By every measure, e.g., the number of hosts, the number of registered domains, and
the number of bytes transferred, the Internet is experiencing a tremendous expansion in size. One
recent report estimates that the number of hosts on the Internet has grown from about 15 million
in September 1996 to about 70 million in February 2000 [92]. In addition to the rapid growth
in size, the Internet has also seen an expansion in the number and types of applications in use.
Indeed, the power of the Internet is, to a large extent, due to the variety of applications it supports.
While conventional applications such as electronic mail, file transfer and remote login continue to
be widely used, applications such as the World Wide Web (WWW) [144], audio/video delivery, and
collaborative applications are increasing in popularity.

There are several factors that have fueled this remarkable growth of the Internet as a data
transmission medium. One of the main ones is the simplicity and scalability of the core Internet
Protocol (IP), which is used for addressing and routing unicast data packets through the network.
A packet transmitted by a host is forwarded along a path of routers and eventually reaches the des-
tination. Each IP router looks up the destination address in the header of a packet and forwards it
appropriately towards the destination based on its routing table that contains reachability informa-
tion. IP routers behave as nodes that “store-and-forward” packets, but since router memory available
for queueing packets is limited, incoming packets may sometimes be dropped. The IP service model
does not provide any packet delivery guarantees, but rather provides a “best-effort” contract. Under
this contract, when the network accepts a datagram, it provides no guarantee that packets will be
successfully delivered to a receivers in the order in which they were sent or delivered in a timely
manner, or that exactly one copy of the packet will be delivered.

IP leaves it to higher layers to provide refined versions of this basic service. For example,
the end-to-end transport layer of the protocol stack is responsible for shielding the application from
packet loss by providing loss recovery, congestion control and bandwidth management, as well as
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connection management in the case of connection-oriented unicast transport. Today, the de facto
transport protocol on the Internet is the Transmission Control Protocol (TCP) [109, 128]. TCP
was designed primarily for applications such as telnet, a remote terminal application, and ftp, a
file transfer application which require data to be delivered reliably and in an ordered manner to
the receiving application. TCP is a connection-oriented unicast transport protocol that provides a
reliable, byte-stream abstraction in which the bytes are delivered to the receiving application in the
same order that they were transmitted at the sender. TCP is responsible for connection management,
loss recovery, and flow and congestion control. The TCP sender uses positive acknowledgement
messages (ACKs) transmitted by the receiver to detect and retransmit lost segments. TCP also
infers network congestion from packet loss and adapts to it by reducing its sending rate. The TCP
abstraction and protocol is valuable for transporting simple data types, as in telnet and ftp, as well
as for applications with straightforward reliability requirements.

However, TCP has significant limitations as a universal data transport protocol both with
respect to its restrictive delivery semantics as well as its internal algorithms for loss recovery. We
discuss two important factors that interfere with TCP’s effectiveness as a data transport protocol.

First, TCP is incompatible with extensions to the basic IP service model for providing
network-layer multicast. The core Internet Protocol service model was extended in 1989 to accom-
modate efficient multi-point communication, i.e., one-to-many and many-to-many communication.
In this model, the network delivers a packet from a source to an arbitrary number of receivers. As
in unicast IP, the IP multicast service model is “best effort” and provides no delivery guarantees.
In multicast, the network delivers a packet from a source to an arbitrary number of receivers by
forwarding a copy of that packet along each link of a distribution tree. Senders simply send their
packets to an abstract “group address” and receivers express their interest in receiving these packets
by joining the corresponding multicast group through a group membership protocol. The collection
of senders and receivers exchanging data over a common multicast group is often called a multicast
session or simply a session.

Since the introduction of IP Multicast [30] almost a decade ago, a great deal of innovation
has occurred in the area of multicast-based applications. A vast array of real-time video [41, 135, 84]
and audio [64, 54] conferencing as well as playback, shared whiteboard [63, 133], and large-scale
file or software distribution [42] applications have been developed, that benefit from the extended
service model. Many of these applications require a transport protocol that provides an effective
loss recovery scheme. Merely extending the ACK-based TCP retransmission algorithm to provide
this reliability causes multiple ACKs, one per receiver, to be sent back to the sender, imploding
the source and congesting the routers on the path toward the source. Worse, the severity of ACK
implosion increases with the size of the multicast group to which the sender is transmitting. Since
the performance benefits of the underlying multicast distribution mechanism are, in general, greater
when group sizes are larger, an ideal multicast transport protocol must work well for large group
sizes.

The second key factor that impedes TCP is the dominant trend in the current Internet to-
wards the use of richer and more diverse data types and applications to handle them. The emergence
of such rich media types and applications creates a class of new transport protocol requirements that
not satisfied by TCP’s semantics. For instance, there are about 200 MIME types within eight main
categories registered with the Internet Assigned Numbers Authority (IANA) alone. In addition to
these registered types, more than 75 unregistered MIME types proliferate today’s Web sites [59].
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Each of these represents a distinct media type or format ranging in complexity from plain text to
layered JPEG images. The newer applications that handle such media types do so in special ways.
An example of this is an image viewer that can handle JPEG image data delivered out of order and
reconstructs missing fragments of an image using interpolation techniques. Such applications re-
quire sophisticated delivery semantics and may not be best served by an overly restrictive protocol
such as TCP. What is required here, is a transport protocol whose semantics can be tailored by the
application for efficient network transmission.

1.2 The Problem

Several issues render the multicast transport problem more challenging than the corre-
sponding unicast transport problem. The conventional approach to providing reliability for unicast
relies on tight synchronization between sender and receiver. One way to achieve such close syn-
chronization between sender and receivers in a multicast session is for the receivers to regularly
send feedback messages to the sender reporting the delivery status of transmitted data. This single
receiver approach does not, however, work well in the multiple receivers case. For example, sup-
pose we extended unicast TCP [109, 128] in a straightforward manner to the multicast scenario by
having each receiver send a feedback message to the source. For example, in Figure 1.1, packet

�
transmitted by sender

�
is lost. Receivers � ,

�
, and



detect this loss and respond by transmitting

a NACK or a request for repair back to the sender every time a packet is detected as lost. However,
this results in multiple copies of the same message being transmitted from each receiver back to the
sender. In large groups, this synchronized behavior by the receivers causes an “implosion” of feed-
back messages at the source, increasing its packet processing overhead and also causing congestion
on the path. Hence, a truly scalable multicast transport protocol must refrain from requiring tight
synchronization between the sender and every receiver in the group.

A second important challenge for a scalable multicast transport protocol is robust opera-
tion in the face of network failures. One of the fundamental design goals of the IP architecture has
been to ensure that end to end flows are relatively unaffected by the failure of individual portions
of the network. This has considerably influenced the design of the underlying network and has lead
to today’s packet switched Internet. In packet switched networks, all address information required
to route a packet is carried in the packet headers. IP routers do not maintain any flow-specific state
that is critical to the flow. Therefore, while unicast transport was designed to be “survivable” in
the event of router failures, not much attention was paid to surviving end point failures. This was
justified, since unicast communication is meaningless when one or the other communicating party
has failed.

Robustness and fault tolerance are in general desirable goals; but they are especially im-
portant in the case of scalable multicast protocols since large groups have inherently dynamic mem-
bership [2] and are prone to individual host failures. If ��� is the probability of host failure or
network failure that disconnects a host from the rest of the session, the probability that an ensemble
with � hosts operates successfully is � ��� � ��� ���	��
�� . As shown in Figure 1.2, this probability
reaches close to 1 even for moderately sized groups and failure probabilities. Hence, a robust and
scalable multicast transport protocol designed to work well with large groups should be insensitive
to dynamically changing group membership as well as host failures.

The other important aspects of a transport protocol are the semantics of reliability and
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each detect the loss of packet

�
and transmit a request for retransmission.

ordering provided to the application. The traditional approach is to provide sender-based complete
reliability, i.e., the sender ensures that all its data is received. The sender’s transmission can be
tailored to the requirements of the only receiver in unicast, and as a result both are said to have
share a common “goal” for the transmission. However, extending this single-point sender-based
control does not scale well to the multicast case. It is hardly acceptable to impose a single sender-
driven behavior in such a heterogeneous session composed of diverse hosts (from powerful desktops
to impoverished “thin” clients), or networks paths ranging from low bandwidth, loss-prone wireless
links to high bandwidth satellite links. For example, how must the round-trip time be estimated
for such a diverse session? Should we adapt to network congestion and throttle the sender down to
the least well-connected member? In addition, depending on user preferences and host capabilities,
members in a multicast session may have different reliability requirements. A scalable transport
protocol must support the wide range of heterogeneity in network paths and end host capabilities,
as well as differences in the semantics of reliability within the context of a single multicast session.
Hence, merely extending sender-driven control algorithms does not work well for multicast because
the “fate sharing” inherent in unicast communication does not scale well to multicast.

One of the main contributions of this work is to show how receivers within a single mul-
ticast session can tailor the sender’s transmission to reliably retrieve only those portions of the data
stream that are relevant, thereby reducing the amount of wasted bandwidth. We first observe that
this flexibility in fine-grained control over reliability semantics is not possible to achieve using the
traditional layered protocol architecture in which the application and transport layers do not share
a common vocabulary to define data items within the sender’s transmission sequence. For exam-
ple, when a receiver detects that bytes 1456 – 2912 of a transmission are lost, it does not know the
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Figure 1.2: A transport protocol that uses tight synchronization between end points is highly sensi-
tive to failures of individual sites.

corresponding application objects. This makes it impossible for the receiver to tailor its requests
for retransmission based solely on transport level identifiers. We propose that the application use a
generic namespace defined by application-level boundaries and expose it to the transport layer when
naming data units. A receiver uses these application-level boundaries and corresponding names to
request retransmission of lost data. Since data are no longer named as a sequence range relative
to a specific source’s sequence space, this approach also has the added benefit of distributing the
responsibility of retransmission to all eligible members of the session. Hence, any member that has
the requested data available to them is eligible to respond to the request, thereby making the system
robust against sender failures.

The emergence of the World Wide Web has led to the appearance of diverse data types
available through it, for example, images constitute a significant and growing fraction of traffic
on the World Wide Web. According to a recent study, JPEG (Joint Photographic Experts Group)
format images account for 31% of bytes transferred and 16% of documents downloaded in a client
trace [46]. The HyperText Transport Protocol (HTTP) [37] uses TCP [109] to transmit images on
the Web. While the use of TCP achieves both reliable data delivery and sound congestion control,
these come at a cost—interactive latency is often significantly large and leads to images being
rendered in “fits and starts” rather than in a smooth way. The reason for this is that TCP is ill-suited
to transporting latency-sensitive images over loss-prone networks where losses occur because of
congestion or packet corruption. When one or more segments in a window of transmitted data are
lost in TCP, later segments often arrive out-of-order at the receiver. In general, these segments
correspond to portions of an image that may be handled upon arrival by the application, but the
in-order delivery abstraction imposed by TCP holds up the delivery of these out-of-order segments
to the application until the earlier lost segments are recovered. As a result, the image decoder at
the receiver cannot process information even though it is available at the lower transport layer. The
image is therefore rendered in bursts interspersed with long delays rather than smoothly.

Earlier work on the scalable reliable multicast protocol (SRM) [40] recognizes the prob-
lem of ACK-implosion and proposes a distributed and randomized control algorithm to limit the
amount of feedback traffic generated in a multicast session. In addition, this work also introduced
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the notion of a protocol framework to perform receiver-driven reliability, where receivers control
which data items should be fetched. However, while the paper argues in favor of such a receiver-
driven reliable transport framework, no specific mechanisms were put forth to realize it.

The TCP-like in-order delivery abstraction is appropriate for image encodings in which
incoming data at the receiver can only be handled in the order it was transmitted by the sender. Some
compression formats are indeed constrained in this manner, e.g., the Graphical Interchange Format,
GIF [44] which uses lossless LZW compression [72, 142] on the entire image. However, while some
compression formats require fully reliable and in-order delivery, several others do not. Notable
examples of formats that encourage out-of-order receiver processing include JPEG [141, 104] and
the emerging JPEG2000 standard [67]. In these cases, a transport protocol that facilitates out-of-
order data delivery allows the application to process and render portions of an image as they arrive,
improving the interactivity and perceived responsiveness of image downloads. Such a protocol also
enables the image decoder at the receiver to implement effective error concealment algorithms on
partially received portions of an image, further improving perceived quality. Ideally, the transport
protocol must provide a basic set of loss recovery and data delivery semantics that can be customized
for specific applications. Our proposal for such a multicast transport protocol is similar in spirit to
earlier work on application-level framing (ALF) [23] that advocates greater application control over
traditional transport functions, including loss recovery and delivery order. However, in this work,
we present a more complete solution by providing a generic transport protocol and show how its
mechanisms can be customized to achieve desired application behavior.

In summary, the emergence of multicast as well as the emergence of new types of data at
the application layer have rendered TCP or TCP-like mechanisms ineffective as a transport protocol
both in terms of abstraction (delivery order and reliability semantics) as well as mechanism (feed-
back management) on the Internet. In this dissertation, we develop a truly receiver-reliable protocol
framework for effectively transporting interactive data via multicast on the Internet. We address
issues of data naming, data delivery semantics and protocol robustness. We also address the chal-
lenges posed by new data types and show how data type-specific optimizations may be supported in
a generic transport protocol framework.

1.3 Our Solution: Interactive Multicast Transport Using Soft State

Our approach to solving the aforementioned issues for interactive multicast data trans-
port based on “soft” protocol state. We present a model for “soft state” as an end-to-end construct
that enables loose state synchronization between sender and receivers. We propose this as a basic
building block for constructing a robust and scalable transport framework for interactive multicast
applications. Here, we take a different approach from TCP and treat protocol control state as soft
state. To accommodate heterogeneity among receivers and network paths, we allow receivers to tai-
lor the semantics of reliability. Hence, a receiver incapable of or uninterested in processing portions
of the data stream may refrain from receiving it reliably. We do not rely on the transport-level se-
quence space, but instead, use application-specific namespaces to express receiver preferences while
requesting retransmissions. Finally, since many new data types including certain image formats can
be processed and rendered out of order at the receiver, we do not enforce a TCP-like delivery or-
der on the data stream. Instead, we provide out-of-order delivery to the receiving application and
demonstrate its benefits for image delivery.
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These techniques form the bases of the new soft state-based transport protocol framework
(SSTP) for interactive multicast data transport. Our transport protocol is layered on top of UDP
[108] in the protocol stack, and implemented as a user-level library called libsstp, a library for soft
state-based reliable multicast, as shown in Figure 1.3. In the remainder of this section, we present
more details on our approach.

IP multicast

UDP

Link layer

IP 

TCP UDP

SSTP

Figure 1.3: libsstp is a user-level implementation of soft state-based reliable multicast that runs over
UDP.

1.3.1 Soft State as a Data Transport Primitive

The notion of soft state has been in popular use among routing protocol designers since
the advent of multicast routing. Multicast routers maintain membership information on behalf of
hosts or other networks downstream within their multicast routing tables. This membership in-
formation, ultimately generated by receivers signalling to their upstream routers, is used to make
forwarding decisions for multicast data flows. The traditional approach to state management treats
the state as “hard” or assumes that the state is valid unless and until explicitly deallocated by end
hosts. However, it is crucial for routing protocols to design components within the network that are
“forgiving” and self-healing in the face of buggy end system implementations. In multicast routing,
routers defend against buggy hosts that fail to signal to the routers when they leave a group. Instead
of using the hard state approach, multicast routers periodically expire the membership state in their
tables, unless explicitly re-registered by a downstream router or host. While this notion of soft state
is generally agreed upon as a defensive measure by routing protocol designers, its properties are not
well-understood.

In our work, we first propose a formal model for soft state that treats soft state as an
end-to-end construct. We then use it to maintain loose synchronization between the sender and
receivers. The soft state model is simple: state at the end hosts is treated as “soft” and relies on
periodic refreshes of this state by the session members. Our basic data model is an abstract table of�
key, value � pairs. We also discuss how this data model can be extended to represent large reposi-

tories of data scalably organized hierarchically. We define a probabilistic metric called consistency
to evaluate and compare the different soft state-based protocols. Based on our model, we evaluate
the performance of different variants of soft state-based protocols and show how the bandwidth
dedicated to control state refreshes affects the overall performance of the protocol. We theoretically
analyze our model for the simple open-loop announce/listen protocol. Based on this model, we sys-
tematically characterize data consistency and performance tradeoffs of our soft state model under a
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range of workloads and network loss rates for the simple open-loop case and its variants. We also
extend the open-loop variant of announce/listen by adding receiver feedback to enhance data consis-
tency and performance without increasing network resource consumption. Based on our model, as
well as the observation that several protocols have inherently “soft” or periodically changing data,
e.g., route advertisements [86, 55, 78], DNS updates [88], MBone session directories [53], stock
quote or general information dissemination services [107], we propose a soft state-based transport
protocol framework. This framework provides a parameterized spectrum of reliability semantics
all derived from one framework — from simple announce/listen communication to feedback-based
reliable transport. The framework also optimally allocates bandwidth based on packet loss rates and
application workload to maximize consistency. The result is a parameterized framework that can be
tuned to provide one of a continuum of “reliability levels”.

We explore the use of feedback from receivers to enhance the consistency provided by
sender-driven soft-state refreshes. However, since instantaneous and uncontrolled feedback can
implode the sender, we investigate a rate-controlled receiver feedback. Since we do not rely on
instantaneous positive feedback, our soft state communication entails a probabilistic delivery model
with relaxed reliability. This is in contrast to the deterministic guarantees provided by TCP, which
uses instantaneous feedback messages from the receiver.

1.3.2 Receiver-driven Reliability

The traditional approach to providing reliability, a la TCP, is to recover all lost transmis-
sions. As described in Section 1.2, this sender-based TCP approach does not extend well to the
multicast case. The sender-based approach is also better suited for the data types and applications,
e.g., ftp and telnet, prevalent during the design of TCP, which did not have the ability to process
partially received data. However, modern applications such as image browsers, distributed shared
interactive whiteboards, and interactive directory services, do not require all data to be reliably
delivered, but rather require a transport protocol that allows the receiver to tune its reception.

Receiver and network heterogeneity are more significant in the context of multicast, where
a single session may simultaneously span multiple hosts with varying levels of processing capacity
and network paths. Here, each receiver must tailor a sender’s data to reliably deliver only useful
portions. Consider the example of the “thin” client application that runs on a device with a 2-bit
gray-scale display. Such a device is unable to process and render high-resolution GIF images and
does not require that portion of the transmitted data to be recovered reliably.

Transport layer sequence numbers, the traditional construct used to name and identify data
items at the sender and receiver, are not enough to provide the richer and more flexible reliability
semantics required for such applications. If a piece of data is lost in transit, the receiver has no means
to discover to which portion of the application data stream the corresponding sequence number gap
maps. Hence, more relaxed reliability semantics based on application requirements are difficult to
architect. What is required is a richer naming structure that is shared between the transport and
application. Such a naming structure must also support large data sets in a scalable manner. In
our protocol framework, we show how to name data at the transport layer in a manner that allows
the transport and application layers at the application to cooperatively decide if retransmissions are
required.

The sender and receivers use an application-specific namespace to describe data. In addi-
tion to transmitting the payload, the sender also sends a piece of meta data or a signature or summary
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of the corresponding data describing the name, type, and other application-defined attributes. Since
the semantics of the namespace and meta-data are generated in an application-specific fashion and
are under application control, it is possible for the receiving application to decide, based on the
meta-data information, whether the corresponding data item is to be recovered completely.

Receivers use the meta data and namespace information to schedule requests for retrans-
missions, and the effectiveness of their decisions is greatly improved when the namespace infor-
mation is received without losses from the sender. Here, negative acknowledgement messages are
generated in a scalable manner using randomized timers. This randomized timer technique is oth-
erwise also referred to “slotting and damping” and has been used in other contexts ([21, 36, 4]) for
limiting feedback in a large group. When a receiver decides to request a lost transmission from
the sender, it uses a loss recovery algorithm based on “slotting and damping” similar to the SRM
protocol. Feedback messages are controlled damping their transmissions and suppressing dupli-
cate copies of the same message generated by different receivers. To ensure that the meta data
and namespace information is delivered reliably, we use the same underlying slotting and damping-
based loss recovery algorithm. While slotting and damping was previously applied to recover lost
application data, we extend its use here to perform loss recovery on the naming data as well.

Hence, a richer naming system combined with an efficient name distribution mechanism
allows receivers to tune their retransmissions and solves the end-point heterogeneity problem.

1.3.3 Out-of-Order Processing

Another important aspect of multicast as well as unicast transport protocols is the order in
which data is delivered to the application running at the receiver. Simple data types such as telnet
and ftp that lack structure within the application perform equally well with any delivery semantics.
However, as we observed in Section 1.1, the number of different media types and formats is on the
rise on the Internet. In addition, several of them are designed specifically for network transmission,
making it possible to handle partially received data. This feature of network-optimized data formats,
impacts our design of the application-transport interface. First, it dictates the framing boundaries
for datagrams transmitted on the network, and more importantly, it enables receivers to process
partially received data in an out-of-order fashion.

Even though the issue of data delivery order is important in unicast as well as multicast
transport, we focus on the specific case of JPEG images in the context of unicast. Our choice here
is motivated by the immediate application of our techniques to WWW transfers. However, the
techniques presented for out-of-order delivery easily transition to the multicast case as well.

We first highlight the disadvantages of using TCP or a TCP-like in-order delivery protocol
for image downloads. The main drawback of using TCP for image downloads is that its in-order
delivery model interferes with interactivity. To demonstrate this, we conducted an experiment across
a twenty-hop Internet path to download a 140 KByte image using HTTP 1.1 running over TCP. The
loss rate experienced by this connection was 2.3%, 3 segments were lost during the entire transfer,
and there were no sender retransmission timeouts.

Figure 1.4 shows a portion of the packet sequence trace obtained using tcpdump running
at the receiver. We see a transmission window in which exactly one segment was lost, and all
subsequent segments are received, causing the receiver to generate a sequence of duplicate ACKs.
There are ten out-of-sequence segments received in all waiting in the TCP socket buffer, none of
which is delivered to the image decoder application until the lost segment is received via a (fast)
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Figure 1.4: Portion of packet sequence trace of a TCP transfer of an image.

retransmission almost 2.2 seconds after the loss. During this time, the user sees no progress, but
a discontinuous spurt occurs once this lost segment is retransmitted to the receiver, and several
kilobytes worth of image data are passed up to the application.

To understand how ordering semantics influence the perceptual quality of the image, we
conduct another experiment where the image is downloaded over TCP. We study the evolution of
image “quality”, as measured by peak signal-to-noise ratio (PSNR) [121] with respect to the original
transmitted image. Figure 1.5 shows this for a transfer that experiences a 15% loss rate. We find
that the quality remains unchanged for most of the transfer, due to an early segment loss, but rapidly
rises upon recovery of that lost segment. A more gradual evolution in PSNR, as in the “ideal”
transfer which does out-of-order delivery is desirable for better interactivity.
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Figure 1.5: PSNR evolution of the rendered image at the receiver for a TCP transfer with 15% loss
rate.

We observe that a design in which the underlying transport protocol delivers out-of-
sequence data to the application might avoid the perceived latency buildup. In order to do this,
the transport “layer” (or module) must be made aware of the application framing boundaries, such
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that each data unit is independently processible by the receiver. Hence, out-of-delivery combined
with application-level framing can vastly improve the perceptual quality of the received images.

1.4 Contributions of Dissertation

The core focus of this dissertation is the design, development and analysis of techniques
for an ALF-based transport protocol for interactive multicast applications. The key contributions of
this thesis are as follows.

� A Model for Soft State Transport: We have developed an abstract mathematical model
and provided a solution for soft state based communication that is applicable to a variety
of applications. Using the model, we show how the performance of basic announce/listen
protocols can be improved using special scheduling techniques at the sender as well as by the
addition of receiver feedback. Through this model, we have unified several previous attempts,
e.g., SAP [49] and SRM [40] at solving the multicast transport problem.

� Scalable Naming and Announcement Protocol (SNAP): We argue that pure transport level
sequence numbers do not appropriately reflect the structure of application level data, making
it impossible for resource-constrained receivers to selectively request retransmissions within
a data stream. We show how to overcome the end host and network heterogeneity problem in
multicast sessions using scalable data naming, and an efficient name dissemination protocol.
These techniques allow receivers to tailor their reception to suit their local requirements.

� Asymptotic Timer Analysis: At the core of our transport protocol framework is a loss re-
covery scheme based on randomized receiver feedback. We carry out a detailed analysis and
simulation study of the asymptotic behavior of this scheme. We show that the effectiveness
of the scheme relies heavily on the nature of the underlying topology of the group.

� libsstp: We have implemented the above schemes as a generic, reusable user-level transport
protocol framework called libsstp. Libsstp has a well-defined API that supports selective
reliability, out-of-order delivery, and application-specific data naming. We have validated
our protocol framework and implementation by developing a range of applications using it.
libsstp has been used with significant success in building applications such as a real-time
information dissemination service used for timely data such as weather and stock quotes; a
collaborative shared whiteboard application called MediaBoard; a light-weight control proto-
col for software-based parallelized special effects video processing; a reliable multicast proxy
service, and a distributed archival system.

� Image Transport for the WWW: We have applied the principle of out-of-order data deliv-
ery to JPEG image transport over the World Wide Web and demonstrate the benefits of this
approach over HTTP/TCP. We have developed a specialized unicast-only transport protocol
called ITP that is tailored for image transport on the WWW. We customize ITP even further
for JPEG transport.



12

1.5 Overview of Dissertation

The remainder of this dissertation is organized as follows.
In the next Chapter, we describe the background and related work. Chapters 3, 4, 6, 7

address the core components of our transport framework.
In Chapter 3, we present the soft state model for multicast transport and analyze its per-

formance under a variety of network conditions using the consistency metric. Soft state uses loose
synchronization of protocol state between the end points making it ideally suited to large-scale mul-
ticast sessions with dynamic membership. We present the basic announce/listen model and show
how its performance can be improved using special scheduling techniques at the sender that dis-
tinguishes data items based on age, as well as by adding rate-controlled receiver feedback. The
announce/listen protocol presented in Chapter 3 uses a straightforward data model comprising a
linear table of

�
key, value � pairs.

In Chapter 4, we address the issue of heterogeneity in large-scale multicast sessions. The
combination of data naming and an efficient name dissemination scheme allowing receivers to tailor
the semantics of reliability by selecting which data items need be reliably recovered. We also
propose a hierarchical data model for the protocol to scale to large data stores.

An important component of our transport protocol framework is the randomized timer-
based receiver-driven loss recovery scheme commonly termed “slotting and damping.” In Chap-
ter 5, we present a detailed simulation and analysis of this randomized timer scheme under various
network conditions, especially in the case of large group sizes.

Chapter 6 demonstrates the benefits of out-of-order data delivery in the context of JPEG
image transport on the World Wide Web. This work shows how partially received JPEG images
can be processed out of order and further refinements applied to enhance the quality of the rendered
image while the download progresses. This improves the interactivity of the download, as measured
by peak signal-to-noise ratio (measure of likeness) with respect to the transmitted image.

In Chapter 7, we tie together the concepts presented in Chapters 3, 4, 5, 6 into libsstp, a
reusable software implementation for use in interactive multicast data applications.

Finally, we conclude and present areas for future research in Chapter 8.
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Chapter 2

Background and Related Work

“Progress, far from consisting in change, depends on retentiveness. Those who
cannot remember the past are condemned to repeat it.”

— George Santayana

“Change is inevitable, except from a vending machine.”
— Bumper Sticker

In this Chapter, we survey background research and work related to our soft state-based
transport framework. Section 2.1 presents network layer routing protocols for intra-domain as well
as inter-domain multicast. We also briefly present the current status of deployment of IP multicast
within the Internet and describe the multicast backbone (MBone). We then present the current state
of the art in multicast transport. In Section 2.3, we survey open-loop “announce/listen” protocols.
This is followed by a discussion of several end-to-end as well as router-assisted reliable multicast
transport protocols in Section 2.4. We then discuss the semantics of data delivery in transport
protocols in the context of unicast and multicast.

2.1 Overview of IP Multicast

The core IP service model comprising “best effort” unicast IP was extended in 1989 to
include IP multicast for efficient wide-area network-layer multi-point data delivery [30]. IP mul-
ticast leads to efficient bandwidth utilization for one-to-many and many-to-many communication.
Data delivery occurs by forwarding a copy of a packet along each link of a distribution tree. Besides
providing efficient multi-point delivery, network layer multicast also provides a “group” abstraction
in which a sender of data can refer to a group of receivers, without listing them explicitly.

IP multicast also reduces the load on the sender because a transmission is performed
once per group. Subsequent duplication occurs at branch points along the distribution tree in the
underlying multicast routing topology, as shown Figure 2.1. Senders simply send their packets to
an abstract “group address” and receivers express their interest in receiving these packets by joining
the corresponding multicast group address through a group membership protocol [36]. The abstract
group address is selected from the special class D range (224.*.*.* through 239.*.*.*) of
IPv4 addresses, and serves as a handle or key to the entire multicast group, thus obviating the need
for higher-level applications to maintain explicit membership lists.
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�
to all three receivers along a source-

rooted tree constructed using DVMRP.

Much past work addresses the problem of multicast routing. We begin by discussing
different designs for multicast routing protocols.

2.1.1 Flood and Prune Protocols

One class of routing protocols (DVMRP [30] and dense mode PIM [31]) involves “broad-
cast and prune,” where traffic is flooded from the source, using reverse path forwarding [26]. Ad-
ditionally, when a router ! receives a multicast message from a source

�
with destination address

� � and ! has no neighbors that wish to receive traffic for � � � � � � it sends a message in response,
indicating that the neighbor should “prune � � � � � ”, i.e., should stop sending traffic for � � � � � to this
router. This class of protocols does not support large numbers of groups with topologically distant
members because of two drawbacks:

Too much flooded data.
To reach all potential receivers, flood and prune protocols must periodically flood data to
reach all parts of the Internet. However, in practice, for a given receiver, only a very small
portion of the groups would be of interest.

Too much prune state.
Each router ! must remember all the � � � � � pairs it received from each neighbor (represent-
ing all the � � � � � pairs the neighbor is not interested in receiving), in addition to all the � � � � �
pairs ! has sent prunes for. In other words, the prune state in routers grows proportionally
with the number of sources � and number of groups � that a router is not interested in!

2.1.2 Explicit Tree Protocols

The other class of protocols, (CBT [8], sparse mode PIM [29], and BGMP [71]) explicitly
builds a shared tree based on a root

�
, so that only routers on the distribution path of a multicast

group need to keep state about the group. CBT and BGMP create a bi-directional tree, whereas
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sparse mode PIM creates a uni-directional tree. The shared tree approach is more scalable since the
router state does not grow as rapidly as in the dense mode protocols, since routing state is no longer
maintained for groups in which there is no interest!

In addition, sparse mode PIM allows for switching between a state-efficient shared tree
and a latency-optimal source-rooted tree. Each router decides if it is receiving a “sufficiently high
volume” of traffic from a particular source, and if so, joins a tree rooted at that source, pruning
itself from the shared tree. This dynamic switching between uni-directional shared tree and per-
source trees is complex and has stability problems as per-source trees time out. Also, the root of the
uni-directional shared tree becomes a bottleneck.

All the shared tree approaches require the use of periodic announcement messages to
locate the rendezvous point, or RP, for a group, i.e., learn the mapping from the group address � to
its RP. In sparse mode PIM, a bootstrap mechanism within a domain advertises candidate RPs and
a hash function maps � to one of the set of candidate RPs. This mechanism does not scale beyond
a domain because it is too expensive to do Internet-wide advertisements of the list of candidate
RPs. In addition, this mechanism creates highly suboptimal trees if the candidate RP is selected
using a hash function from among Internet-wide candidates, rather than being co-located with high
bandwidth senders to optimize data paths.

There have been several recent proposals that specifically address the wide-area IP mul-
ticast routing problem. The inter-domain multicast routing protocol BGMP [71] proposes using
a shared bi-directional distribution tree among domains such that any intra-domain protocol (i.e.,
DVMRP or PIM) can be run within each domain. Routing between BGMP domains requires that
multicast address allocation reflect the underlying unicast network topology, or at least provide core
location information. This alignment with the unicast routing hierarchy also makes BGMP routing
entries aggregatable resulting in state savings in inter-domain routers. There is less consensus on
how such address allocation is to be done in a scalable and deployable manner. Some approaches
that have been suggested are:

� Multicast Address Set Claim (MASC) [71], a scheme proposed in conjunction with BGMP
for dynamically assigning blocks of multicast addresses to each domain, and using inter-
domain unicast routing, e.g., BGP [78] to distribute reachability information. Once ! is
localized in this manner to a domain, a mechanism such as PIM bootstrap is used to map
� to the RP within that domain. While we feel that the shared bi-directional inter-domain
tree architecture in BGMP is a scalable distribution mechanism, we are less convinced that
the MASC architecture is sufficiently dynamic and free from allocation conflicts, especially
in the face of network partitions. If multicast addresses need to be allocated in blocks to
domains, either statically or dynamically, multicast addresses will become a scarce resource.

� GLOP addressing [87] is a static assignment of multicast addresses based on unicast domains,
in which each domain is assigned 256 multicast addresses. 256 addresses per domain are not
sufficient to support anything but a very restricted set of applications (perhaps a few streams
broadcast by an ISP). Another scheme [94] assigns class D addresses based on 24 bits of the
unicast address space. This scheme cannot be used along with “routing realms” connected to
the rest of the Internet via network address translators (NATs) [77] that do not have any glob-
ally assigned unique unicast addresses, and therefore would not have any multicast addresses.

Another proposal to overcome the wide-area rendezvous problem is MSDP [35], the Mul-
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ticast Source Discovery Protocol. MSDP is a scheme in which tunnels are configured between can-
didate RPs in various domains. When a source

�
transmits on group � , knowledge that � � � � � is

an active (source, group) pair is flooded throughout all domains. This scheme suffers from severe
scaling problems if many sources and groups are active simultaneously.

Recent research has revisited the basic abstraction of a group, since perhaps it was too
ambitious and generalized. This has lead to the development of at least two independent proposals
[57, 105] that argue in favor of a modified abstraction for a group that is less general, but affords
a more scalable wide-area routing protocol. One such scheme is the EXPRESS multicast model,
which explicitly names the source of data in the group address. Hence, the group is identified by
the 8-byte quantity � � � � � , where � is a group identifier with respect to

�
. Another scheme, the

“Simple Multicast” routing protocol (SM) proposes extending the multicast address architecture by
making end hosts aware of the core router of the multicast distribution tree. SM overcomes the
core location problem in the wide-area by explicitly distributing the core address at the application
layer along with the 4-byte group address. In this scheme, the group “address” ( � ) is extended with
the unicast address (

�
) of the core or RP. Hence, the new extended group identifier is � � � � � � The

additional address bytes may be carried in an IP option or “next header,” following the IP header.
Both EXPRESS and SM mitigate the difficult problem of globally coordinated multicast

address allocation by localizing address management to a single node. Since � is unique with re-
spect to the root ! of the distribution tree (i.e., the source

�
in EXPRESS, or the core

�
in SM),

there is no need for a separate address allocation infrastructure. The key difference between EX-
PRESS and SM is their sender model. At the network layer, EXPRESS supports data delivery from
only one source per group, whereas SM preserves the source model of the existing IP multicast by
providing support for multiple senders. The designers of the EXPRESS protocol make the strong
assumption that the only important application requiring efficient wide-area multicast on a large-
scale is IP television. Other existing applications using transports such as RTP [125] and SRM [40]
require network layer support for many-to-many communication. For example, scalable timers in
RTP as well as SRM using slotting and damping require the use of a multicast back channel from
every receiver. Such cases can be supported by using an application-level agent that performs ses-
sion management to provide the multi-sender abstraction over the underlying one-to-many model.
For example, such all non-root senders may transmit their data to this session management agent
which in turn re-multicasts this data along the distribution tree.

2.2 Multicast Deployment

One of the concerns in extending IP is a deployment path in the current internetwork. The
MBone was intended as the deployment vehicle for IP multicast. The MBone is a virtual “overlay”
network that interconnects islands of networks with native multicast. Each of these tunnels runs the
mrouted multicast routing daemon which connects to other routers running mrouted using IP-in-IP
tunnels. Configuration of the tunnels was manual and “peering” on the MBone was largely through
“friendly” interactions via e-mail, and phone. The MBone was proposed as a transition vehicle
while the research community worked on a longer-term wide-area multicast solution. As a result, it
had little monitoring and debugging support, which made it hard to administer.

As evidenced in the discussion in Section 2.1, scalable wide-area routing continues to be
an open area of research and experimentation and there is little consensus in the research community.
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In fact, the GLOP address partitioning scheme was designed to facilitate wide-area experimentation
with different proposals. As a result, even though the design and deployment of IP multicast pro-
tocols started almost a decade ago, we do not yet have a ubiquitous multicast infrastructure. Some
researchers have argued that such extensions to the IP service model to provide a ubiquitous layer
3 multicast delivery service are fraught with technical difficulties and have suggested instead that
new services be layered on top of the existing IP infrastructure as an overlay content distribution
and content adaptation network. Our work in this dissertation assumes that a multi-point delivery
service is available, but it does not as such mandate a specific structure for it. Such a service may
be available either through native layer 3 IP multicast or through a content distribution service, or
more likely through a combination of the two. Even though we have targeted our transport level
schemes to native IP multicast, the specific delivery service is not likely to impact most aspects of
our design. Hence, our schemes may be used to build robust data transport over content distribution
networks.

In the following sections, we discuss previous research in the area of multicast transport.
We start with the simplest protocol — announce-listen, which is a “quasi-reliable” transport proto-
col. We then discuss various reliable multicast transports and present a brief overview of delivery
semantics in transport protocols.

2.3 Announce/Listen-based Transport Protocols

The announce-listen communication model has been the basic building block of MBone
application design. Here, a sender periodically announces its data set to a group of receivers who
listen to these transmissions and build their local store of the sender’s data. The announce-listen
model is best effort and does not provide any delivery guarantees as such. However, it is simple
to engineer and has built into it robustness against hosts and network failures. For example, since
transmissions are periodic, lost data can be recovered during a subsequent successful transmission.
In our work on soft state, we extend the basic announce/listen model and show how it can be tuned
to provide a probabilistic notion of reliability.

The Session Announcement Protocol (SAP) [49] is an announce-listen protocol used on
the MBone to advertise conference information. The advertisements themselves are specified using
the Session Description Protocol (SDP) [52]. A conference advertisement contains the name of the
session, a description and timing information along with transport protocol address (in this case, the
multicast address and port number pairs for the various applications and media types in the session.
Additional information such as contact and encryption information, bandwidth specifications or
application-specific attributes are also allowed in SDP. The popular MBone “session directory” [53]
uses SAP and SDP. sdr receivers construct a local repository of all announced sessions by listening
on a well-known multicast communication channel over which the announcements are transmitted.

The Real-time Transport Control Protocol (RTCP) [124] is an example of an announce-
listen protocol. Here, RTP sources periodically transmit sender reports that contain information
on synchronization, transmission statistics, source identification, and application termination. Re-
ceivers in turn send periodic receiver reports that contain information on reception statistics (e.g.,
received sequence numbers, inter-packet jitter).

Other applications of the announce-listen communication model include the multicast
user directory service [122]. In this work, Schooler uses announce/listen to perform resource dis-
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covery in the MBone. A user locates the desired resource — user directories — by listening for
directory announcements. By limiting the reception scope, the user can control the locality of the
resource that he/she is attempting to locate.

2.4 Reliable Multicast Transport Protocols

There are two main classes of reliable multicast transport protocols based on the type
of loss recovery mechanism. The first class uses negative-acknowledgements from the receiver to
trigger retransmissions from the source and the other relies on positive ACKs. We survey specific
instances of these below.

2.4.1 Scalable Reliable Multicast (SRM)

SRM is a NACK-based, fully-decentralized reliable multicast protocol originally de-
scribed by Floyd, et al., in [40]. The SRM framework builds on Clark and Tennenhouse’s principle
of Application Level Framing (ALF) [23], which provides an elegant solution to the problem of
reliable-multicast API design because its flexibility offers applications the opportunity to actively
participate in the loss-recovery procedure.

To avoid ACK-implosion, SRM uses NACKs. Receivers detect losses from discontinuities
in sequence numbers (or by other means with a generic data naming scheme [112]) and transmit
NACKs as a request for retransmission of the lost data1. A randomized algorithm determines when
a receiver transmits a NACK. These NACKs are multicast to the entire group so that any receiver,
in particular the closest receiver with the requested data, may generate a repair in response to a
NACK. The repair messages are also multicast to the entire group, so that all receivers that missed
that packet can be repaired by a single response. The repair message traffic likewise makes use of
the randomized timer algorithm.

To avoid NACK implosion, receivers that observe a NACK for data that they too have
not received do not send their own NACK2 and await the repair data. The goal of the randomized
NACK transmission algorithm is to minimize the number of duplicate NACK messages sent. To
accomplish this, each receiver delays the transmission of a NACK by an amount of time given by
the expression

backoff
� 
 � � ����� ����� �

where backoff is the amount of delay,



is an estimate of the one-way delay from the receiver to
the source that generated the lost data packet,

���
�
���

are non-negative protocol constants, and
�

is
a uniformly distributed random number in � � � ��� . This random delay provides receivers with the op-
portunity to suppress the transmission of similar pending NACKs; that is, delaying the transmission
of NACKs by a random amount increases the likelihood that a NACK from one receiver is delivered

�
To be true to the original intentions of the SRM designers, we must admit that our use of the term “NACK” is

somewhat inaccurate since it implies that the underlying protocol generates NACKs to guarantee that all data is eventually
received by all receivers. In fact, SRM is receiver-reliable and does not require that all receivers obtain all data. Instead,
receivers issue “repair requests” to repair only those data wanted. For this paper, we use the terms “NACK” and “repair
request” interchangeably.�

More precisely, they scale their transmission timer awaiting a response. All receivers, if they have not received the
repair data, will eventually transmit a NACK.
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Figure 2.2: NACK suppression in Scalable Reliable Multicast.

to another receiver before that receiver sends its own NACK, and thus, reduces the total number of
NACKs. Figure 2.2 illustrates the suppression mechanism in SRM.

As in [40], we call
��� 


the deterministic delay and
�"� 
 �

the random delay. The
deterministic-delay component induces suppression effects across receivers situated at varying dis-
tances from the point of loss (e.g., a chain topology), while the random-delay component induces
suppression effects across receivers situated at equal distances from the point of loss (e.g., a star
topology). We say that a receiver’s timer fires if no suppressing NACK has been received when its
backoff period has expired.

Since NACKs are multicast to the group, any receiver that has the data can respond, not
just the original source. However, we again have the potential for a control-traffic storm if all hosts
respond simultaneously. Thus, to avoid repair-packet storms, SRM reuses its NACK suppression
machinery to limit the number of redundant repair packets. Because both NACKs and repairs are
sent to the entire multicast group, we call this the SRM global recovery mechanism.

Other NACK-based schemes include the Stanford log-based receiver reliable multicast
protocol (LBRM) [58] that relies on the availability of a logging server with persistent storage. The
source transmits its updates to the logging server reliably using a positive ACK protocol, similar
to TCP. Subsequent repairs are fetched by receivers from the logging server. The authors also
propose a distributed logging scheme with secondary servers at client domains. Each secondary
server reliably receives a copy of updates from the primary logging server and uses it to respond to
NACKs or repair requests from the receivers from within its domain. LBRM reduces the amount
of NACK traffic handled by each logging server by constructing a two-level hierarchy. The main
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drawback of this scheme is the administrative overheads of installing and maintaining large storage
servers and specifying and enforcing policies for their use by different applications.

In Chapter 5, we analyze the asymptotic scaling properties of the randomized NACK
scheme and show how it depends on the topology of the multicast group.

2.4.2 Tree-based Reliable Multicast Protocols

Some schemes including Tree-based Reliable Multicast (TRAM) [68] and Tree-based
Multicast Transport Protocol (TMTP) [148] take a different approach to loss recovery. Here, the
multicast session members are organized into a transport/session-level hierarchy and attempt to
reduce the scale of feedback traffic by localizing it to smaller scopes.

TMTP combines both sender and receiver initiated techniques. Participants are organized
into domains with a single domain manager responsible for error recovery and local retransmission
in each domain. Error control at the sender utilizes periodic unicast ACKs from domain managers,
time-outs and retransmissions. Domain managers send ACKs upon receipt of a multicast packet. To
signal a missing packet, domain members multicast a NACK to the domain manager in combination
with NACK suppression. Localized error control is supported by limited scope multicasting via the
IP time-to-live (TTL) field.

RMTP and TRAM are intended for bulk data transport. RMTP was the earliest tree-
based protocol and used statically established hierarchy. The target application for RMTP was large
scale data shipping for billing applications within AT&T. Here, ACKs are fused at each level of the
hierarchy. Sending periodic ACKs also allows for performing congestion control at the sender. The
semantics of congestion control in this case are “slowest rate” semantics, where the entire session
operates at the bandwidth of the slowest network path.

TRAM uses dynamic trees to implement local error recovery using ACKs and to scale
to a large number of receivers without seriously impacting the sender. Here too, as in LBRM, the
administrative overheads in establishing and maintaining the transport-level hierarchy. TMTP uses
only end system nodes to construct this hierarchy and attempts to automate the process using mon-
itored loss rates between receivers. However, the stability of such a dynamic system is unstudied
under realistic network conditions.

2.4.3 Router-assisted Schemes

Pragmatic General Multicast (PGM) [127] is a combined network and transport layer
solution to the problem of scalable wide-area multicast. End hosts generate NACKs in response
to missing packets. Routers are maintain transport-level state that assists in suppressing duplicate
NACKs from downstream members.

Light-weight Multicast Service (LMS) is a similar extension to the network-layer multi-
cast service to provide NACK suppression. Here, intermediate routers maintain state that affects
forwarding decisions and guarantees that no more than one NACK message “escapes” a subtree of
a source-rooted multicast distribution tree. This scheme aims to optimize the amount the feedback
traffic generated using loss recovery and route it efficiently.

Both PGM and LMS assume source-based distribution trees and do not perform opti-
mally with shared trees. Additionally, requiring transport protocol state to be maintained along the
distribution path in routers violates layering principles.
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2.4.4 Reliable Multicast Framework (RMF)

There has been some recent and ongoing work in reliable multicast frameworks. The Reli-
able Multicast Framework (RMF) [28] does not uniquely define a single reliable multicast protocol.
Instead, it provides sufficiently rich set of data structures and mechanisms within a single framework
so that various reliable multicast protocols can be implemented and may even interoperate. The key
features of RMF are (i) self-identifying packets, which permit fine-grained per-packet reliability
semantics and also allow a sender to induce desired receiver behavior on packet reception, and (ii)
a universal multicast receiver that interoperates with any sender through the use of self-identifying
packets. Universal receivers allow several protocols to be defined using a set of common packet
formats. The notion of a single RMF session supporting multiple protocols, for example, a hybrid
session combining ACK- and NACK-based schemes, is not clearly understood, especially since
many loss recovery schemes require significant cooperation among session members.

Another recent Internet draft by Crowcroft and others [25] on a Reliable Multicast Fram-
ing Protocol proposes a two-layered data stream with embedded objects and sequence offsets within
objects. Their work assumes properties of the data stream such as bounded liveness of data, i.e., the
application performs a close signaling the end of the object. This is a restriction for applications
such as wb, where the user may revisit an old page, and add to its existing contents. In addition their
approach uses a special BIND message that binds application level names to object IDs.

2.4.5 Forward Error Correction-based Schemes

Forward error correction uses redundancy in the data stream to allow the receiver to re-
construct lost packets. Nonnenmacher and Biersack explore the application of FEC schemes to
uncorrelated packet loss in a multicast session. They devise a window or block-based scheme in
which receivers experiencing uncorrelated losses, i.e., losses of distinct packets by different mem-
bers can be repaired by a single encoded packet multicast to all the receivers. For example, consider
a sender that uses a window size of 7 and applies a 7/10 Reed Solomon erasure correcting code
— packets � � � � � � � � carry original data and packets � ��� ��� are redundancy packets computed using
the original data packets in this window. A receiver is capable of reconstructing packets � � � � � � � � �
using any � unique packets in � ��� � � � �

If each of receivers ! �
, ! �

, and ! � loses packet
�
, � , and � respectively, the sender can

repair all three uncorrelated losses using a single transmission of packet � . The larger the window
size, the more effective unshared loss recovery is. However, this scheme requires the entire window
of data for to apply the encoding before any transmission occurs and is generally not applicable to
low-latency applications such as shared whiteboards where the data stream consists of a stream of
small updates that must be delivered in a timely fashion to the receivers.

2.5 Delivery Semantics in Transport Protocols

The so-called CATOCS debate on ordering semantics in the context of multicast proto-
cols drew much attention a few years ago [19, 11, 20]. Cheriton and Skeen argued that ordering
semantics are better handled by the application and that enforcing an arbitrarily chosen ordering
rule results in performance problems [19]. In our work, we reinforce this approach to protocol
design and refrain from imposing a particular ordering semantics across all applications.
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RDP [138, 99] is a reliable datagram protocol intended for efficient bulk transfer of data
for remote debugging-style applications. RDP does not enforce ordered delivery unless specified by
the application. It implements sender-driven reliability and does not support receiver-tailored nor
application-controlled reliability. NETBLT [22] is a receiver-based reliable transport protocol that
uses in-order data delivery and performs rate-based congestion control.

There has been much recent work on Web data transport for in-order delivery, most of
which address the problems posed to congestion control by short transaction sizes and concurrent
streams. Persistent-connection HTTP [97], part of HTTP/1.1 [37], attempts to solve this using a
single TCP connection, but this causes an undesirable coupling between logically different streams
because it serializes concurrent data delivery. The MEMUX protocol (derived from Web MUX [43]
proposes to deliver multiplexed bidirectional reliable ordered message streams over a bidirectional
reliable ordered byte stream protocol such as TCP [146]. We note that the problem of shared con-
gestion control disappears when congestion state is shared across TCP connections [5, 96, 132] or
more generally, across all protocols using the CM.

The WebTP protocol argues that TCP is inappropriate for Web data and aims to replace
HTTP and TCP with a single customizable receiver-driven transport protocol [47]. WebTP handles
only client-server transactions and not other forms of interactive Web transactions such as “push”
applications. It is not a true transport layer (like TCP) that can be used by different session (or
application) protocols like HTTP or FTP, since it integrates the session and transport functionality
together. In addition, WebTP advocates maintaining the congestion window at the receiver transport
layer, which makes it hard to share with other transport protocols and applications.

In contrast, our work on image transport is motivated by the philosophy that one trans-
port/session protocol does not fit all applications, and that the only function that all transport pro-
tocols must perform is congestion management. The Congestion Manager (CM) extracts this com-
monality into a trusted kernel module [6], permitting great heterogeneity in transport and application
protocols customized to different data types (e.g., it is appropriate to continue using TCP for appli-
cations that need reliable in-order delivery and RTP/RTCP over UDP for real-time streams, etc.).
The CM API allows these protocols to share bandwidth, learn from each other about network con-
ditions, and dynamically partition available bandwidth amongst concurrent flows according to user
preferences.

We now briefly present an overview of transport protocols tuned for spatially structured
data types such as images. While much work has been done on video transmission, image trans-
port has received little attention despite constituting a large fraction of Internet traffic. Turner and
Peterson describe an end-to-end scheme for image encoding, compression, and transmission, tuned
especially for links with large delay [137]. As a result, they develop a retransmission-free strategy
based on forward error correction. Han and Messerschmitt propose a progressively reliable trans-
port protocol (PRTP) for joint source-channel coding over a noisy, bandwidth constrained channel.
This protocol delivers multiple versions of a packet with statistically increasing reliability and pro-
vides reliable, ordered delivery of images over bursty wireless channels [48]. The Flexible Image
Transport System (FITS) is a standard format endorsed by the International Astronomical Union for
the storage and transport of astronomical data [38]. It specifies various file header formats, but not
a protocol for transmission over a loss-prone network.

The Fast and Lossy Internet Image Transmission protocol (FLIIT) [27] improves the per-
ceived delay of a download by eliminating retransmissions. Instead, the FLIIT sender strategically
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shields “important” portions of the image data, for example, by applying FEC to the high order bits
of the DC channels of the image. FLIIT assumes a bit budget and allocates this between the original
image data and the amount of redundancy based on the observed loss rate in the channel. Our work
in this dissertation also aims to improve interactivity. However, rather than design new compression
schemes for image transmission, we focus on the transport protocol and application interface issues
such that many different image formats can be supported.

Heybey [56] considers the problem of video coding and develops an application-level
framing architecture for it. However, much emphasis is placed on developing framing strategies
that translate into an optimized hardware implementation. In our work, we focus on the protocol
aspects and show how a generic protocol may be used effectively when customized for specific
image formats.

Richards and others [118] have also considered using ALF to build high performance
transport protocols. However, they attempt to extend existing TCP implementations to achieve this
and present their evaluation of the overheads involved in this approach.

2.6 Summary of Related Work

In this Chapter, we surveyed the IP multicast service model and deployment paths for
wide-area multicast via the MBone. The MBone is primarily a research network and more recently,
there has been commercial activity in the area of content distribution networks. We then moved
up the protocol stack and described the different approaches to multicast transport — unreliable as
well as reliable. We presented the annouce/listen protocol which forms the basis of our light-weight
soft state-based transport framework solution, and discussed examples of a announce/listen-based
transport protocols in use on the MBone today. We then discussed several reliable multicast proto-
cols: end-to-end NACK-based approaches like SRM, tree-based schemes like TMTP and TRAM,
router-assisted schemes, FEC-based schemes, as well as generic framework approaches.

All of these protocols and frameworks treat the transport protocol in isolation, without
considering benefits that arise from the interaction between the application and transport protocol.
In the remainder of this dissertation, we explore this topic further and develop a generic light-
weight transport protocol whose behavior is further customizable based on the application. Next, we
formalize the notion of “soft state” and demonstrate its robustness and performance properties. We
show how soft state-based protocols can be tuned to provide probabilistic measures of reliability.
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Chapter 3

Soft State-based Transport

If at first you don’t succeed, try, try again.
— William Edward Hickson

This Chapter describes a model and analysis for soft state-based communication. We
motivate our choice of soft state as a protocol building block, especially in the context of multicast
transport in Section 3.1. In Section 3.2, we present the data and communication models for soft
state. We then analyze the simple open-loop announce/listen protocol in Section 3.3. Based on our
analysis, we propose two techniques to improve the performance of the traditional announce/listen
framework: (1) a simple, two-level differentiated transmission scheme, described in Section 3.4, and
(2) a novel application of feedback to guide the link scheduling decisions at the source, described
in Section 3.5. Section 3.6 develops SSTP, a practical protocol framework for realizing and reusing
the soft state communication primitive across multiple applications. In Section 3.7, we review past
and ongoing work related to soft state and in Section 3.8, we present our concluding remarks on the
soft state model.

3.1 Motivation

“Soft state” is an often cited yet vague concept in network protocol design in which two
or more network entities intercommunicate in a loosely coupled, often anonymous fashion. Re-
searchers often define this concept operationally (if at all) rather than analytically: a source of soft
state transmits periodic “refresh messages” over a (lossy) communication channel to one or more
receivers that maintain a copy of that state, which in turn “expires” if the periodic updates cease.
Though a number of crucial Internet protocol building blocks are rooted in soft state-based designs
— e.g., RSVP refresh messages, PIM membership updates, various routing protocol updates, RTCP
control messages, directory services like SAP, and so forth — controversy is building as to whether
the performance overhead of soft state refresh messages justify their qualitative benefit of enhanced
system “robustness”. We believe that this controversy has risen not from fundamental performance
tradeoffs but rather from our lack of a comprehensive understanding of soft state. To better under-
stand these tradeoffs, we propose herein a formal model for soft state communication based on a
probabilistic delivery model with relaxed reliability. Using this model, we conduct queueing anal-
ysis and simulation to characterize the data consistency and performance tradeoffs under a range
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of workloads and network loss rates. We then extend our model with feedback and show, through
simulation, that adding feedback dramatically improves data consistency (by up to 55%) without
increasing network resource consumption. Our model not only provides a foundation for under-
standing soft state, but also induces a new fundamental transport protocol based on probabilistic
delivery. Toward this end, we sketch our design of the “Soft State Transport Protocol” (SSTP),
which enjoys the robustness of soft state while retaining the performance benefit of hard state pro-
tocols like TCP through its judicious use of feedback.

Given the attractive properties of soft state and the proliferation of the announce/listen
primitive in so many Internet protocols over the past decade, one would expect that a great deal
of research would exist that not only clearly articulates what soft state is but characterizes the fun-
damental performance tradeoffs of soft state designs. Yet such work is scant. Not only is there a
dearth of analysis and refinement of soft state, but there is no well-defined communication frame-
work, no common protocol architecture, and no application API that is based on the soft state model.
We believe this is a great misfortune because such work could help guide protocol designers and
engineers to decide when and where the performance tradeoffs of soft state are worth the benefit
and a common implementation and framework would provide reusable protocol building blocks for
application designers. In this Chapter, we address this void with a formal model for soft state com-
munication based on a probabilistic delivery model with relaxed reliability. Our contributions are
as follows:

� We present a novel model for soft state protocols and probabilistically define an associated
consistency metric.

� We theoretically analyze our model for the simple open-loop announce/listen protocol.

� We systematically characterize data consistency and performance tradeoffs of our soft state
model under a range of workloads and network loss rates for the simple open-loop case and
its variants,

� We extend the open-loop variant of announce/listen by adding receiver feedback to enhance
data consistency and performance without increasing network resource consumption.

� Based on our model, as well as the observation that several protocols have inherently “soft” or
periodically changing data, e.g., route advertisements [86, 55, 78], DNS updates [88], MBone
session directories [53], stock quote or general information dissemination services [107], we
propose a soft state-based transport protocol (SSTP) framework. The SSTP framework pro-
vides a parameterized spectrum of reliability semantics all derived from one framework —
from simple announce/listen communication to feedback-based reliable transport. SSTP also
optimally allocates bandwidth based on packet loss rates and application workload to maxi-
mize consistency. The result is a parameterized framework that can be tuned to provide one of
a continuum of “reliability levels”. We also incorporate ideas from application-level framing
(ALF) [23] to provide an interface that allows it to be tailored to the specific application.

3.2 The Data Model

To evaluate the tradeoffs and performance of soft state communication, we must first
carefully define a framework and model that firmly grounds our analysis and discussion.
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Figure 3.1: Soft state data model comprises an evolving table of
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�
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 � pairs.

Our model for “soft” data is a table of
�	��

�

��������� 
 � pairs at the sender, or publisher.
The publisher may add, delete, or update a record at any given time. The scheduler at the source
periodically announces a record chosen from its table by the scheduler on to a (lossy) channel with
capacity C, according to some specified scheduling algorithm. One or more subscribers tune into
the channel to receive updates from the publisher. On receiving an announcement, each subscriber
that has joined the channel updates its local copy of the table. An expiration time is associated with
each data item stored at the receiver. If an update is not received before the timer expires, the entry
is deleted (and in practice an external notification event is generated).

The set of all data items in the sender’s table at any given instant � , is termed the live data
set, � ��� � . An update process at the publisher adds records to its table. Each record is also associated
with a lifetime after which the publisher ceases to announce it and the record is eliminated from
both the sender’s and receivers’ tables. Figure 3.1 illustrates this model.

3.2.1 Consistency

Unlike ARQ, where receipt of an acknowledgement explicitly indicates state synchro-
nization between sender and receiver, a soft state protocol generally provides no feedback to the
sender as to what the receiver has successfully received. Instead, the end systems simply participate
in the announce/listen process and the assumption is that the receiver’s data store converges to a
consistent state over time. Many protocols based on this premise have been described and some
characterize this property as eventual consistency [40, 50], but a formal definition for this has not
yet been proposed.

To measure the effectiveness of soft state protocols using our model, we introduce the
consistency metric, � � � � � � , defined per live

�	��

�
��������� 
 � pair

�	�
������� � � � � for processes � and �

communicating over a loss-prone network as the probability that both processes have the same value
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for a given key. This is denoted as,

� � � � � � � � � � � ��� ����� � � � � � � ����� � � � � � � � � � � � � � ���

where ��� ����� � � � is � ’s value for key
�

.
The instantaneous system consistency, � ��� � at a given instant, t, is defined as the average

consistency measured across all live data items at that instant.

� ��� � � ���������
	�� � � � � � �
 � ��� � 

The average system consistency is the time average of the instantaneous system consis-

tency over the entire lifetime of a system.

� � � ��� � � � ����������
� 	�� �	�� % � ��� ��� ��

The definition of
� � � ��� � � above also provides us with a method to empirically compute the consis-

tency metric of a system — as the time average of � ��� � over long durations.
A protocol is said to be eventually consistent if this probability approaches 1 in the long

run, after the item is introduced into the system, i.e.,
������� ����� 	 ��� � � � �
  !
 " �

Another important metric of protocol performance is the average latency from the instant
a new or updated

�	��

�
������� � 
 � pair is introduced into the system to the first time it is received

correctly at the receiver. We call this the receive latency
�$#&%('

.
In the remainder of this Chapter, we present several analytical and simulation results

showing the dependence of the consistency metric on packet loss rates, available bandwidth, and
announcement workloads. We term this dependence a consistency profile.

Many protocols based on soft state rely on nothing more than the announce/listen mech-
anism for maintaining consistency in the face of packet loss. This simple open-loop repetitive
announcement process transmits state updates in a quasi-reliable manner from an announcer to a
listener over a loss-prone network. For a static input at the source, announce/listen provides a
simple form of reliability since eventually the receiver’s state will match the sender’s once all the
records have been successfully transmitted.

The simple open-loop periodic retransmission scheme provides an extremely simple sub-
strate for “quasi reliable” systems. It is an attractive alternative to ARQ-based reliable transport
protocols, especially in the case of multicast, since managing receiver feedback scalably in large
groups continues to remain a formidable challenge. For example, it has been successfully used in
the the multicast-based session directory tools [61, 53] to disseminate MBone conference informa-
tion to large groups. However, pure open-loop periodic retransmissions are redundant and do not
use bandwidth efficiently. The challenge for the so called “soft state” transports, including the an-
nounce/listen protocol, is therefore to (i) maximize system consistency and minimize user-perceived
latency in receiving data items, and (ii) minimize redundant transmissions. In the following sections,
we evaluate several soft state-based transports and show how to optimize them for given network
conditions using adaptive scheduling techniques.
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3.3 “Open-Loop” Announce/Listen Protocol

To evaluate the performance of soft state systems that use open-loop announce/listen for
data transport, we develop an analytic model based on class-based queueing networks [9].

µλ

Consistent

Inconsistent

FCFS 
p 

(1 - p )ε

d

Exit

p ε

Figure 3.2: Queueing model for announce/listen-based transport protocol.

The parameters for our model are: � � , the probability that an announcement transmitted
on the channel is lost by one or more subscribers, or the average per-transmission channel loss
rate. Since the consistency metric treats all successful transmissions identically, regardless of their
relative position in the transmitted stream, it is sufficient to specify the average packet loss rate. The
metric is insensitive to the exact pattern of losses, but is only affected by the mean of the packet
loss process. In contrast to other application- and media-specific metrics such as rate-distortion
model [24] for multimedia signals that are sensitive to loss patterns in addition to the average drop
rate, our metric is more general and applies to a wider class of systems.

In addition, we also assume that these soft state transports are ALF-based, in that indi-
vidual transmissions are independent application data units (ADUs) [23]. In addition, the transport
protocol does not enforce in-order delivery of packets at the receiver, which allows us to ignore
the effects of packet reordering in our model, even though, in reality, though receivers suffer extra
latency when individual fragments of a large ADU are reordered.�

is the average rate of update of the publisher’s table, and � '�� , the available session
bandwidth for this source’s announcements. We model the network as a single server queue with
multiple job classes or states. Each record goes through the following stages.

� Records enter the system in the “inconsistent” state, since the receiver has no knowledge of
them. New records are inserted at the end of the transmission queue and the sender is assumed
to have sufficient buffer space to hold all arriving announcements.

� The transmission channel acts as a server with service rate � '�� and uses FIFO scheduling.

� The record changes state to “consistent” when an announcement containing it successfully
reaches the receivers (with probability � � � � � � ).

� Each record has a bounded lifetime after which it is expired from the sender and receivers.
For example, in session directories, announcements expire when the associated conference
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I/Exit C/Exit Death/Exit

I/Enter � � � � � � � � � � � � � � � � � � � � � �
C/Enter 0 � � � � � � � �

Table 3.1: State transition probabilities for a data item in the soft state model.

session ends. After obtaining service, an announcement exits the system with probability � � ,
its death probability. The data expiration process is an inherent characteristic of the workload,
and governs this death probability. In our model, we approximate the expiration process using
a fixed and independent death probability per packet event though this does not take into
account the possibility that an older record is more likely to expire than a new one.

Table 3.1 lists the probability of state change between consistent and inconsistent as a
record leaves the server.

If ��� ��� � and ���	��� � denote the number of consistent and inconsistent records in the system
at any instant, the consistency metric for this system is the time average of the fraction

��� �
	��
� � �
	��
	 ��� � 	�� .

Computing the net flow

� � and


� � into the queue for each class, we get:

� � � � � � � � � � � � � 
� �
� � � � � � � � � � � � � � � 
� � � � � � � � � 
� �

Solving the above system of equations yields,


� � � �
� � � � � � � � � �


� � � � � � � � � � � � � � �
� �


� �

� � � � � � � � � � � � � �
� � � � � � � � � � � � � �

Now,

� � 
� � � 
� �

� �

� �

We first use Jackson’s theorem [9] in the following steps for the single queue system with multiple
job classes to compute the joint probability distributions of the number of consistent and inconsistent
jobs.

� ����� � ��� � � ����� � ��� � �
��� � ��� � �


� ���
�


� � �
�
� ��� 	 � � � � � ��� � � ��� 	 � �

where,
� � ������� . The solution is valid only when

� � ��� � ��� �
��� � .
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The average system consistency
� � � ��� � � is then given by:

� � � ��� � � � �
��� 	 � ��� %

���
� � � � � � � ����� � ��� �

� �
��� %


� �
� � � 
� �
� � ��� � �

� 	 �

� 
� �
� '��
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Figure 3.3: Consistency degrades with increasing packet loss rate and announcement death rate. A
workload with a 15% death rate is 95% consistent for error rates in 1-10%.

Figure 3.3 shows
� � � ��� � � graphically for different loss rates and announcement death

rates. For a given death rate, as expected, we find that the system consistency goes down as the
channel loss rate increases. We also observe that consistency falls sharply when the announcement
death rate increases since data items are too short-lived to be propagated successfully to receivers.
As seen in Figure 3.3 the system consistency lies between 85% and 95% for loss rates in the 1-10%
range and an announcement death rate of 15%.

The open-loop announce/listen protocol analyzed above treats all data items — old and
new — alike, retransmitting data items that may have already been received by the members of the
group. From our model, we find that the fraction of bandwidth consumed by redundant transmis-
sions is given by:
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�
� 
� �
�
� � � � � � � � � � � � �� � � � � � � � � �

Figure 3.4 shows this result graphically. At loss rates of up to 50% and a death rate of 10%, over
90% of the total bandwidth is wasted on redundant retransmissions.

In reality, periodic source-based retransmissions are not entirely wasteful and benefit late
joiners in an ongoing multicast session by reducing the delay such receivers experience in “catch-
ing” up with the rest of the session. Even in the case of unicast transmission, periodic source an-
nouncements allow the receiver to reconstruct the data store following a crash. Several techniques
can be applied to the basic open-loop protocol to improve its consistency. In Sections 3.4 and 3.5,
we show that maintaining multiple transmission queues at the sender and adding receiver feedback
in a controlled manner allow for better bandwidth management at the sender.
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Figure 3.4: At loss rates between 0-20% and an announcement death rate of 10%, about 90% of the
total available bandwidth is wasted.

3.4 Multiple Transmission Queues

Since redundant transmissions of previously consistent data items do not contribute to
system consistency, one way to improve the performance of the basic open-loop announce/listen
protocol is to reduce the fraction of bandwidth for repeated retransmissions. We do this by differ-
entiating new and old data items. Several policies exist for aging data items, but we consider one
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simple aging scheme with two transmission queues for our analysis. We refer to the two transmis-
sion queues as the “hot” (or foreground) queue for new data items, and the “cold” (or background)
queue for data items that have been transmitted at least once from the sender. The available data
bandwidth is shared between the two queues proportionally (e.g., using a randomized lottery sched-
uler [139], weighted fair queueing [32] or stride scheduling [140]). Proportional sharing is preferred
over strict priority scheduling since it prevents starvation of cold data items in the background trans-
mission queue. Bandwidth allocated to foreground transmissions directly increases the likelihood
that a new data item is successfully delivered, and hence contributes to system consistency. Unused
excess hot bandwidth is consumed by transmissions from the cold queue.

We evaluate the consistency of this scheme using simulations 1. Our simulations comprise
a single sender and single receiver with a lossy communication channel. Having two transmission
queues raises the important issue of allocating the total data bandwidth � � � 	 � for the hot ( � �

�
	
) and

cold ( � ' ��� � ) queues and our simulations quantify the impact of this bandwidth allocation policy on
system consistency.

0

0.2

0.4

0.6

0.8

1

1.2

10 20 30 40 50 60 70 80

E
[c

(t
)]

µhot/µ

Benefits of two transmission queues

Loss rate (%)
10%
20%
40%
60%
80%

Figure 3.5: Two-level scheduling improves consistency by 10% to 40%. � � � 	 � ��� � ��� � � , � �
� � ��� � � . Consistency is maximum when � �

�
	 � �

.

Figure 3.5 shows the impact of increasing � �
�
	
, the bandwidth allocated to foreground

transmissions, when � � � 	 � , the total data bandwidth is held fixed. The results show that increasing
� �
�
	

has a positive effect on the average system consistency, but only while � �
�
	 � �

(up to about
40%, in this experiment). The sender must allocate sufficient bandwidth to new data arriving at rate�

, to prevent the hot queue from growing indefinitely. The optimal consistency level is reached for
� �
�
		� �

. However, as we see from Figure 3.5, consistency does not significantly change as we
increase the bandwidth for the hot queue beyond

�
.

�
Unfortunately, this extended model with two-level scheduling is not analytically tractable using Jackson’s theorem.
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, no data

item is retransmitted resulting in low latencies for successful transmissions.

The benefits of cold retransmissions are in the form of reduced average receive latency.
We study the effect of increasing � ' ��� � (and hence � � � � 	 � ), while maintaining � �

�
	

at its optimal
level, just higher than the arrival rate. From Figure 3.6, we find that the receive latency

� #&%('
initially

increases, but drops as more bandwidth is added for background transmissions. This is due to two
competing effects:

(i) At low values of � ' � � � , all successful transmissions experience very small latency. When
� ' � � � " � , data items are never retransmitted and all successfully delivered items thus experi-
ence low delay. Since the average

� #&%�'
is measured only over all successful transmissions, our

measurement excludes data items that take indefinitely long to reach the receiver, and hence
the apparently low latency. The 300 ms latency for � ' ��� � � � � � 	 � � ���

is explained by ap-
proximating the system as a single-server single-queue system with bandwidth � �

�
	 " � � � 	 � .

With exponential interarrivals and service times, the average latency is
� � �

� � ������	�
� � �	� � � .
However, without retransmissions ( � ' ��� � " � ), and in the face of high loss rates, a signifi-
cant fraction of data is never successfully transmitted, resulting in a low average consistency.
Hence, turning off background transmissions is detrimental to system performance especially
in the face of high loss rates.

(ii) Increasing the cold bandwidth increases the likelihood of a successful retransmission and,
therefore, reduces

� #&%('
, as shown in Figure 3.6.
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3.5 Impact of Receiver Feedback

The inefficiency of the open-loop protocols discussed in Section 3.4 stems from the
source’s incomplete knowledge of receiver state. Adding receiver feedback attempts to remedy this
by communicating receiver status back in order to improve bandwidth management at the sender. In
this section, we discuss our simulation results quantifying the impact of adding receiver feedback in
the form of negative acknowledgments (NACKs) to the original announce/listen framework. Once
again, our simulations have one sender and one receiver. We find that adding feedback can improve
consistency by 10% to 50% for loss rates between 5% and 40%.

Lifetime expires

H C

Transmit

Transmit

D

Receive NACK

Lifetime expires

Figure 3.7: State transitions between “hot” (H), “cold” (C), and “dead” or invalid (D) states.

The sender maintains two transmission queues — (i) a hot (or foreground) queue that
contains data that is thought to be inconsistent, and (ii) a cold (or background) queue for repeated
retransmissions. As in the previous cases, late joiners who need to catch up with the current state of
an ongoing session benefit from repeated retransmissions. Data items get scheduled for transmission
as follows: a new data item is transmitted through the foreground queue, and subsequently moved to
the background queue, as shown in Figure 3.7. The two queues share the available data bandwidth
proportionally, and we control this allocation in our experiments. The receiver generates a NACK
upon detecting a loss. In response to the NACK, the sender schedules a retransmission of the
requested data item, by moving it from the cold queue to the tail of the hot queue. Hence, hot
bandwidth is allocated to new data items and retransmissions requested by the receiver, while cold
bandwidth is used for background retransmissions of previously transmitted data.

� Data vs. feedback. We simulate the effect of increasing the fraction of total bandwidth
allocated for feedback and find that adding feedback improves system consistency from 60%
to almost 98% at a loss rate of 40%. Figure 3.8 shows these results. Allocating a small
fraction of the total available bandwidth for feedback messages significantly improves system
consistency. Consistency is maximum (at close to 100%, in this example) when sufficient
bandwidth is available to transmit NACKs generated in response to data loss. Beyond this
threshold level, consistency drops rapidly as the feedback bandwidth grows at the expense of
the sender’s data bandwidth. For example, in Figure 3.8, when feedback receives 70% of the
total bandwidth, the system consistency collapses rapidly.
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consistency collapses.

We also study the impact of adding feedback bandwidth, while maintaining � � � 	 � fixed and
find that the average system consistency increases by about 10% when the loss rate is about
10% and by 50% for even higher loss rates (

�
50%). This is shown in Figure 3.9. Consis-

tency reaches a maximum between 90% and 100% depending on the loss rate, indicating that
increasing the feedback bandwidth beyond this threshold level does not significantly affect
consistency.

Since the packet loss rate also affects the optimal data vs. feedback allocation, the protocol
must monitor loss rates via receiver reports and use this information to adaptively reallocate
bandwidth to maintain this “optimal” consistency level.

� Hot vs. cold bandwidth. To manage the available data bandwidth at the sender, we study
the impact of allocating bandwidth to hot and cold data queues. In Figure 3.10, we find that
the consistency metric remains close to 5% as long as the arrival rate exceeds � �

�
	
. When

� �
�
	

is increased beyond
�

, the consistency sharply rises to almost 100%. Increasing � �
�
	

beyond
�

does not have a significant impact on the consistency metric. Hence,
� �

� �
�
	

is the optimal region beyond which the marginal benefit from additional bandwidth to the
“hot” queue is limited and below which system consistency shows marked degradation. If the
system’s consistency metric is to be maximized, the application must adhere to its allowed
maximum level. Later, in Section 3.6, we show how our transport framework uses this to
notify the application to refrain from injecting new records if system consistency is to be
maximized.

� Effect of loss rate. Since the channel loss rate indirectly affects the number of NACKs and
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Figure 3.9: Consistency is improved by allocating sufficient bandwidth for feedback. At loss rates
over 50%, allocating additional feedback bandwidth feedback reduces consistency.

hence the number of retransmissions, we study the impact of loss rate on the consistency
metric, varying the sender’s bandwidth allocation between its two transmission queues. From
Figure 3.11, we see that the loss rate limits the maximum consistency that can be attained
with a given amount of total bandwidth, regardless of how it is scheduled between the hot
and cold transmissions. However, the relative proportion of hot vs. cold bandwidth does not
significantly affect consistency, once sufficient bandwidth is available to absorb new arrivals.

The consistency profiles discussed here influences bandwidth management. In Section 3.6 we
elaborate on a profile-driven allocation scheme that aims to utilize the available bandwidth
optimally.

3.6 A Soft State Transport Framework

Conventional reliable transport protocols like TCP are built on “hard” protocol state at
the end points and export a single restrictive interface to the application — that of a sequenced,
in-order, byte-stream. While some extensions to relax the constraints of TCP have been proposed,
the underlying abstraction provided by TCP is rigid and does not lend itself to arbitrary application
customization. For example, extensions to TCP byte sequence numbers to support application-
defined records is not straightforward. (See [34] for an interesting discussion on this.) Motivated
by this, we propose a new framework for reliable transport protocols whose behavior, e.g., degree
of reliability, message ordering semantics, bandwidth allocation policies, can be customized by
the application. Using our formalism of soft state, we propose the soft state transport protocol
framework (SSTP) for reliable data transport. To the best of our knowledge, this is the first soft
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is the optimal region beyond which the marginal benefit from addi-
tional bandwidth to the “hot” queue is limited and below which system consistency shows marked
degradation.

state transport protocol whose properties can be predicted using a model.
In contrast to the conventional approach to transport design, the SSTP architecture is

guided by ALF and exposes a powerful, yet simple programming interface allowing it to be tailored
to the needs of the user application. SSTP aims to provide the necessary interface and mechanisms
for an application to control the degree of reliability and message delivery semantics. An SSTP
sender transmits original application data as well as periodic soft state announcements summarizing
all previously transmitted data. SSTP receivers use NACKs to report lost data items to the sender,
which in response performs the appropriate retransmissions. SSTP may be applied to multicast as
well as unicast transport. In the case of multicast, we use the slotting and damping [21, 40] method
for managing feedback traffic in a scalable manner.

The following two salient features of SSTP are described in this section: (i) application-
controlled bandwidth management, and (ii) a hierarchical data model to efficiently support large
data stores.

3.6.1 Application-controlled Bandwidth Allocation

SSTP provides a parameterized framework to schedule available bandwidth between data
and feedback messages appropriately to achieve consistency levels desired by the application. Based
on the amount of bandwidth allocated to data and announcements (or, “cold” data), a continuum of
consistency levels is provided. SSTP uses measured packet loss rates using RTCP-style receiver
reports and empirically derived consistency profiles to carefully control bandwidth allocation.

SSTP does not attempt to perform congestion control nor determine the total available
data rate to the session member, but rather, relies on a congestion management module, such as
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Figure 3.11: The system consistency shows a “knee”, beyond which the marginal benefit from
additional bandwidth to the “hot” queue is limited and below which system consistency shows
marked degradation.

the CM [6], to obtain this information. SSTP merely decides how this available bandwidth is to be
used by the application and transport protocol. While most existing research addresses the issue of
detecting network congestion and reacting to it by lowering the transmission rate (or reception rate,
as in layered multicast) [62, 66, 65, 15, 136, 14, 80, 117], the issue of how best to utilize available
bandwidth in reliable transport has received far less attention. Even though this decision is generally
application-specific, we can use the consistency metric for a large class of applications that fit the
data model described previously in Section 3.2.

Rather than treat all data as equal, SSTP allows the application to reflect its priorities
into the data transport protocol. Using a hierarchical scheduler (e.g., CBQ [39] or H-FSC [129]),
the application flexibly controls the amount of bandwidth allocated to its different data classes.
Figure 3.12 shows an example of such an allocation hierarchy. An application can experience the
maximum possible consistency under given network loss rates by scheduling its available session
bandwidth based on consistency profiles derived from our model. Consistency profiles predict sys-
tem consistency for given network loss conditions and announcement characteristics.

Using stored consistency profiles similar to Figure 3.9, the bandwidth allocator outputs
values

�
� � � 	 � � � � %�% � � �

' � � . The share of bandwidth for the different transmission queues is obtained
from the

� #&%�'
profile, similar to Figure 3.6. The allocator also notifies the application if it detects

that rate of arrival of new data from the application exceeds the bandwidth available for it, i.e., � �
�
	
.

This dictates the maximum rate at which the application can send to maintain the requested level of
consistency. This notification from SSTP gives the application an opportunity to adapt to the rate
constraint in the best possible application-specific manner.

SSTP uses the following information in making bandwidth allocation decisions:



39

al
lo

ca
tio

ns

Application

Receiver reports

Available
bandwidth

Root

NACKData Announcements

Images Text
Loss rate

Congestion
Manager

B
an

dw
id

th

Figure 3.12: Profile-driven scheduler for application adaptation.

� The average packet loss rate, periodically obtained from RTCP-like receiver reports;

� The application’s consistency target (e.g., 90% consistency), and optionally a “soft” delay
requirement2 for individual data items;

� The total available session bandwidth, either configured manually as in most non-TCP ap-
plications today (e.g., the MBone video conferencing applications [85, 64, 63] and the Real
Audio

���
player [116]) or available from a congestion control algorithm.

3.6.2 Hierarchical Data Model

Our simple data model presented in Section 3.2 fits a number of existing systems such as
routing updates and the current session directory protocol. However, if such soft state systems are to
scale to extremely large systems, the “table of key-value pairs” model needs to be refined. In order
to scale announcement-driven loss recovery to applications with large data sets, SSTP supports
hierarchical namespaces. The SSTP hierarchy provides a good summarization structure for soft
state announcements. Such a hierarchy maps to logically independent objects within an application
and allows such objects to be treated independently during loss recovery. Since the structure of
application data is exposed to SSTP, this eliminates the undesirable coupling induced by a TCP-like
in-order byte-stream abstraction.

In Chapter 4, we develop a naming and announcement protocol that uses hierarchical
namespaces to support large data stores more efficiently. Our scalable naming and announcement
protocol uses namespace summaries to reduce the number of messages in detecting and recovering
from losses. A sender transmits new data upon arrival from the application. In addition, the sender

�
While SSTP does not guarantee end-to-end delay, it uses delay information as hints to determine the operating region

in the ����� � profile.
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Figure 3.13: When session announcements are more frequent, the receivers detect and correct more
“tail losses” resulting in higher consistency. NACK bandwidth has a similar effect on consistency.

also carries out “cold” transmissions of the root summary. Upon receiving a summary announce-
ment, if a receiver detects a mismatch at the root namespace node, a feedback message requesting
further namespace repair is scheduled for transmission. In response to such a feedback query from
the receiver, the sender (or any participant in a multicast session), responds with a set of next level
signatures. In this manner, loss recovery proceeds recursively down the namespace hierarchy. We
show here varying the control bandwidth can affect the protocol consistency.

We evaluate the performance of the SNAP protocol when the control bandwidth is varied
in the multiple receiver case using simulations.

Figure 3.6.2 shows how consistency improves when the announcement frequency and
NACK bandwidth allocated for receiver feedback messages are increased. In Figure 3.6.2 shows the
dependence of system consistency on the input rate of new data for different levels of network losses.
We find that this dependence is quite similar to the unicast case presented earlier. In Figure 3.6.2,
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Figure 3.14: Higher the input rate, lower the consistency metric with a fixed announcement band-
width. The loss rate also adversely impacts protocol performance.

we find that the granularity of objects within the hierarchy determines how effective a given amount
of bandwidth is in achieving consistency. We find that tail losses are easily detected with a small
amount of announcement bandwidth when the objects are coarse-grained. However, coarse-grained
objects make selective reliability less effective since a large object is likely to span relevant as well
as irrelevant data items.

An additional advantage of the recursive descent procedure is that a receiver may refrain
from requesting further repair along a branch if there is no application-level “interest” for data
items belonging to it. For example, a PDA browser may not wish to repair high resolution image
data types. The sender communicates such hints to the receivers using application-level meta-data
tags associated with the namespace nodes. Receiver-driven reliability using such application-level
data names is described in detail in [113]. Our hierarchical data model for SSTP simultaneously
solves the namespace scaling problem and provides a rich naming structure that is amenable to ALF.
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Figure 3.15: Larger the size of each object (in number of ADUs), smaller the number of announce-
ments and hence higher the resulting consistency given a fixed amount of announcement bandwidth.

By controlling the bandwidth allocated to original data transmissions and summary announcements,
we can control the level of consistency and latency to recover lost items.

3.7 Related Work

In this Section, we survey some important related work and compare it with our formalism
of soft state. Chandy et al. [17] formally define soft state probabilistically and use it as a primitive
for exchanging state information for distributed resource management. However, their soft state
model is restricted to continuous state variables and their main innovation is in the application of
estimation techniques to infer state values between state updates. Their work does not relate the
model to existing soft state-based protocols such as announce/listen.

Sharma et al. [126] study the general problem of scalable timers in soft state protocols
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and present an adaptive algorithm for (i) dynamically adjusting the sender’s refresh rate, and (ii)
estimating the sender’s transmission rate at the receiver to determine timeouts for aging out state.

In [40], Floyd et al. describe the Scalable Reliable Multicast protocol as being eventually
consistent. The authors propose an SRM framework, in which data is expired using application
hints, analogous to our death process. Handley et al. [51] list eventual consistency as one of
the goals of the shared state in the network text editor, NTE. However, neither paper provides an
evaluation of system consistency. In [50], Handley demonstrates that adding feedback in the form
of “address clash reports” to detect and correct address clashes in an announce/listen-based address
allocation protocol can greatly increase its scalability to larger groups. Even though this is a specific
case, it motivates us to study the more general case of adding feedback for reliability. In our work,
we study the impact of adding receiver feedback in the more general context of soft state transport
protocols.

The notion of “probabilistic reliability” was also proposed by Birman et al. [12] in their
work on bimodal multicast, in which receivers recover a lost stream of items in reverse order. This
scheduling choice makes the protocol more stable in large groups, and provides bimodal delivery
guarantees, i.e., almost all or very few members receive each transmission (a probabilistic version
of the “all or none” atomic broadcast [13]). Our work differs from this in that it is not restricted to
multicast transport. In our framework, the delivery of a given piece of data is probabilistic — there
is a predictable and tunable likelihood of reception.

Amir et al. [3] present SCUBA, a consensus-based bandwidth allocation strategy for mul-
ticast video, where sources gather receiver votes in a scalable fashion to adjust transmission rates.
Our work also addresses the issue of receiver-based bandwidth allocation, however, we focus on
reliable multicast transports with hierarchically structured data stores. In [4] Amir et al. also intro-
duce the notion of soft state gateways and multiple transmission queues for the scalable exchange
of RTCP-like control traffic between islands of high network high bandwidth bridged by low band-
width links. However, their work does not analyze the performance nor investigate the tradeoffs
between different allocation policies. This scheme is a specific instantiation of our more general
parameterized SSTP framework.

3.8 Concluding Remarks

In this Chapter, we have presented a model based on Jackson queueing networks that
formalizes the notion of soft state. Based on this model, we have introduced a new consistency
metric, a probabilistic measure of the effectiveness of different protocol variants, from “open-loop”
announce/listen-style communication to feedback-based reliable transport. We show that consis-
tency improves by 10-40% by appropriately aging data items and allocating progressively lower
bandwidths for older data. This technique of distinguishing new from old data in combination with
receiver feedback in the form of negative acknowledgments improves consistency by 12-50%. In
each of these cases, we have shown the optimal bandwidth allocation for which the available band-
width is best utilized in terms of the consistency metric. Our results presented here appear in [114].

Using the consistency metric as our basis, we apply these results to the design of an adap-
tive framework for soft state transport protocols (SSTP). SSTP provides a continuum of reliability
“levels” that can be customized by the application. It also includes a profile-driven allocation algo-
rithm that uses measurements of network loss rates to adapt to the optimal bandwidth allocation for
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the required consistency. While SSTP does not solve the problem of determining the available band-
width, it uses consistency profiles derived from our soft state model to best utilize this bandwidth. In
addition, SSTP incorporates application-level framing principles to provide a flexible and powerful
primitive for applications to reflect their performance preferences into the protocol machinery.
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Chapter 4

Scalable Data Naming

A signature always reveals a man’s character — and sometimes even his name.
— Evan Esar

In this Chapter, we enhance the basic soft state building block in two important ways. (1)
We extend the simple data model in Chapter 3 to a a hierarchical namespace structure to support
applications with large data repositories. (2) We propose a new data naming scheme that exposes
the structure of application data to the transport layer, thereby enhancing the expressibility of the
application’s reliability semantics. We apply our results from Chapter 3 to control the bandwidth
allocation between protocol control messages used for namespace announcements and application
data messages.

The remainder of this chapter describes the manifestation of our hierarchical naming con-
cept in a concrete protocol that we call the Scalable Naming and Announcement Protocol (SNAP).
SNAP provides an application-aware data naming scheme for receiver-tailored reliability and gen-
eralizes the announce/listen protocol concept in order to handle large namespaces. SNAP organizes
data using hierarchical namespaces, and uses a periodic source-initiated refresh mechanism to an-
nounce namespace updates. The hierarchical organization of data coupled with a scalable names-
pace announcement protocol allows the SSTP framework to scale to long running applications that
have a large data footprint. It also allows receiver applications to tune the semantics of reliability
on a fine-grained basis. To demonstrate the efficacy of our scheme, we have designed and im-
plemented our scalable naming and announcement protocol (SNAP) in the multimedia application
toolkit MASH [82] as a reusable protocol module.

The rest of the Chapter is organized as follows. Section 4.1 motivates the work described
in this Chapter and answers some key questions. Why do we need application-aware data naming?
How can we generalize the basic soft state model in Chapter 3 to develop a more comprehensive
multicast transport protocol that gracefully handles real-world applications with large namespaces
and also supports selective reliability? In Section 4.2 we describe the hierarchical data naming
scheme of SNAP. An integral portion on the data naming problem is the source naming problem
and Section 4.3 describes our approach for global and unique identification of sources that is in-
dependent of network layer addresses. The actual meta-data dissemination protocol is described in
detail in Section 4.4, and we report on its resulting performance in Section 4.5. In Section 4.6, we
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describe our current prototype API to SNAP. Finally, in Section 4.7, we summarize the contributions
of the work presented herein, and directions for future research.

4.1 Motivation

A fundamental challenge in the design of a reliable multicast protocols is the so-called im-
plosion problem [106]. If the receivers in a multicast group all react to a packet loss simultaneously
by transmitting a control message back to the source, a traffic impulse implodes upon the source,
and for very large groups, this implosion effect not only overwhelms the processing capability of
that source but severely congests the network. One way to overcome this implosion problem is to
simply omit feedback mechanisms altogether, an approach that has been quite successfully adopted
in the multicast session directory service that is implemented by the MBone session directory tool
sdr [53]. In this approach, the sending application disseminates a dynamic data store as a set of
key/value pairs represented as a table. The sender protocol periodically multicasts each entry in
the table to some agreed upon multicast group, and receivers interested in the data simply tune in
to the multicast group in question and listen to the key/value bindings. Over time, each receiver
builds up a copy of the data store and the table is eventually received reliably in its entirety. This
style of open-loop communication is often called an announce/listen protocol [122] because senders
periodically announce their data while receivers simply listen to the announcements to build up the
data store.

Although the announce/listen framework is robust, simple to implement, and easy to un-
derstand, its performance is suboptimal both in terms of bandwidth (because data is redundantly
transmitted in a continuous fashion) as well as delay (because the sender schedules data transmis-
sions at fixed intervals ignorant of packet losses or receiver interest). Moreover, as the data store
becomes large and/or receivers become interested in only small subsets of the overall available data,
the approach becomes ever more inefficient. To overcome these limitations, the Scalable Reliable
Multicast protocol (SRM) [40] adds a level of indirection to the announce/listen framework. In
SRM, a source enlists the announce/listen framework to disseminate “meta-data” that summarizes
all of the available data without actually sending it. In turn, receivers use scalable feedback mech-
anisms (based on “multicast damping”, see [40]) triggered by the meta-data to request the delivery
or retransmission of any data that is desired. (As an optimization, a source might multicast new
data once upon creation to avoid the delay incurred by first announcing its existence to trigger the
receiver request.) This approach is often called a “receiver reliable” protocol because the receiver
rather than the source implements the reliability requirements. As a result, different receivers can
implement selective reliability and tune their reliability requirements to the local user’s disposition
or application environment.

By allowing a receiver to selectively repair portions of the data stream, we can effectively
account for an application’s semantics in the design of its network protocol. This approach to proto-
col design, which derives from the Application Level Framing (ALF) protocol architecture [23], is
a boon to protocol performance because the application is optimized for the network and vice versa.
For example, in a shared whiteboard application, a receiver might issue retransmission requests for
lost data on the current page and ignore missing data for pages that are not in view (or perhaps
repair this data at low rate in the background). If we instead used a protocol that was ignorant to
application semantics, an application might have to retrieve many megabytes worth of undisplayed
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data (and incur an unreasonably lengthy delay) before obtaining perhaps the small amount of data
that represents the page in view.

While the premise of a receiver-reliable protocol is conceptually straightforward, a prob-
lem arises when we attempt to realize the protocol with traditional primitives. If, for instance, we
name protocol data units with sequence numbers as is traditionally done in many reliable transport
protocols like TCP, we would hide the structure of the underlying application data — e.g., how
would a whiteboard know that the data referenced as sequence number 8792 is associated with
page 12? In other words, sequence numbers map all application data onto a linear namespace and
thereby discard its semantic structure. Yet it is precisely this structure that is crucial to optimizing
protocol performance for the application in accordance with ALF. To this end, instead of sequence
numbers, we might use a two-dimensional structure, consisting of page numbers and drawing oper-
ation identifiers within a page. The announce/listen component of SRM would disseminate the page
structure as meta-data, which in turn, would allow a receiver to associate packetized data items for
meaningful application structures.

In addition to requiring a rich naming structure, receiver-based reliability mechanisms
must scale to very large groups and very large data sets. Not only might the data store itself become
large, but the meta-data that describes that data store might also become large. Hence, we must
ensure that the meta-data dissemination protocol scales gracefully with the amount of data in the
session.

In this Chapter, we propose a novel naming scheme that simultaneously solves the meta-
data scaling problem and provides a rich naming structure that is amenable to ALF. Our naming
scheme exploits hierarchy to effectively add a level-of-indirection to the meta-data dissemination
protocol. In our approach, hierarchy provides a summarization structure that we utilize to reduce
the amount of overhead in the announce/listen component of the meta-data dissemination protocol.
Here, senders announce meta-data summaries to the multicast session, which in turn, trigger names-
pace recovery mechanisms at each receiver in a receiver-directed fashion. In short, senders announce
“meta-meta-data” that describes the namespace and receivers use the SRM recovery mechanism to
reliably retrieve an arbitrarily large namespace. An elegant consequence of our hierarchical repre-
sentation is that we can control which pieces of the namespace are disseminated at what rates using
announce/listen and which pieces are repaired using receiver-directed recovery. This provides a
tunable tradeoff between the consistency among data stores at each receiver and the bandwidth con-
sumed by the protocol’s control traffic. In addition to this tunable tradeoff, the namespace hierarchy
allows an application to easily impose its own data structure over that hierarchy and thereby infer
application-level meaning from the transport-level name, which is not generally possible with a flat
sequence number space.

4.2 SNAP: Hierarchical Data Naming

The SNAP naming system uses a hierarchical structure to represent and name applica-
tion data. Hierarchical naming allows data transmission from different objects in the application
data store to proceed independently. The mapping from application-level structures to a SNAP
namespace is flexible and under application control and provides a sufficiently rich structure for
applications such as shared whiteboards, webcast applications, etc. The new naming scheme also
provides a common syntax between the the application and transport that enables receiver reliability.
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We start with an overview of the main components of the SNAP naming hierarchy —
application data units, fragments, nodes, namespaces, and name maps, illustrated in Figure 4.1.

Node ID 3556

#2:0

#2:1024

#2:2048ADU #0 ADU #1

Fragments

Node ID 3558

NameSpace (user@addr)

Node ID 3557

Figure 4.1: Example illustrating namespace, nodes, ADUs, and fragments.

An Application Data Unit (ADU) is the smallest unit of data that can be processed in-
dependently by an application. Applications hand ADUs to the transport protocol “atomically” to
be delivered to the session. Examples of an ADU include a single scan of a JPEG image, or a
whiteboard drawing operation [63].

While ADUs can be of arbitrary sizes, a packet, which is the unit of network transmis-
sion, is limited by the characteristics of the path between sender and receiver(s). The maximum
transmission unit, or MTU, of a network determines the amount of data that the transport protocol
can transmit at a time without having to fragment it en route to the receiver. While the path MTU
in a unicast session is clearly defined as the smallest MTU of any link in the path from a datagram’s
source to its destination [70], the same is not true in a multicast session because it involves multiple
receivers and hence multiple data paths from the sender to receivers. If a link has a smaller MTU
than the sender’s packet size, the packet must be fragmented and reassembled at the edges of the
low MTU segment. Relying on IP to perform link-level fragmentation and reassembly is undesirable
because fragment loss can result in a (multicast) retransmission of the entire packet. To limit the
inefficiency resulting from packet retransmissions, it is important for the transport protocol not to
choose a large packet size. Since there is no clear method to determine the optimal transmission size
in a multicast session, we use 1024 bytes, a common transmission size for most link technologies1 .

If an ADU handed to the SNAP framework exceeds the packet size, it is fragmented into
multiple pieces each of which fits into a packet. A fragment loss does not trigger the retransmission

�
For links that have smaller transmission sizes than 1024 bytes, the protocol can limit the bandwidth consumed by

retransmissions using scoped or localized repair to avoid retransmission floods affecting all group members.
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of the whole ADU, but just the lost fragment, and that too only if the application cares for it.
Since an application is incapable of processing a fragment without receiving the entire ADU, ADU
fragments are reassembled before propagating to the receiving application. While the pure ALF
model recommends that the application be “network aware” and only transmit ADUs that don’t
exceed the MTU, handling fragmentation within the transport protocol shields the details of the
network for indifferent applications, and applications that genuinely have large ADUs. Fragments
are identified using a starting byte offset and length in bytes. Byte offsets are required to account
for the fact that different members may fragment an ADU differently depending on their interface
MTU.

A namespace is a hierarchical structure onto which an application maps its data. We
only allow each data source to create a distinct namespace in the session, and do not currently
permit sources to share namespaces. Allowing multiple data sources to modify a shared namespace
introduces problems of inconsistency when concurrent and conflicting operations are performed
on the same namespace. For this reason, we defer the design of consistency algorithms for our
framework as future work, and instead, only allow source-specific namespaces.

Nodes (or “containers”) in the namespace hierarchy are called nodes. Nodes refer to
ADUs or other nodes or both. A node is also the unit of selective reliability, i.e., by selecting
specific nodes, a receiver can choose to repair data belonging to the corresponding nodes in the
namespace. This, as we have argued, is essential for customizing the receiver’s data set. Each node
is identified by a node ID (NID), that is assigned to it by the source sequentially in the order of
creation. The key advantage of hierarchical namespaces is that the application can generate data at
any time into a node. In other words, there is no notion of “closing” a node once it has been opened
and written into.

Certain reliable multicast applications such as shared whiteboards use a persistent data
model, where data lingers in the session for the entire lifetime of the session. In general, this is
a convenient model for applications that need to support late joiners2. However, data persistence
causes difficulties in the NID assignment scheme. Consider a scenario where a source, after generat-
ing some data in nodes, say

�
through

�
, crashes and re-joins a session. Assigning node descriptors

sequentially starting from 0 causes collisions between the first
�

new nodes generated by the source
and data already generated during its earlier incarnation. By randomizing node descriptors, we can
greatly reduce the likelihood of such collisions. The following analysis of collision probabilities
shows that picking a random initial node descriptor (IND) and subsequent sequential assignment
results in a smaller probability of collision than picking each node descriptor randomly. Figure 4.2
illustrates these two cases. � is the average number of nodes generated during a single incarnation.

�

is the number of bits used for node descriptors (We use
� �

� � ). Then, � �
�

�

is the total number of
available nodes. Assume that

�
is sufficiently large so that � ��� � . We evaluate the probability of

collisions among node descriptors in different incarnations. The probability that no collisions occur
with the randomized IND is given by � � �

� � � �

 � . With the scheme that picks a random descriptor for

each node, the probability that there are no collisions is
� �� � % � � � � 	 �


 � � � ��� �

 �

� � � ���
� � � �

 � .

Hence, the randomized IND scheme with subsequent contiguous allocation is better. Another ad-
vantage is that selecting contiguous node descriptors allows receivers to detect lost nodes in a data-
driven manner from gaps in the NID sequence.

�
This does not require that all the data be stored in main memory. The application may spool old data to secondary

storage.
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Figure 4.2: Two randomized descriptor allocation schemes.
���

(Join) and � � (Leave) represent a source’s
IND and final descriptor in incarnation � . In the first case, where node IDs are allocated sequentially, collision
occurs when two ranges have even one ID in common. In the second allocation scheme, a collision occurs
when an ID is picked that coincides with any one of the � previously allocated node IDs. In this case, we
assume that collisions within the same incarnation can be detected and avoided.

As an optimization to efficiently handle applications such as the LBL shared whiteboard
tool, wb [63], that generates a large number of (small) ADUs within each page or node, we allow
applications to use sequence numbers at the lowest level. ADUs are numbered sequentially within a
node. The advantage of this optimization is that data-driven, loss detection is possible in a number
of cases. Another advantage is that the extra ADU sequence number reduces the state of the index
data structure that maps application-level ADU names to nodes. An ADU is therefore identified
within the transport protocol by the tuple � ��� 


�
� 
��

�

�� ��� � .

The binding between application names and node IDs is called the name map. This is an
optional component of the namespace system that is used by the application maps its data onto the
SNAP namespace by assigning a name to each node. For example, names could be URL strings in
the webcast application. However, it is conceivable that a sophisticated application may use other
types of names, perhaps with a different profile specification just as different application-specific
RTP [124] profiles are possible. Our framework allows a different namemap module to be used with
the core naming and announcement protocol.

4.3 Source Identifiers

Data names are unique with respect to an origin source, and SNAP source identifiers are
not derived from network-layer addresses, an important design choice that allows us to interoperate
in an evolving network architecture that comprises network address translators and other proxying
agents within the core of the network that do not preserve the IP header as the packet traverses
through the network.

A namespace is source-specific and reflects the structure of data generated by that source.
In typical reliable multicast applications such as whiteboard, each receiver maintains a copy of every
active source’s namespace. We need a source identification mechanism that meets the following
requirements.

� Uniqueness. Two distinct sources must have distinct identifiers within a session to enable
receivers to determine the owners of data and maintain source-specific state. A source ID
collision occurs when two distinct sources use the same identifier while transmitting data;
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this is an event that must ideally be avoided, or at the very least, its occurrence must be
minimized.

RTP [124] uses randomly generated 32-bit source identifiers for multicast audio/video trans-
mission and detects collisions and resolves them, but does not perform any repair when one
is detected. The only ill-effects of a collision in this case are degraded quality for a brief
duration of time, until the collision is resolved. For reliable multicast applications, collisions
could potentially cause irrecoverable damage to application data.

� Time invariance. Unlike RTP applications like audio and video where application state is
ephemeral, reliable multicast applications require that a source identifier for a given source
has to be the same at all points in time within the session. In particular, when a source leaves
and rejoins the session at a later point in time, it must be possible to re-use the same source ID
as in its previous incarnation. The same applies to source crashes and subsequent recovery.
Existing schemes like RTP’s randomized identifiers violate this requirement.

� Terminal independence. In several reliable multicast applications, a source must have the
choice of retaining the same identity independent of the terminal or host used to participate
in the session. A source (user) must also be able to retain ownership of data created by it in
an earlier incarnation in the same session. Furthermore, a single reliable multicast session
should be amenable to multiple sources from the same end host or user. These requirements
preclude the use of user- and machine-specific identifiers based on a combination of host IP
address and user name.

To support time invariance, our source identification scheme allows sources to use arbi-
trary application-level strings. For example, a user in a whiteboard application could identify herself
using a user name and host address, as shown in Figure 4.1. However, since string names have vari-
able length and incur a high per-packet overhead especially for small ADUs, we hash the name into
a fixed-length 64-bit integer derived from the MD-5 function applied on the string. Because the
original identifier is an arbitrary user-supplied string that can be retained when moving from one
terminal to another, terminal independence is easily achieved as well. Our solution minimizes the
probability of collisions and resolves any collisions that might occur using the technique described
in the RTP specification [124]. In addition, we ensure that the two important requirements of time
invariance and terminal independence are met. The probability of source ID collision in this scheme
is the same as in RTP, but that we have achieved the additional goals of time invariance and terminal
independence.

4.4 Discovering the SNAP Namespace

SNAP receivers need to discover each source’s namespace so that they can issue retrans-
mission requests. To disseminate the namespace structure reliably, we use the basic SRM mech-
anism to disseminate the namespace tree and session messages to trigger namespace repairs. A
special index node /map is allocated to contain the namemap bindings. The /map node always
appears as the left-most child of the root node in a namespace. Figure 4.3 illustrates this.

Receivers maintain a snapshot of the namespace generated by each source in the session.
When a source creates a new namespace node, a message is transmitted from the /map node. Trans-
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Figure 4.3: Namemap bindings are treated as regular data by the SRM recovery algorithms, per-
mitting re-use of protocol machinery. It also allows receivers to detect lost nodes in a data-driven
manner. For simplicity, we have ignored fragmentation in this example.

mitting new data from this node indicates to the receivers that a new node in the namespace has been
created. In response, each receiver updates its snapshot of the namespace tree for the correspond-
ing source. Loss detection and recovery occurs in two modes: (i) data-driven loss recovery, when
the arrival of a data segment signals a loss to the receiving application, and (ii) control-driven loss
recovery, where the arrival of a control or announcement message enables the receiver to detect and
trigger recovery steps.

4.4.1 Data-driven Loss Detection

We first describe the data-driven loss recovery mechanisms that enable receivers to learn
about undiscovered pieces of the namespace tree. Since data is identified by NID and ADU seqno,
losses within the same node can be identified by gaps in the ADU sequence number field. A gap
in the NID sequence number indicates a missing node. Since ADUs are allowed to span multiple
packets, we also need a mechanism to detect missing fragments. Fragments carry byte boundaries
which can be used to detect missing fragments. Each fragment also carries a “more” bit that is
used to signal to the receiver(s) that more fragments are to be expected within an ADU. The last
fragment of an ADU has the “more” bit set to zero. On receipt of a fragment with “more” set
to 0, the receiver checks to see if an entire ADU has been received before propagating it up to
the receiving application. When a receiver receives a new ADU before completely receiving the
previous ADU, it schedules a repair request for the trailing fragment(s) of the ADU. For example,
assume that a receiver has seen the first � bytes of ADU � when ADU � � �

starts to arrive. A
request is scheduled for � � � � �

�
��� �

, where
��� �

is a special value that indicates the end of
an ADU. In response, the rest of the ADU is retransmitted either by the original source, or by any
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peer member in the session that successfully received the data. The transport protocol does not act
independently of the application in repairing losses. Lost data is repaired only if the application so
desires. After performing the necessary name translation from node ID to name, SRM queries the
application with the node name to determine whether a repair request needs to be scheduled3 . If
so, a request is scheduled according to a randomized timer algorithm similar to the basic SRM loss
recovery scheme [40]; if not, the loss is ignored. In response to a repair request, any peer member in
the session is allowed to respond with data. Data is buffered at the application at both the source and
receivers, and the transport protocol only maintains the structure of the namespace. Upon receipt of
a repair request, the transport protocol queries the application for the requested data.

4.4.2 Announcement-driven Loss Detection

While data-driven loss detection mechanisms handle several cases of losses, they do not
detect “tail losses” within a node, or tail losses of missing nodes. Late joiners to the session also
need a special mechanism to discover interesting portions of the namespace hierarchy. In wb, a new
receiver queries the source using for a list of all its pages by transmitting a “page vector request”.
The source in response replies with a list of all its pages. This scheme, where the source transmits a
vector of available pages does not scale well to long-lived sessions with a long history. Imposing an
application-defined hierarchy on the namespace permits a receiver to navigate the namespace and
selectively fetch only branches of the tree it is interested in. In order to transmit a concise repre-
sentation of the namespace hierarchy, we summarize the state of its namespace using the signature
function.

Source-based announcements fall in the general category of announce-listen protocols
where sources periodically announce their data and receivers listen to these announcements to re-
construct the data. Announce-listen protocols are conceptually simple and do not suffer from feed-
back implosion problems when used over IP multicast. The session announcement protocol (SAP)
[49] is an “open loop” reliable protocol that multicasts data periodically. A receiver simply waits
for source announcements to receive all data. In the basic SRM algorithm with linear sequence
numbers, the source periodically transmits “meta-data” indicating the last ADU sequence number
transmitted so far. SRM receivers use this information to NACK data. In SNAP, each source an-
nounces its signature which is “meta-meta-data”. Receivers NACK meta-data, to repair pieces of
the namespace, and data, just as in SRM. We use the SRM slotting and damping algorithms [40] to
reduce the amount of redundant SNAP traffic.

Signatures

The exact structure of the namespace tree can be conveyed completely and without any
loss of information by providing an in-order and pre-order traversal of the hierarchy. For long-lived
sessions with large and persistent namespaces, this is too large and expensive to disseminate to the
entire multicast group. In order to limit the bandwidth consumed by state announcement messages,
we need a more compact representation, or “fingerprint”, of the namespace hierarchy. We call this
compact representation of the namespace hierarchy its signature. The signature serves to inform all
receivers about the current structure of a node and all its descendants, and we define it as follows.

�

Alternatively, an application declares its preferences in a profile at startup time.
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The signature, � , is a function from a node into the set of 64-bit integers. The signature
of a node is defined recursively as the last ADU sequence number contained in it. If a node

�
is a

leaf-level node that contains only ADUs, its signature is simply the right edge of the node. This is
represented as the highest sequence number in its ADU sequence, and the highest byte of the last
ADU. The highest ADU sequence number helps receivers detect trailing losses within a node. The
highest byte of the last ADU helps receivers determine missing fragments.

For an internal node that points to other nodes, the signature is computed as a hash func-
tion over its own right edge and the signatures of its children nodes

� �
�
���
� � � � � � � . An example

of such a hash function
�

is MD-5 [119]. MD-5 has the special property that no known compu-
tationally feasible technique exists to produce two distinct messages having the same hash value.
Such a hash function gives us signatures that are unique with high probability. The signature of a
source’s namespace can be viewed as a unique (with high probability) fixed length representation
of all its data. However, we note that the signature is a one-way function and cannot be reversed to
reconstruct the tree that generated it.

� � � � = right edge, if



is a leaf-level node;
� � right edge, � � ��� � � � � � � � � � � � � , otherwise

where right edge of a node
�

is defined as the tuple (max ADU seqno, last byte offset in last
ADU) within

�
.

Note that it is necessary to transmit the highest byte offset, in addition to the highest ADU
sequence number, for the following reason. A source announcement may be transmitted after a
source has begun transmission of an ADU, but has not completely transmitted it. This may occur
because fragments of the ADU are streamed through a token bucket that has a maximum burst size.
If we allow source announcements to be sent only on complete ADU boundaries, we can use the
highest ADU sequence number alone to represent the right edge.

Source Announcements

As explained earlier, each source announces “meta-meta-data” and “meta-data” to the
session. Periodically, each source multicasts a session announcement message containing the sig-
nature of the root and the signatures of at most

�
nodes. The period between announcements and

the amount of data to send in each announcement are scaled to constrain control traffic and the exact
rate is determined by external policy. For example, if we constrain sources to allocate no more than
5% of their session data bandwidth on announcements we restrict the size and/or rate of announce-
ment messages. From the announcement rate and the network MTU, we can compute a maximum
announcement packet size, which in turn determines

�
. A higher frequency of session announce-

ments results in lower loss detection latency at the receivers. We now outline a heuristic that picks
the

�
“best” nodes whose meta-data is transmitted along with the root signature. Since we cannot

transmit meta information about all the nodes in a source’s namespace, we give priority to nodes
that have not been announced for the longest period of time. We use a randomized scheme similar
to lottery scheduling [139]. The analysis of this algorithm is akin to the coupon collectors problem
[45]. The expected time of the algorithm is proportional to ( � ����� � � � ����� �

� � 
 � 

), where � is the

target number of nodes to be selected. The total number of nodes is
�

. The details of the algorithm
and its analysis are described in [111].
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Receiver Processing

We now proceed to discuss the receivers’ processing upon receiving an announcement
packet from source

�
. Each receiver uses the signature to determine if it has a correct snapshot of

�
’s

namespace. If the local copy of S’s signature does not match the one carried in the announcement,
the receiver transmits a request to repair the root node of the namespace. All requests are multicast
to the session and use a randomized backoff scheme to reduce the number of duplicates when losses
are correlated.

If the receiver is interested in the entire namespace, it performs a systematic recursive
descent procedure to explore the namespace, detect mismatched nodes, and repair them. However,
the recursive descent algorithm is the last resort and is not invoked in the common case, where
applying the meta-data updates transmitted with each signature is sufficient to bring the receiver
up-to-date.

Below, we describe the receiver’s processing for the different loss cases.

1. No Loss. On receipt of an announcement message from source
�

, a receiver ! first compares
the root level signature sent by

�
with the corresponding local version. If the two signatures

match, ! assumes that it has a current snapshot of
�

’s namespace. Note that there is a vanish-
ingly small probability that two different trees will generate the same MD-5 root signature.
However, the inconsistency is only transient as a new signature is periodically transmitted by
the source as more data is transmitted and the namespace tree develops.

2. Missing ADUs. If the local signature computed on
�

’s namespace does not match the one
carried in the announcement, the receiver invokes loss recovery for the namespace meta-data
by issuing a a namespace repair request. The purpose of the namespace repair request is
to query the source (or any other eligible member in the SRM session), to repair the state
of a mismatched node. In response, the source, or any member with an up-to-date copy of
the source’s tree, multicasts a namespace repair packet for a requested node with a list of all
the children and their signatures. The receiver descends the namespace tree recursively in
this manner to locate missing branches. When a leaf-level node with only ADUs is reached,
the node’s signature gives the last ADU generated, and the receiver is now in a position to
schedule a repair request for the missing ADUs. This is illustrated in Figure 4.4.

3. Missing namespace nodes. A receiver may lose entire namespace nodes and the correspond-
ing meta-data information from the /map node, perhaps due to persistent congestion. Missing
namespace nodes can be detected by gaps in the sequence of map entries and recovered from.
Tail losses from the /map node are detected when a receiver receives a session announcement
containing the map node’s signature. This is illustrated in Figure 4.5. If a receiver receives
data in a node whose name mapping it does not yet know, it generates a repair request for
the missing mapping. Rather than discard ADUs whose names are unknown at the receiver,
we buffer the data at the SRM layer until the corresponding name of the ADU is available to
propagate up to the application4 . Mapping information appears as regular data to the SRM
protocol and we leverage the SRM request/repair machinery to recover lost portions of the
namespace.

�

Alternatively, unnamed data may be passed up to the application and the application could be notified when the name
is discovered.
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Figure 4.4: Recovering from tail losses using SNAP announcements. A-K are NIDs and the number
beside each node is its signature. For leaf-level nodes, the signature is also the right edge of the
node, and provides sufficient information to schedule repair requests. This figure shows a receiver
recovering from a tail loss in node F.

4. Selective reliability. Because SNAP uses hierarchical naming, receivers can perform selec-
tive reliability by deciding when and when not to generate repair requests for nodes in the
namespace tree. This is especially beneficial when a new user joins a long-lived wb session to
review a specific page, say the agenda page from the a weekly meeting in January 1997. By
organizing its data hierarchically, the source allows receivers to tailor its requests to receive
only the data it requires. Figure 4.6 shows an example where ! does not care for data below
node

�
. Nodes whose contents are uninteresting to a receiver are termed don’t care nodes.

In order to prevent spurious signature mismatches at higher levels of the namespace tree, the
receiver maintains the most up-to-date signature for the root of the don’t care subtree.

4.5 SNAP: Performance Evaluation

To evaluate the performance of SNAP within the SRM framework, we conducted a sim-
ulation study using the network simulator ns [81]. We used a multicast group with one source and
up to 55 receivers5 . Background traffic in the simulations was generated using TCP connections,
which induced packet losses. The topology used was a tree of degree 4, with the source at the
root. A constant bit-rate data source was used with a randomly generated namespace. We looked

�

Because of the prolific memory requirements of ns multicast simulations, we were unable to experiment with larger
groups.
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at two metrics: (i) convergence time, or the latency to recover from a tail loss, and (ii) session size
scalability which is measured by the bandwidth used by SNAP control traffic as the session size
is increased. In order to measure the worst case convergence time for a late joiner, we used the
recursive descent scheme, without any heuristics or selective reliability.

We define the convergence time as the elapsed time from the instant at which a packet is
dropped in the network (as a result of overflow at a router queue) to the instant that a receiver re-
ceives the data packet. We measure the worst case convergence time in our simulations, i.e., time for
the last receiver to recover from the loss. The convergence time has three components, the average
waiting time for the first update from the source, the time taken to discover the location of the loss
using SNAP, and the time to recover from a loss. Figure 4.7 shows the convergence behavior of the
state update protocol with varying periodicity of updates. As expected, the convergence time im-
proves with more frequent SNAP announcements. However, there is a tradeoff between the amount
of bandwidth consumed by SNAP control messages, and the recovery latency of the protocol in dis-
covering and reacting to losses. This convergence time is significantly reduced when applications
exercise selective reliability to selectively repair portions of the namespace. Our simulations also
used nodes with exactly one ADU to stress the control-driven repair mechanisms. Therefore, the
observed latencies represent the worst-case scenario. When used in applications that continuously
generate data in each node, data-driven recovery is likely to repair most losses with lower latency.

The chief concern with multicasting control messages such as repair requests, state an-
nouncements and namespace repair requests/replies is the amount of bandwidth consumed in very
large session sizes. To evaluate the effectiveness of suppression resulting from the “slotting and



58

534

B

E F
24 35

46

79

20

A

C D

J K

40

534

B

E F
24 35

46

79A

C D

J K

40
38

534

B

E F
24 35

46
40

79

38

76

27

A

C D

G

H I

J K

user@cs.berkeley.edu

R S

(A, 79), (C, 38),

(G, 27), (I, 7)

user@cs.berkeley.edu

Don’t Care

Leaf-level node

Internal node

Figure 4.6: Selective recovery using SNAP. If the receiving application at ! does not care for data
belonging to a certain subtree, it simply updates the signature of the node at the root of such a
subtree, and refrains from scheduling a repair request for portions of the namespace below those
branches. The correct signature at the root of the don’t care subtree allow the ! to compute the
correct signature at the next higher levels and eventually the signature at the namespace root. This
prevents the receiver from generating spurious namespace repair requests.

damping” mechanism in SNAP, we measured the number of copies of each control message mul-
ticast to the group. Figure 4.8 shows this behavior as the group size is scaled up to 50 nodes. For
SNAP updates, the average number of copies per message was about 3, and remained approxi-
mately constant with increasing session sizes. On the average, about 2 copies of a request message
are transmitted to the session. This remains roughly constant with large group sizes. Schemes such
as local recovery that are generally applicable to SRM can also be applied to this case to improve
scaling behavior and eliminate the extra duplicates.

4.6 Implementation

We have implemented a prototype of the naming scheme and SNAP in the MASH [82]
toolkit. The MASH platform is a scripting-based programming environment for networked multi-
media applications. It provides composable basic building blocks such as network objects, codecs,
widgets, and an event-driven programming model. We have implemented SNAP as a library of
C++/OTcl classes in the toolkit. SNAP runs at user-level in the same address space as the appli-
cation. Since the application and protocol share an address space, upcalls [23] by the transport
protocol to query the application are implemented as function calls. The namemap that implements
the mapping from names to transport level identifiers is a separate module as shown in Figure 4.9.
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The software architecture of SNAP is shown in Figure 4.9. The protocol framework has
two interfaces: one with an event system that allows the library to register events and invokes the
specified handlers when these occur. In our implementation, the Tcl [95] event loop provides these
functions, but it is possible to install an alternate event handling system provided it supports an
equivalent API.

The other important interface to SNAP is the application-transport interface. Our basic
framework has the following API. The direction (upcall/downcall) of each function call in this API
is also indicated.

�
snap alloc node parent
snap alloc node allocates a node as a child contained within parent, which is the ID
of the parent node. Each node ID is 32 bits wide, allowing at most 4 billion nodes per source
within each application. This function returns the node ID of the new allocated node to the
caller.

�
snap start
snap start signals to the SNAP layer that there is data ready for transmission. Since the
transmission of data is clocked by the underlying rate regulating mechanism, the application
merely registers its interest in transmitting data. The application is immediately called back
with a request for data. (See snap get data below.) SNAP sets a timer in its rate control
leaky bucket to accumulate enough tokens for the ADU just transmitted. Subsequent ADUs
that arrive during this period are maintained in an application level ADU queue.

�
snap recv data nid seqno data
snap recv data is a notification delivered to the application by the transport protocol
when a complete ADU has been received either resulting from the original transmission or
from a retransmission. Retransmissions are indistinguishable from original data and are sub-
jected to the same rate regulations. If an ADU has to be fragmented at the sender, it is
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reassembled before delivery up to the application.
�
snap get data nid seqno
On receiving a repair request, the transport protocol requests the application for the ADU
corresponding to node NID, sequence number seqno. This function is invoked when the
token bucket internal to the SNAP library has accumulated enough tokens to transmit an ADU
that was registered using a prior snap request to send. This is also used by the SNAP
library when responding to a repair request generated by a session member. This notification
to the application is necessary since buffering is the responsibility of the application.

�
snap recover nid seqno
Receiver-tailored retransmission is achieved via this function call.
snap schedule request explicitly queries the application to check if a repair
request for the lost node needs to be scheduled by SNAP on behalf of the application.

A key ingredient to the success of the general framework approach to reliable multicast
is experience drawn from design and implementation of a variety of applications. We have imple-
mented a number of existing applications including the MASH MediaBoard [133], and mashcast
[145] to effectively demonstrate the power of application-level framing.

4.7 Concluding Remarks

In this Chapter, we have presented a generalized framework for reliable multicast that sup-
ports diverse reliability semantics. The two key components of the framework are (i) a hierarchical
naming system, and (ii) a scalable session announcement protocol. The result is a receiver-driven
reliability protocol where receivers tailor their reliability requirements. Based on simulation studies
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Figure 4.9: Namemap is a middleware component that implements the mapping from structured
names used by the application to transport level identifiers. SRM timer mechanisms and SNAP are
core transport layer functions. The transport layer exposes a low-level API to the application or
middleware component that enables selective reliability.

of convergence time and message complexity of the protocol, we demonstrate that the protocol’s
bandwidth consumption scales well to large group sizes. We have designed and implemented this
Scalable Naming and Announcement Protocol (SNAP) as part of the MASH [82] toolkit. We dis-
cuss some avenues for future work in this area.

Global recovery in SRM results in request and reply floods transmitted to the entire group,
even for losses that are localized. Several solutions have been proposed for local recovery in the
literature [74, 40, 98, 127]. Integrating SNAP with a local recovery scheme could provide greater
scalability. Finally, the deployment of IP multicast in the Internet has been impeded to some extent
by the absence of a multicast congestion control algorithm. This problem has recently received
significant attention in the research community. We hope to use our framework as a vehicle to
design, test, and deploy different congestion control schemes on the Internet.

Our work on scalable data naming and soft state namespace updates in this chapter pro-
vide the basis for a reliable multicast transport framework that can be used in a wide range of
applications. In Chapter 7, we describe an implementation of these techniques in libsstp, a soft
state-based transport protocol framework and describe how applications tune reliability semantics
in different ways. We also present a scaling study of the underlying timer mechanisms used during
loss recovery of data and meta-data messages in Chapter 5. In Chapter 6, we compare in-order and
out-of-order data delivery at the receivers and propose that the transport protocol leave ordering
issues to the higher layer application so that interactivity is not compromised. The use soft state and
randomized timers for loss recovery allow us to scale SSTP to large session sizes, while SNAP and
out-of-order delivery improve interactivity.



62

Chapter 5

Asymptotic Scaling of Randomized
Timers

I waited and waited, and when no message came, I knew it must have been from
you.

— Ashleigh Brilliant

The SNAP protcol presented in Chapter 4, performs loss recovery of data as well as meta-
data items in a multicast session using the “slotting and damping” method with randomized timers.
As discussed earlier in Chapters 1 and 3, a key issue in designing a robust multicast feedback
scheme is to avoid tight synchronization between group members. The previously known technique
of slotting and damping provides a way to gather feedback from receivers, but uses randomization to
break the synchronization between multiple receivers attempting to signal the same loss event to the
sender and other members of the session and forms the basis of our loosely synchronized receiver
feedback algorithms. In this Chapter, we present a detailed evaluation of the slotting and damping
algorithm. The Chapter proceeds as follows. We present a brief overview of the randomized timer
algorithm under study in Section 5.1. In Section 5.3, we describe our evaluation methodology. We
discuss the effects of varying the protocol parameters for the various topologies in Sections 5.4, 5.5,
and 5.6, and conclude in section 5.7.

5.1 Overview of Randomized Timers

A fundamental problem in the design of a reliable multicast protocol is the well-known
message implosion [40, 106] problem. Reliable transport protocols rely on some form of feedback
between or among communicating end-points to confirm the successful delivery of data. While
some protocols rely on positive acknowledgments or ACKs (signalling the successful receipt of
data), others rely on negative acknowledgments or NACKs (signalling the failure to receive ex-
pected or desired data). Positive acknowledgment-based schemes are successful for reliable unicast
transport but scale poorly in the multicast case when there are many receivers. In this case, each
delivered packet causes a flood of positive acknowledgments sent from the receivers back to the
source, overwhelming either the source or the intervening routers, if not both.



63

A number of solutions to the ACK implosion problem have been proposed. Log-based
reliable multicast [58] uses logging servers to constrain recovery traffic to localized groups of re-
ceivers. TMTP [148] and Lorax [73] construct a hierarchy in the form of a tree, in which multiple
identical ACKs are fused together before they are propagated up the tree toward the root. RMTP [74]
uses a similar approach based on trees that are (statically or dynamically) configured into the net-
work rather than constructed by the application. XTP [21] takes a markedly different approach,
however, and instead multicasts control traffic to all end-points. To limit the proliferation of this
control traffic, XTP employs a “slotting and damping” algorithm: a receiver waits for a random
amount of time before generating control traffic and cancels that message if some other hosts mul-
ticasts the same information first. This slotting and damping mechanism also forms the basis of our
soft state-based transport protocol framework. The algorithms in SRM [40] elaborate this simple yet
powerful primitive with adaptive timers that improve performance across wide-area, heterogeneous
networks.

While TMTP, Lorax, and RMTP limit recovery traffic using unicast transmission over an
artificially constructed hierarchy, XTP and SRM limit recovery traffic using multicast transmission
and explicit suppression. Although this latter approach is potentially more robust because it does not
require an elaborate protocol for tree construction, maintenance, and reconfiguration, it also entails
potentially more overhead because recovery traffic is multicast to the entire group and not just to
those members impacted by the packet loss. To address this problem, [40] proposes that SRM be
cast as two complementary pieces: a global recovery component that ensures the delivery of all
desired data across the entire multicast session, and a local recovery component that constrains the
reach of recovery traffic to the multicast neighborhoods where packet loss occurs. Although [40]
focuses primarily on global recovery, the SRM authors argue that local recovery is an important and
necessary optimization to scale their protocol to large, heterogeneous sessions. Since then, several
promising approaches to local recovery have been proposed [69, 75] and the problem remains a focal
point of ongoing research. In SSTP too, we use the slotting and damping algorithm and perform a
combination of local and global loss recovery.

Even though a viable local recovery strategy is critical to SSTP’s scalability, in certain
configurations (e.g., where packet loss occurs near the root of the distribution tree), the degree to
which local recovery enhances performance may be limited and the protocol’s overall performance
may strongly depend on that of the global recovery scheme. Hence, we claim that a thorough
understanding of global recovery in SSTP is not only important in and of itself, but will also be
useful in predicting the performance of SSTP even when coupled with local recovery.

In this Chapter, we use analysis and simulation to investigate the scaling behavior of
global loss recovery in SSTP. We study the growth control traffic (measured by NACK counts)
as a function of group size for various topologies and protocol parameters, on a set of simple,
representative topologies — the cone, the linear chain, and the binary tree. We find that the number
of NACKs, as a function of group size, for the cone is always linear, for the linear chain is between
constant and logarithmic, and for the tree is between constant and linear. We show, by studying
various cases, that the randomized timer equation used in slotting and damping, � � � � � � ����� ��� ,
allows us sufficient flexibility in selecting the level of latency that can be tolerated in return for a
reduced number of redundant control messages.

A number of performance metrics have been used to characterize recovery schemes for



64

reliable multicast, but two widely used metrics are:1 (1) the degree of duplicate control traffic, and
(2) the recovery latency. The first metric can be summarized as the average number of NACKs
sent for each dropped packet, which clearly depends on the size of the group experiencing the
loss. We denote this number by � � � � , where � is the number of members experiencing the loss.
The larger this metric, the less effective the randomized timer algorithm is at suppressing duplicate
NACKs and avoiding NACK implosion. � � � � is a non-decreasing function of � , so the suppression
performance for large group sizes is a critical factor in SSTP’s performance.

We define the second metric, the loss-recovery latency, as the time delay between the
instant a packet drop is detected to the time at which the first NACK is sent (from the perspective of a
particular session member). Recovery latencies for these randomized algorithms typically decrease
as group sizes increase, so the sensitivity of latency on group size is not of primary importance in
the scaling behavior of SSTP.

In this Chapter, we focus on the performance of SSTP with large group sizes; that is,
roughly speaking, the asymptotic scaling limit. Thus, we focus on the number of duplicate mes-
sages and do not address latency performance. Since the timer mechanisms for NACKs and repair
messages are similar, we restrict our attention to NACKs. Therefore, our Chapter addresses the
following question: how does the number of duplicate NACK messages increase as the group size
grows? In short, what is the scaling behavior of � � � � in SSTP?

The scaling behavior of SSTP depends both on the topology of the underlying network as
well as the details of the timer algorithm. To explore the relationship between topology and scaling
behavior, we experimented with three simple network topologies: the cone (a variant of a clique),
line, and tree, shown in Figures 5.1 and 5.2 While these topologies are instructive because they
explore the behavior of SSTP under extreme topologies, they are by no means exhaustive.

The scaling behavior also depends on several aspects of the timer algorithms. We focus on
two such factors. First, we look at the dependence of the scaling behavior on the constants

� �
and���

. There are several applications, such as large-scale multi-player games that are highly interactive,
for which low-latency loss recovery is important, and the choices of

� �
and

���
critically impact this.

In general, the expected latency to transmit the first NACK upon detecting a loss is bounded above
by � ��� �$��� � � � 
 , where

�
is a function of the network topology and is always at least 2. Thus,

there is a trade-off between recovery latency and the choices of
� �

and
� �

. In particular, smaller
values of these constants lead to better latency, but also to increased � � � � . The need for low
latency by many applications motivates our work on investigating the � � �

�
��� � parameter space,

and in particular, our consideration of � � ��� ���
(little or no deterministic suppression).

We also briefly consider the case where
���

and
���

are a function of the location in the
topology; this aspect of our work was inspired by the results on adaptive timers in [76]. There, the
timer constants were set in response to the number of duplicates observed and the latency of the
responses, and this naturally led to the parameters being different for different members — e.g.,
members located at different depths in a tree would have different settings. We do not directly
address the dynamic nature of these timer adjustments, but merely study how location dependence
in

���
and

���
changes performance.

We then investigate how the scaling behavior depends on the accuracy of the delay



. In
SSTP, the �

	 �
group member estimates


 ���
, � � �

� � � � � � � , ���� � , the delay from itself to each of the
�
The metrics we describe here ignore topological heterogeneity, where not all receivers are identical. More detailed

performance metrics would measure the latencies on a per receiver basis.
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other members of the group. Delay estimates are calculated from round-trip time (RTT) information
which is derived from timestamps in session messages of the SSTP protocol. Since the protocol’s
control bandwidth is limited to a constant fraction of the total available session bandwidth, the
estimated RTT does not readily track changes in actual delay for large session sizes2. We study how
RTT estimation might affect asymptotic scaling behavior in the different topologies by comparing
performance in two extreme cases: one with exact RTT estimations and one where all members
have the same hardwired RTT estimate.

5.2 Previous Work

In this section, we summarize some important prior work related to the analysis of SSTP.
The seminal work of Floyd et al. [40] simulated group sizes of up to a few hundred nodes ranging
across a set of simple topologies. They showed that it was often possible to choose values of���

and
���

that resulted in � � � � scaling as a constant independent of � . In particular, picking���&� ��� �
� achieved this for the chain topology, and picking

��� � � � resulted in constant
scaling for the star topology (a special case of the cone topology in our work). Using simulations
they demonstrated that � � � � � �

for random trees with bounded degree for session sizes of up
to 100. They also proposed an adaptive algorithm to dynamically adjust

���
and

���
based on past

information for better performance.
Our work extends their important findings in two ways. First, we investigate performance

for session sizes of up to two orders of magnitude larger than in [40], thus improving our collective
understanding of SSTP’s asymptotic behavior. Reassuringly, our results agree with [40] where the
experiments overlap. More generally, we have assessed in detail the behavior of � � � � as a function
of

� �
and

� �
. Not only do these results help us predict the performance of SSTP, but they could

influence the design of related sub-components of SSTP, e.g., the choice of bounding values of
� �

and
���

in the proposed adaptive algorithm. A more recent paper [76] studied scaling behavior for
group sizes up to 200 members, with

����� � and
���

set adaptively.
In addition, Nonnenmacher and Biersack [93] looked at the effect of timer distribution

on scaling behavior and showed that exponentially distributed timers yield better scaling properties.
They found that having this distribution depend on the group size could result in improved scaling.
We do not address the effects of different timer distributions at any great length in this Chapter.

This Chapter is primarily concerned with global recovery in SSTP with constant
� �

and���
. Variants of SSTP have been proposed that use local recovery, in which NACKs and repairs are

not sent to the entire group. [40], [75] look at two methods to limit the range of these methods:
hop-scoping, and local recovery groups. [76] considers methods for adaptively setting the values
for

� �
and

� �
. We do not consider any of the local recovery methods, nor adaptive timer setting.

Thus, our work should not be seen as a statement about how SSTP-like protocols should function
in the future, when they may well incorporate such features, but rather as an attempt to study the
current deployed version of SSTP with its use of global recovery. Our hope is that understanding
this basic version of the protocol may inform future design efforts to improve it.

�
Even in the case of a single TCP connection, where RTT estimates are gathered on every ACK, the sender’s RTT-

estimator is known to often be inaccurate [128].
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Figure 5.1: “Linear chain” topology used in our evaluation of randomized timers. The X-ed packet
marks the location of packet loss.

5.3 Simulation Methodology

In our simulations, we studied three classes of network topologies: cone, linear chain,
and binary tree, each with a single source. The cone is a topology where each member has the same
delay � to every other member, and a distance � from the source. Similarly, for the linear chain and
the binary tree, � represents the link delay between adjacent members, and � is the link delay from
the source to the closest member(s). Figures 5.1 and 5.2 show � and � for the three topologies.

We are only modeling the behavior of NACKs, so we need only consider the receivers
that suffer losses. Thus, we only consider the case where the loss occurs on the link adjacent to the
source 3. This causes little loss of generality, since if the loss occurs elsewhere we need only model
the topology beneath the loss point. Note, however, that the size of the group we are considering,
� , is the size of the loss group – the number of members experiencing a particular packet loss –
and not always the size of the entire group. Session messages in SSTP give members knowledge
about the size of the entire group, but not about the size of the loss group. If members knew the size
of the loss group they might also be able to employ various forms of local recovery (hop-scoped
recovery, or local recovery groups) that would more directly address the NACK traffic problem (not
just limiting the number of NACKs, but also the portion of the group they are sent to). Thus, we
do not consider varying the timer constants with group size, as in [93], as this does not seem like a
realistic possibility.

Furthermore, we assume that losses are detected immediately when the next packet ar-
rives. Since a packet is delivered to different receivers at different absolute times, losses are detected
at different times. This typically allows the receivers closer to the source to suppress the NACKs
from receivers further away. One of the key points in our investigation is how the setting of the
timer constants affects this behavior.

We used the VINT network simulator ns [83] for our work. In its original form, ns turned
out to have prolific memory usage with heavy-weight nodes, links, and multicast routing infrastruc-
ture, and could not support more than a few hundred nodes on an ordinary workstation. However,
we took advantage of ns’s extensible object-oriented architecture and made several modifications
and extensions to it. Using the basic ns framework for event handling, we extended the simulator to
support regular topologies with static routing without explicit routing table state. These modifica-
tions and extensions to ns enabled large-scale simulations of up to 50,000 nodes.

Losses occur on the link closest to the source, and are thus shared by all receivers in the
group. We measure the average number of NACKs generated in response to a loss. The variation
between different measurements is induced by the randomness in the recovery algorithm we are

�

Measurements reported in [147] show that most correlated losses occur close to the source.
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Figure 5.2: Binary tree and cone topologies used in our randomized timer analysis: the X-ed packet
marks the location of packet loss.

studying. We ran between 30 and 50 simulations of each case to compute the average value of the
metrics, depending on the variance of the measured samples. Table 5.1 summarizes notation used
in the rest of this Chapter.

In the following sections, we present our analytical and simulation results for the three
topologies under study.

5.4 Scaling in the Cone Topology

The cone topology can be used to model the case of a broadcast LAN. If the source is on
the LAN then � � � but when the source is off the LAN, the delay from the LAN to the source is
much greater than the LAN propagation time, yielding � � � � . In general, the cone topology can
be used to model cases where all receivers have similar round-trip time estimates to the source. In
practice, accurate RTT estimation is a hard problem and RTT estimators tend to be coarse-grained,
resulting in in broad classes of receivers, each with multiple receivers having similar RTT values.

We use the following probabilistic analysis to compute the expectation of the number of
duplicate feedback messages, � � � � . Because all the receivers are at the same distance from the
loss in a cone, the deterministic backoff component has no impact on the number of duplicates (all
timers have the same constant offset). The average delay in transmitting the first NACK depends
on the expected value of the minimum timer and is given by � � � � � � �

�
	 � � . This result follows

directly from noting that the expectation of the minimum of � uniformly distributed random vari-
ables in � � � ��� is

�
�
	 � . The number of duplicates is equal to the expected number of timers that fire

within � ��� � � � ��� � � � � � , where ��� � � is the value of the smallest timer. Since backoffs are uniformly
distributed in the interval � ��� � � � ��� � ��� � � �

, we can easily compute this expectation. Defining
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Symbol Description

� Delay from source to the closest receiver
� Delay of link connecting receivers
! �����
� Group size
� Average number of copies of a single NACK
� Average NACK latency caused by backoff
 �

Estimate of one-way delay from node �
to the source node

backoff
�
,


 �
� � ����� ��� � � � �

at host � where,
� �

are uniformly distributed
random variables in � � � ���

� �
Absolute time at which receiver � ’s timer fires

Table 5.1: Summary of notation used in our randomized timer analysis.

� � �
� ��� we have:

� � � � � � � � � � � � �

� � � �
� � � � (5.1)

Thus from Equation 5.1, the number of duplicates is roughly linear in the group size. [40]
reports a similar result for the star topology, which is a cone with � � � . Observe that this linear
dependence applies regardless of whether the delay estimates are accurate or not. If the estimated
value of the delay (assuming all members achieve the same estimate) is larger than the true estimate,
then the number of duplicates is smaller, but the dependence on � is still linear. Our simulations,
shown in Figure 5.3, confirm this result.

As we have just seen, � � � � grows roughly linearly for any fixed timer distribution. How-
ever, as shown by Nonnenmacher and Biersack [93], if one makes the distribution dependent on the
size of the loss group then one can change this linear scaling. For instance, if one takes a bimodal
distribution such that with a probability � � �

� a receiver sends a NACK immediately upon detect-
ing a loss, and with probability

� � � sends a NACK after a delay � , then as � diverges � � � � is
given by � � � � 
 � � � � � 
 � �

. By tuning � one can lower the slope of the linear dependence, and
if one sets � � ��� � the growth is logarithmic, not linear. One can remove the linear term entirely
by considering the scheme where each receiver picks a number

�
from an exponential distribution

with average
�
� and sets the backoff to

� � . This is essentially a discrete version of the exponential
distribution considered by Nonnenmacher and Biersack [93]. Here, the average number of NACKs
is
� � � � � � and the average latency is

� � � � � % � ��	� %�� � . One can show that this achieves the
lowest latency for a given number of NACKs (or equivalently, the smallest number of NACKs for a
given latency) in the asymptotic limit. However, as we argued earlier, schemes that have the timer
distribution depending on � are perhaps of little interest since the parameter � must be the size of
the loss group, and once one has this information it might be better used in some local recovery
approach rather than using it merely to tune the timer parameters.
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Figure 5.3: In the cone topology, the number of duplicates N(G) grows linearly in � . The slope of
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. Similar results hold for other
���

and
���

as long as
��� � � .

5.5 Scaling in the Linear Chain

For the linear chain topology, we first consider the case where the RTT estimation main-
tained by the receivers is exact. We study the behavior in several timer ranges, determined by the
parameters

� �
and

� �
.
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5.5.1 Exact RTT Estimation
�

� � � � and
� � � �

When
��� � � and

��� � � , the data in Figure 5.4 suggests that � � � � is constant in � . In
the discussion that follows, we present an important result for the linear chain topology. We
show that in this specific range for the timer parameters

��� � � and
��� � � , there is a integer

bound
�

on the maximal number of NACKs sent when a loss is detected by all receivers.

The receiver located at position � in the regular linear chain is at a distance

 �

from the source,
given by the expression in picks a backoff that satisfies the condition in Expression 5.3. This
receiver picks a backoff that satisfies the condition in Expression 5.4 below.


 � � � � � � � � � � (5.2)��� 
 � � � � � � � � � � � ��� 
 � � ��� 
 �
(5.3)

� ��� � � � � � � � � � � � � � � � � � � � � � ��� � ��� � � � � � � � � � � � (5.4)

Now, consider some message sent at time � � � , and assume that losses are detected
immediately. This assumption approximates our analysis, since losses are detected when
the subsequent packet in the sender’s transmission sequence arrives at the receiver. How-
ever, we find that our approximate analysis corroborates the simulation results and hence
the assumption does not impact the qualitative nature of the result. Receiver � detects the
loss at time � � � � � � � � � � and sends its NACK, if not suppressed, no later than a time
given by � � � � � �	� � � � � � ��� � ��� � � � � � � ��� � � � and no sooner than a time given by
� � � � � � � � � � � � � � � � � � � � � � � . Under what condition will one of � or � be suppressed? We
calculate this by computing the overlap condition that must be satisfied, taking into account
each receiver’s backoff time as well the propagation time between them. Assuming � � � ,
receiver � and receiver � cannot both send NACKs if � suppresses � . This will happen is the
following condition is true:

� ����� ��� � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��� � � � � � � � � � � (5.5)

Equation 5.5 follows by recalling that it takes time � � � � � � for � ’s NACK to propagate from
� to � . Thus, the first member on the line suppresses all but the next

�
members, where

�
is given by

� � � � � �� � ��� . Thus, � � � � is bounded from above by the integer
� � �

. Our
simulation results suggest that the average number � � � � is much less than this upper bound,
and in particular, is insensitive to ! .

For
��� � � , the value of � � � � appears, as shown in Figure 5.5, to be roughly independent

of
���

. The dependence on
���

is also shown in Figure 5.6, where, for a fixed � , � decreases
with increasing

���
as expected.

�
����� �
When

� � � � , there is no deterministic delay and the preceding argument fails. In fact,
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.

it appears that � � � � diverges slowly with the group size � , as shown in Figure 5.7. We
can argue that � � � � does not grow faster than a certain expression derived below (but
are not able to provide a lower bound). The probability that node � is not suppressed is
upper-bounded by the probability that it is not suppressed by the members ahead of it in
line, i.e., nodes

�
� � � � � � � � �	� � This occurs if and only if (ignoring ties) the backoff timer

� � � � � � � � � � � � � � � � � � . Considering the special case of � � � for convenience and using the
notation � 	 ������� � � � � � , we have

� � � � � � � � � � � � � � � � � � � � � 
 � � ��� � �
� � � � ��� � � � � � � � � � � (5.6)

�
� � � � ��� � � � � � � � � �	� 	 (5.7)

Transforming equation 5.7 by changing variables,

� � � � � ��
� � �	�

�
%

� � � � ��� � � � � �
�
� �

� �
� (5.8)

Approximating
�
� � � � �� � � � � ��
� � as


 � 

��� � ���� � ��
and then noting that


 � 

��� � ���� � �� " 
 � 
���� �
and

substituting into the integral, we see that this expression diverges as
� � ��� � . The results of

our simulations for this case are shown in Figure 5.7.
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5.5.2 Without RTT Estimation

We now consider the case where there is no adaptive RTT estimation, and all receivers
use the same hardwired delay estimate



.

�
� � � �
Note that since deterministic delay is useless when round-trip times are not used (all members
have the same deterministic delay),

�"� � � results in no suppression at all, and � � � � � � .
This is true independent of topology; if there is no RTT estimation, then one needs

�#� � � or
else � � � � � � , and � � � � is independent of

���
.

�
����� � and

����� �
Figure 5.8 shows � � � � for the case

����� � and
��� � �

and fixed RTT. The growth, for all
values of ! � � � appears to be logarithmic. Similar logarithmic-like behavior is observed in
simulations with different values for

���
and



.

The following probabilistic analysis suggests why, for
� ��� � and

����� �
, � � � � grows as a

logarithmic function of the group size. Given the values for the timer parameters, the backoffs
at the receiver are picked in the range � � � 
 �

. We first compute the probability that the NACK
at node � is not suppressed. The following condition (5.9) must hold, for � ’s timer to fire:


 � � � � � � 
 � � � 
 � � � � � � � � �� � (5.9)

where

 �

is the one-way delay to receiver � from the source and

 ���

is the one-way delay
from receiver � to receiver � .

� �
�
� �

are uniformly distributed random numbers picked in � � � ���
by the random timer mechanism. We must then have the conditions in (5.10 through 5.13)
below.

� � � � �
�

� �
� � (5.10)� � � � ��� ��� � � � � � � � � � � � �$� (5.11)

� ��� � � � � � ���
(5.12)

� � � � � � � � � � � � � � � � (5.13)

From equations 5.10 through 5.13 above, we can conclude that a NACK at node � cannot be
suppressed by a NACK at a later node. The condition for suppression at node � is therefore� � � � � � � � �

�
� �
�
�
� � � � � � � � � � � . Since the probability that receiver � fires is � � � � � � 
 � � � � �

,
we get the number of redundant messages to be logarithmic in � , given by the expression in
(5.14).

� � � � �
� �

��
� � � � � � � � � 
 � � " ��� � � ��� � � � (5.14)

Similar logarithmic growth is seen empirically for larger
�#�

also.
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Figure 5.8: N(G) grows as a logarithmic function of G for ����� � �
�
� � � � � � � � � � � , fixed delay (no

RTT estimation),
� � � � ,

� � � � . � � � � � ��� � � ��� � � � , when
� � � � � � � � �

.

� Super-linear dependence on

 �

With
����� � , � � � � diverges as

��� ��� � for the linear chain topology. In order to reduce this
growth in N(G) to a constant, while still retaining

� � � � for the sake of low repair latency,
we can make

���
a function of the delay from the source. This follows the work Liu et al.

who propose, in [76], using a new adaptive timer algorithm. Analysis similar to the previous
case (equations (5.10 – 5.13)) shows that the number of duplicates is bounded by a constant
when we use

���#�$
 �
for any � � � . This follows from 5.15 through 5.16 below.

� � � � � ��
� � � �

�
%

� � � � ��� � � � � �
�

�
� 	 � � �

�
�
� 	 � (5.15)

� ��
� � �

�
�
� 	 �

� �
�

(5.16)

The graph in Figure 5.9 shows through simulations that � � � � converges to a constant for
�

� ��� � . We should note that because we do not have a lower bound for the case of
���

fixed
( �

� � ). Our simulation results show that � � � � diverges for �
� � , but our analytical proof

is only for � � � .

The behavior of � � � � for the line case is summarized in Table 5.5.2.

5.6 Scaling in the Binary Tree

In the binary tree topology (Figure 5.2), N(G) grows linearly with G when RTT is not
estimated, as shown in Figures 5.10 and 5.11. The slope of this linear growth depends on

� �
and
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for the linear chain.

����� RTT
� � � �

N(G) Figure�
�
� � � � � � � � � � � Fixed

��� � � ��� � � Logarithmic 5.8
(
��� � � � , when

����� � � ����� �
)�

�
� � � � � � � � � � � Fixed

��� � � ����� � Linear ( � � � � � � )�
�
� � � � � � � � � � � Estimated

��� � � ��� � � Constant (
� �

) 5.4�
�
� � � � � � � � � � � Estimated

� � � � � � � � Diverges 5.11

Table 5.2: Summary of asymptotic scaling in the linear chain topology
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(the fixed RTT). This linear behavior is in contrast with the logarithmic behavior observed in the

line topology, but similar to the behavior in the cone topology. When RTT is known exactly, we still
have linear behavior for

���#� � , as shown in Figure 5.11. The slope of this linear growth depends
on both

� � and
���

.
However, as soon as we have

��� � � ,

 � � � appears to asymptotically reach a constant.

Figure 5.12 shows the function � � � � for different values of � � � � � �
. The growth law for

intermediate � is linear, and then the slope decreases as � increases. For all cases where we have
been able to reach sufficiently large � , the slope continues to decrease until � � � � goes to a constant.

When
��� � � , we see that the asymptotic scaling behavior depends on whether deter-
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.

ministic suppression or randomized suppression is dominant in reducing the number of NACKs.
In cases where deterministic suppression is dominant, the asymptotic scaling is constant. Scal-
ing is linear when suppression depends on the randomized suppression. In Figure 5.15, these two
important effects are evident: as ����� increases, deterministic suppression becomes weaker and ran-
domized suppression is more effective. For large values of ����� � � � � , backoff timer ranges are
large enough and the average separation between timers grows.

We now try to illustrate this behavior in a different form. The function
�


 plotted against
� is shown in Figure 5.13. This ratio appears to be a linear functions of � , with the slope depending
on

���
. If we label the slope of this line by � and the intercept by

�
, we have, for small

� �
and large

� , the following form for � :

� � �
� � � �

The fit parameters � and
�

are functions of
���

and
���

. This linear fit applies over a
wide range of

���
�
���

values. This functional form for � � � � is consistent with our observation of
a linear increase for small values of � , followed by this slope decreasing and the curve flattening
to a constant. In particular, note that

�����
� ��� � �

�
� , a constant for a given value of

���
and

���
.

Thus, the slope of this functional fit in Figure 5.13 yields the asymptotic value for � � � � . Figure
5.14 shows this dependence on a log scale.

�
� decreases with increasing

���
as expected.

If we hold � fixed and vary ! (the ratio of � to � ) we find that the dependence is not
monotonic. Figure 5.16 shows this unimodal behavior. This behavior may be explained by the
following reasoning. There are two kinds of suppression, deterministic and random, so-called de-
pending on whether the possible firing times overlap or not. Deterministic suppression decreases
with ! , but random suppression increases with ! . Thus, as ! is increased we first see an increase
as the deterministic suppression becomes less effective, and then see a decrease as random suppres-
sion becomes dominant and deterministic suppression is no longer much of a factor (and so cannot
decrease significantly further).
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,
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is varied.

����� RTT
� � � �

N(G) Figure�
�
� � � � � � � � � � � Fixed

��� � � ��� � � Linear 5.11�
�
� � � � � � � � � � � Fixed

��� � � ���#� � � � � � � ��
�
� � � � � � � � � � � Estimated

����� � ��� � � Linear 5.11�
�
� � Estimated � � ��� ��� ��� � � � � � � � � � ������

� ��� ��� � � � � � � �
constant 5.12� � � � � � � � Estimated � � ��� ��� ��� � � Linear 5.15

Table 5.3: Summary of asymptotic scaling in the tree topology
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in the binary tree, N(G) has improved scaling.

With
����� � , and

��� � � , � � � � grows linearly with � . In order to reduce this growth in
� � � � to a constant, while still retaining

����� � , as we did for the linear chain topology, we make���
a function of the delay from the source. The adaptation algorithm described in [76] results in

���
values that increase roughly linearly in



, the distance of a receiver from the source.

Here, we do not model the dynamics of the adaptation, but instead merely insert the
dependence on



directly. We consider several variants, with

���
increasing as



,


 �
, and

� 

.

Figure 5.17 shows the results of these simulations. We find that
���

needs to be “super-linear” in



to make scaling constant.

5.7 Concluding Remarks

In this Chapter, we used analysis and simulation to study the scaling behavior of global
loss recovery in SSTP. The SSTP loss recovery protocol is NACK-based and uses a randomized,
timer-based decentralized algorithm to reduce NACK implosion. We use the number of NACKs
� � � � generated in response to a loss, as a metric for scalability. The two protocol parameters,

� �
and

� �
, govern the deterministic and random delays in the firing of a NACK from a receiver. There is

a trade-off between low-latency loss recovery and the number of NACKs – in general, making these
parameters small leads to lower latency, but usually at the expense of poorer asymptotic scaling.
We study � � � � as a function of group size, � , for various protocol parameters, on a set of simple,
representative topologies — the cone, the linear chain, and the binary tree.

In the cone topology, we find that random backoff is the dominant reason for suppression
and scaling is linear. This linear scaling can be reduced by using a distribution that is dependent
on the group size. The cone models topologies in which receivers have similar round-trip time
estimates to the source. For the linear chain � � � � is between constant (when

� � � � � ��� � � ,
and RTT estimation is perfect), and logarithmic, when RTT is not estimated. In the tree, scaling is
between constant (when

��� � � � ��� � � , and RTT estimation is perfect), and linear, when RTT is
not estimated. For the linear chain we show that

����� 
 �
results in constant scaling even when
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����� � , where



is the one-way delay to the source. Similarly, for the binary tree,
�#���$
 �

results
in constant scaling.

We find that in topologies where deterministic suppression is effective in reducing the
number of duplicate NACKs, asymptotic scaling tends to a constant. For topologies in which ran-
domized suppression is mainly responsible for eliminating duplicates, asymptotic scaling is not
constant, e.g., in the cone topology and in the binary tree with � � � � , � � � � grows linearly.
We have shown, by studying the different, that the randomized timer equation used in slotting and
damping, provides us sufficient flexibility in selecting the level of latency that can be tolerated in
return for a reduced number of redundant control messages.

In conclusion, we have shown that there is a rich parameter space in the SSTP protocol
and that the best asymptotic scaling performance is sensitive to the choice of these parameters. We
expect our results to be useful in obtaining a better understanding of the reasons for SSTP’s scaling
properties in different situations, and in aiding the design and analysis of future modifications to
SSTP and similar protocols that use multicast transmission and suppression. Our results appear in
[115].
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Chapter 6

ITP: An Image Transport Protocol

response time n. An unbounded random variable
� #

associated with a given
TIMESHARING system and representing the putative time which elapses between

�
� ,

the time of sending a message, and
�$%

, the time when the resulting error diagnostic is
received.

— S. Kelly-Bootle
The Devil’s DP Dictionary

In this Chapter, we turn our attention to semantics of data delivery at the receiver —
in-order vs. out-of-order delivery and the impact it has on application performance. Because of its
dominance among today’s applications, we study JPEG image downloads using HTTP. Even though
we focus on the unicast case here, other multicast-based applications such as the MediaBoard [134]
also benefit from out-of-order data delivery. In general, understanding delivery abstractions is criti-
cal to designing an effective multicast transport protocols because TCP is not a feasible alternative
for transporting multicast data.

The remainder of this Chapter is organized as follows. Section 6.1 provides motivation
for choosing the specific case of images and the problems with using TCP as an image transport
protocol. In Section 6.2, we discuss our design goals for ITP and present empirical evidence in
favor of our approach and list the design goals for ITP. Section 6.3 describes various aspects of
the ITP protocol — out-of-order delivery, receiver-reliability, and congestion management. This
is followed by a discussion on applying ITP to JPEG transport in Section 6.4. In Section 6.5, we
present a performance evaluation that demonstrates the advantages of ITP over the traditional TCP
approach under a variety of conditions. Finally, we conclude this Chapter in Section 6.6.

6.1 Motivation

Images constitute a significant fraction of traffic on the World Wide Web, e.g., according
to a recent study, JPEGs accounted for 31% of bytes transferred and 16% of documents downloaded
in a client trace [46]. The ability to transfer and render images on screen in a timely fashion is an im-
portant consideration for content providers and server operators because users surfing the Web care
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about interactive latency. At the same time, download latency must be minimized without compro-
mising end-to-end congestion control, since congestion control is vital to maintaining the long-term
stability of the Internet infrastructure. In addition, appropriate reaction to network congestion also
allows image applications to adapt well to available network conditions.

The HyperText Transport Protocol (HTTP) [37] uses the Transmission Control Protocol
(TCP) [109] to transmit images on the Web. While the use of TCP achieves both reliable data
delivery and good congestion control, these come at a cost—interactive latency is often significantly
large and leads to images being rendered in “fits and starts” rather than in a smooth way. The culprit
is TCP, which is ill-suited to transporting latency-sensitive images over loss-prone networks where
losses occur because of congestion or packet corruption. When one or more segments in a window
of transmitted data are lost in TCP, later segments often arrive out-of-order at the receiver. In
general, these segments correspond to portions of an image that may be handled by the application
upon arrival, but the in-order delivery abstraction imposed by TCP holds up the delivery of these
out-of-order segments to the application until the earlier lost segments are recovered. As a result,
the image decoder at the receiver cannot process information even though it is available at the lower
transport layer. The image is therefore rendered in bursts interspersed with long delays rather than
smoothly.

The TCP-like in-order delivery abstraction is appropriate for image encodings in which
incoming data at the receiver can only be handled in the order it was transmitted by the sender. Some
compression formats are indeed constrained in this manner, e.g., the Graphical Interchange Format,
GIF [44] which uses lossless LZW compression [72, 142] on the entire image. However, while some
compression formats require fully reliable and in-order delivery, several others do not. Notable
examples of formats that encourage out-of-order receiver processing include JPEG [141, 104] and
the emerging JPEG2000 standard [67]. In these cases, a transport protocol that facilitates out-of-
order data delivery allows the application to process and render portions of an image as they arrive,
improving the interactivity and perceived responsiveness of image downloads. An application-
aware transport protocol enables the image decoder at the receiver to implement effective error
concealment algorithms on partially received portions of an image, further improving perceived
quality. In fact, just as there are benefits to tailoring the network protocol to suit image formats,
image compression formats too should be tailored for the underlying communication medium. This
is the basis of joint source/channel coding schemes. It is for such compression formats that we
design an application-aware transport protocol.

One commonly suggested approach to tackling this problem of in-order delivery is to
extend existing TCP implementations and its application programming interface so that received
data can be consumed out-of-order by the application. However, merely tweaking an in-order byte-
stream protocol like TCP without any additional machinery to achieve the desired effect is not
adequate because out of order TCP segments received by the application in this manner do not
correspond in any meaningful way to processible data units at the application level.

We propose the Image Transport Protocol (ITP), a transport protocol in which application
data unit (ADU) boundaries are exposed to the transport module, making it possible to perform out-
of-order delivery. Because the transport is aware of application framing boundaries, our approach
expands on the application-level framing (ALF) philosophy, which proposes a one-to-one mapping
from an ADU to a network packet or protocol data unit (PDU) [23].

In contrast to [23], ITP deviates from the TCP-like notion of reliable delivery and instead
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incorporates selective reliability, where the receiver is in control of deciding what is transmitted
from the sender at any instant. This form of reliability is appropriate for heterogeneous network
environments that will include a wide variety of clients with a large diversity in processing power,
and allows the client, depending on its computational power and available suite of image decoding
algorithms, to request application data that would benefit it the most. Furthermore, other image
standards such as JPEG2000 support region-of-interest (ROI) coding that allows receivers to se-
lect portions of an image to be coded and rendered with higher fidelity. Receiver-driven selective
reliability is an important for applications to benefit from this feature.

Despite the disadvantages of in-order delivery as far as interactivity is concerned, using
TCP has significant advantages from the viewpoint of congestion control. Any deployable transport
protocol must perform congestion control for the Internet to remain stable, which suggests that a
significant amount of additional complexity would have to be designed and implemented in ITP.
Fortunately, we are able to use the recently proposed Congestion Manager (CM) architecture [6, 7]
to perform stable, end-to-end congestion control, and invoke its API to schedule data transmissions.

In this Chapter, we describe the motivation, design, implementation, and evaluation of
ITP, an ALF-based image transport protocol. Our key contributions are as follows.

� We present the design of ITP, a transport protocol that runs over UDP, incorporating out-
of-order data delivery and receiver-controlled selective reliability. ITP can be used by any
application-level protocol, such as HTTP [10, 37] or FTP [110].

� We show how to tailor ITP for JPEG image transport, by introducing a framing strategy and
tailoring the reliability protocol by scheduling request retransmissions.

� We describe a receiver optimization enabled by ITP to interpolate a missing portions of an
image using a simple error concealment algorithm.

� We present the results of performance experiments across a range of network conditions con-
ducted using a user-level implementation of ITP. They demonstrate that the rate of increase
in PSNR with time is significantly higher for ITP compared to TCP-like delivery of JPEG
images.

6.2 Design Considerations

In this section, we discuss the key considerations that directed the design of ITP.

1. Support out-of-order delivery of ADUs to the application, while efficiently accommodating
ADUs larger than a PDU.
Our first requirement is that the protocol accommodate out-of-order delivery, but does so
in a way that allows the receiver application to make sense of the mis-ordered data units it
receives. In the pure ALF model [23], each ADU is matched to the size of a protocol data unit
(PDU) used by the transport protocol. This implies that there is no “coupling” between two
packets and that they can be processed in any order. Unfortunately, it is difficult to ensure that
an ADU is always well matched to a PDU because the former depends on the convenience
of the application designer and what is meaningful to the application, while the latter should
not be too much larger (if at all) than the largest datagram that can be sent unfragmented,



85

in order to minimize retransmission overhead in the event of a packet loss. This means that
there are times when an ADU is larger than a PDU, requiring an ADU to be fragmented by
the transport protocol for efficiency.

2. Support receiver-controlled selective reliability.
Our next design consideration addresses reliability. When packets are lost, there are two pos-
sible ways of handling retransmissions. The conventional approach is for the sender to detect
losses and retransmit them in the order in which they were detected. While this works well for
protocols like TCP that simply deliver all the data sequentially to a receiver, interactive image
transfers are better served by a protocol that allows the receiving application and user to have
a say in which losses are retransmitted from the sender, and in what order. For example, a
user should be able to express interest in a particular region of an image, causing the transport
protocol to prioritize the corresponding data over others. In general, the receiver knows best
what data it needs, is any, and therefore allowing it to control requests for retransmission is
best-suited to improving user-perceived quality.

3. Support easy customization for different image formats.
Our third design consideration is motivated by the observation that there are many differ-
ent image formats that can benefit from out-of-order processing, each of which may embed
format-specific information in the protocol. For example, the JPEG format uses an optional
special delimiter called a restart marker, which signifies the start of an independently proces-
sible unit to the decoder. Such format- or application-specific information should be made
available to the receiver in a suitable way, without sacrificing generality in the basic protocol.

The customizability of ITP borrows from lessons learned from the design of other application-
level transport protocols such as the Real-time Transport Protocol (RTP) [125]. In ITP, as
in RTP, a base header can be customized by individual application protocols, with profile-
specific extension headers incorporating additional information.

4. Application and higher-layer protocol independence.
While this work is motivated by interactive image downloads on the Web, we do not want to
restrict our solution to just HTTP. In particular, we do not want to change the HTTP specifi-
cation in any way and the goal is to replace HTTP/TCP with HTTP/ITP for image data.

5. Sound congestion control.
Finally, congestion-controlled transmissions are important for any deployable transport pro-
tocol on the Internet. But rather than reinvent complex machinery for congestion management
(a look at many of the subtle bugs in TCP congestion control implementations that researchers
have discovered over the years shows that this is a hard task [102]), we leverage the recently
developed Congestion Manager (CM) architecture [6]. The CM abstracts away all congestion
control into a trusted kernel module independent of transport protocol, and provides a general
API for applications to learn about and adapt to changing network conditions [7]. Our design
uses the CM to perform congestion control, with packet transmissions occurring only when
permitted by the CM via its API.
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Figure 6.1: The system architecture showing ITP, its customization for JPEG, and how HTTP uses
it instead of TCP for MIME type “image/jpeg” while using a conventional TCP transport for other
data types. All HTTP protocol messages are sent over ITP, not just the actual image data, which
means that ITP replaces TCP as the transport protocol for this data type.

6.3 ITP Design

In this section, we describe the design of ITP and the techniques used to meet the afore-
mentioned design goals. ITP is designed as a modular user-level library that is linked by the sender
and receiver application. The overall system architecture is shown in Figure 6.1, which includes
an example of an application protocol such as HTTP or FTP using ITP for data with MIME type
“image/jpeg” and TCP for other data. It is important to note that ITP “slides in” to replace TCP in
a way that requires no change to the specification of a higher-layer protocol like HTTP or FTP.

6.3.1 Out-of-order Delivery

One of the main departures of ITP from traditional transport protocols is its out-of-order
delivery abstraction. Providing such an abstraction at the granularity of a byte, however, would
make it hard for the application to infer what application data units a random incoming sequence of
bytes corresponds to. The application handles data in granularities of an ADU, so ITP provides an
API by which an application can send or receive a complete ADU. We now describe the mechanics
of data transfer through the sending and receiving ITP hosts.

The sending application invokes itp send() to send an ADU to the receiver. Before
shipping the ADU, ITP incorporates a header, shown in Figure 6.2 that includes an incrementing
ADU sequence number and ADU length. The sequence number and length of an ADU are used by



87

15

SY
N

A
C

K

R
E

Q

FI
N

U
nu

se
d

0 8 16 24

Sender’s RTO estimate (milliseconds)

Timestamp (microseconds)

Timestamp (seconds)

Fragment offset (bytes)

Length (bytes)

ADU sequence number

Flags Checksum

Ver Reserved

0 1 2 3 4 5 6 7 8

D
at

a

Figure 6.2: The 28-byte generic ITP transport header contains meta-data pertaining to each frag-
ment, as well as the ADU that the fragment belongs to, such as the ADU sequence number and
length, the fragment offset within the ADU, a sender timestamp, and the sender’s estimate of the
retransmission timeout.

the receiver to detect losses, perform reassembly within an ADU, and verify that the complete ADU
has arrived.

When a complete ADU arrives at the receiver, the ITP receiver invokes a well-known
callback function implemented by the application, called itp app notify(). In response, the
application calls an ITP library function itp read() to read the incoming ADU into its own
buffers, and returns control to ITP. This interaction is shown in Figure 6.3. The important point to
note is that this sequence of steps occurs when a complete ADU arrives at the receiver, independent
of the order in which it was transmitted from the sender.

Unfortunately, not all ADUs are small enough to fit in one PDU which is the maximum
unfragmented datagram on the path to the receiver. This requires that any ADU larger than a PDU
be fragmented into PDU-sized units before transmission. Using arbitrarily-sized ADUs as the gran-
ularity of loss recovery is inefficient. Consider for example an ADU transmitted by the transport
protocol that was fragmented by a lower layer for transmission, and exactly one of the fragments
was lost in transit. The receiver must ask for the entire ADU to be retransmitted if the unit of naming
and transmission by ITP is an ADU, thereby degrading protocol goodput. Rather than suffer per-
formance due to redundant retransmissions, ITP bridges the mismatch between network-supported
packet sizes and application-defined data units by breaking up an ADU into fragments no bigger
than the maximum transmission unit of the path and identifying each fragment by its byte-offset
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Figure 6.3: The sequence of operations when a complete ADU arrives at the ITP receiver.

and length within an ADU as well as the ADU sequence number.1 We emphasize that this is done
to avoid inefficiencies in retransmission, but is not exposed to the receiving application. As a result,
applications are not forced to limit their framing to network packet sizes, and incomplete ADU data
are not visible to them.

6.3.2 Reliability

One of the design goals in ITP is to put the receiver in control of loss recovery. This
suggests a protocol based on retransmission request messages sent from the receiver. In addition to
packet loss, ITP must reliably handle connection establishment and termination, as well as host fail-
ures and subsequent recovery without compromising the integrity of delivered data. We incorporate
TCP-like connection establishment and termination mechanisms for this.

Connection management

Although an important application of ITP is downloading images on the Web using HTTP,
we do not want to restrict all higher-layers to HTTP-like protocols where the client initiates the
connection. For example, when used by FTP, the server performs the active open rather than the
client.

We chose to emulate the three-way connection establishment procedure of TCP [128].
The initial sequence number chosen by both sides determines the ADU sequence space for each
transfer direction. We do not view the three-way handshake as a performance problem, despite the
extra round-trip that it entails; indeed, should this be a concern, it can be modified to allow data to

�
Path MTU discovery [89] can be used to determine this value.
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be piggybacked along with the establishment message.2

We also choose to mimic the FIN-ACK mechanism of TCP, transitioning into exactly the
same states as a terminating TCP (CLOSE WAIT for a passive CLOSE; FIN WAIT 1, optionally
followed by CLOSING or FIN WAIT 2, and then a TIME WAIT for an active one). As in TCP,
the active closer transitions from the TIME WAIT state to CLOSED after the 2MSL timeout. The
sender signals the last ADU in a transmission sequence by setting the FIN bit in the flags of the ITP
header. The receiver uses this to detect when all transmitted data items (of interest to the receiver)
have arrived and to terminate the connection.

We believe that the design choice of preserving the TCP connection establishment and
termination procedures are the right ones for ITP, given the combination of applications we would
like to support (all combinations of servers and clients performing active/passive opens and closes),
as well as the difficulties in designing robust connection establishment and termination procedures.
This decision allows us to be fairly certain of the correctness of the resulting design.

We do, however, address the significant problem of connections in the TIME WAIT state
at a busy server. The problem is that in most HTTP implementations, the server does the active close
rather than the client, which causes the server to expend resources and maintain the TIME WAIT
connections. This design is largely forced by many socket API implementations, which do not allow
applications to easily express a half-close.3 One recently proposed solutions to this in the context
of TCP is to use a “time-wait negotiation” between TCP peers at the start of a connection [33].

However, we solve this problem by providing a “half-close” call to the ITP API that allows
the client use it. When one side (e.g., an HTTP client, soon after sending a GET message) decides
that it has no more data to send, but wants to receive data, it calls itp halfclose()which sends
a FIN to the peer. Of course, retransmission requests and data ACKs continue to be sent. In the
context of HTTP, the TIME WAIT state maintenance is therefore shifted to the client, freeing up
server resources.

Loss recovery

All retransmissions in ITP occur only upon receipt of a retransmission request from the
receiver, which names a requested fragment using its ADU sequence number, fragment offset, and
fragment length. While many losses can be detected at the receiver using a data-driven mechanism
that observes gaps in the received sequence of ADUs and fragments, not all losses can be detected
in this manner. In particular, when the last fragment or “tail” of a burst of fragments transmitted
by a sender is lost, a retransmission timer is required. Losses of previous retransmissions similarly
require timer-based recovery.

One possible design is for the receiver to perform all data-driven loss recovery, and for
the sender to perform all timer-based retransmissions. However, this runs contrary to our goal of
receiver-controlled reliability because the sender has no knowledge of the fragments most useful to
the receiver. Unless we incorporate additional complex machinery by which a receiver can convey

�
We do not recommend this mode as it tends to make defense against denial-of-service attacks like SYN-floods hard

to handle (e.g., using SYN-cookies, which ITP can incorporate with little difficulty).
�

The shutdown(socket fd, how) call, with how set to 1 is supposed to cause a half-close, telling the peer that
no more data will be originated on the connection, but not all TCP implementations handle this correctly. Furthermore,
the Hosts Requirements RFC 1122 lists the half-close as a “MAY implement” option.
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to the sender what fragments it is interested in, the sender ends up retransmitting old, uninteresting
data on a timeout.

Our solution to this problem is to move timer handling to the receiver. If the receiver
detects no activity for a timeout duration, a retransmission request is sent. If no gaps are detected in
the received ADU stream, a retransmission request is sent for the next expected ADU, i.e., 1 + last
ADU sequence number received, thereby initiating recovery from a tail loss, if there was one. Since
the retransmission timer is always active until a FIN, this message is repeated periodically until the
receiver is ready to terminate.4

It is rather difficult for accurate round-trip time estimation to be performed at the receiver
when data flows from sender to receiver. Hence, we allow the sender calculate the retransmission
timeout (RTO) as in TCP with the timestamp option [60], and pass this RTO to the receiver in the
ITP header (Figure 6.2).

ITP also incorporates data-driven retransmission requests. To do this, the receiver main-
tains a maintains a list of incomplete and missing ADUs. When a fragment is received, missing
fragments or ADUs are detected by looking up the data structure. The receiver now has three tasks:

� Decide whether it is time to ask for the fragment.

� Decide how many fragments to ask for.

� If at least one fragment can be requested at this time, decide which fragments to request.

Two considerations dictate whether it is time to ask for a fragment. First, if a request has
already been made for the fragment, it should not be made again unless an RTO has elapsed since
the first request. The receiver logs the time of last request and ensures that a subsequent request is
sent only if the elapsed time is longer than an RTO.

Second, packets may get reordered on the Internet [101], and the receiver must guard
against asking for a reordered (but not lost) fragment. The approach in TCP is to wait for a threshold
number (three) of duplicate ACKs and retransmit the first unacknowledged segment. Unfortunately,
this does not work well when windows are small or when ADUs are small in size (as is often the
case for ITP applications). Our solution to this problem is motivated by the observation by Paxson
that a small delay before sending an ACK in TCP often catches reordered segments [103]. ITP
modifies this approach by adapting it to the transmission rate

�
(in fragments/sec) from the sender,

which it monitors using an exponentially-weighted moving average filter. The receiver waits for
a duration equal to � � � seconds before sending a request, during which reordered fragments may
arrive and cancel a pending retransmission request.

In our initial design, the receiver requested exactly one missing fragment on detecting
losses, even if more losses were detected. Our experiments after implementing this strategy revealed
a subtle interaction with selective reliability, which does not occur in TCP.

Consider the case when a timeout occurs and the congestion window at the sender is set to
1, as shown in Figure 6.4. A retransmission request from the receiver causes the sender to send one
request fragment. When this fragment is ACKed, congestion control causes the sender’s window to
grow to 2. The sender may have other old data that the receiver has not yet received, but because
all reliability is receiver-controlled, the sender cannot unilaterally retransmit old data. The sender

�

Note that this approach does not imply that an HTTP server ends up periodically probing the client asking if there is
any data after a GET of a URL. Once a half-close is received from the client, the server disables the timer.
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Figure 6.4: Retransmissions #1, #2, and #3 are transmitted before the next request is received by
the sender. Sending three requests in each request message keeps the “pipe” full.

therefore decides to send new fragments and use up its newly opened congestion window (slow
start), making timely loss recovery of other lost fragments difficult. The receiver therefore loses
the ability to order and prioritize a particular set of retransmissions before any other new data is
received.

This problem is solved if the receiver sends at least three retransmission requests each
time a loss is detected, assuming that many losses have occurred and the receiver is interested in
recovering them. This allows the sender to build up an ordered list of pending retransmissions and
use up a newly opened congestion window for retransmissions requested by the receiver rather than
new data. Every time a loss is detected, up to three fragments are potentially capable of being
transmitted from the sender before the next retransmission request reaches it. The number three is a
consequence of TCP-style slow start implemented in the CM.

The most difficult part in loss recovery is to decide which fragment to request at any time
among the missing ones. This is difficult because of the tension between application-specificity
and generality. We would like to put the application in control of what to request, but save each
application the trouble of writing the complex loss detection code. Furthermore, we would like
to provide a reasonable default behavior to handle applications that do not care to customize their
reliability schedules.

ITP provides a simple default scheduling algorithm for retransmission requests that sim-
ply requests fragments from all the missing ADUs from the most recent one to the least recent,
subject to the above conditions of not requesting them too soon. However, it also allows application-
specific customization of reliability by extending the base header, as described in Section 6.4.2 for
JPEG. This allows a JPEG receiver to request only fragments from ADUs that it is currently inter-
ested in, based on the decoding algorithm it implements.

ITP’s receiver-controlled selective reliability differs in significant ways from WebTP,
which does share similar reliability goals. For example, WebTP uses a fully-qualified URL to
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PROCESSRXMITREQ(fragment)
Send requested fragment via cm send();
InformCM();

INFORMCM()
now � current time;
if (now

�
last activity � timeout duration)

cm update( � � � , CM PERSISTENT, � � � );
else

cm update( � � � , CM TRANSIENT, � � � );

Figure 6.5: How the ITP sender handles a retransmission request.

identify an ADU similar to the work reported in [113], while ITP uses a simpler fixed-length ADU
sequence number but disseminates a mapping at the beginning of a connection that enables cus-
tomization. ITP uses the simpler strategy of sending the RTO in the packet header to the receiver
compared to WebTP, which uses estimates the mean inter-arrival packet time5 and sending a re-
transmission request if no packet arrived in some deviation from this. ITP incorporates ideas that
can be used by a general selectively reliable protocol, but our primary contributions are its cus-
tomization and evaluation in the context of image transport. The scheduling algorithm presented in
Section 6.4 for JPEG-ITP retransmission requests shows how a receiver can customize the retrans-
mission schedule.

6.3.3 Using the Congestion Manager

ITP relies on the CM for congestion control, using the CM API to adapt to network con-
ditions and to inform the CM about the status of transmissions and losses [7]. Since ITP reliability
is receiver-based, there is no need for positive ACKs from the receiver to the sender for reliability.
ACKs from the receiver are solely for congestion control and estimating round-trip times. The CM
requires the cooperation of the application in determining the state of the network. By informing
the ITP sender about the status of transmissions, an ITP ACK allows the sender to update CM state.
When the ITP sender receives an ACK, it calculates how many bytes have cleared the “pipe” and
calls cm update() to inform the CM of this.

When a retransmission request arrives at the sender, the sender infers that packet losses
have occurred, attributes them to congestion (as in TCP), and invokes cm update() with the
lossmode parameter set to CM TRANSIENT, signifying transient congestion. In a CM-based
transport protocol where timeouts occur at the sender, the expected behavior is to use cm update()
with the lossmode parameter set to CM PERSISTENT, signifying persistent congestion. In ITP,
the sender never times out, only the receiver does. The sender only sees a request for retransmission
arriving after a timeout at the receiver, so when a retransmission request arrives, it needs to deter-
mine if that occurred after a timeout or because of out-of-sequence data. We solve this problem
by calculating the elapsed time since the last time there was any activity on the connection from

�

We believe this is less well-understood than our approach, and note that the congestive collapse episodes of the
mid-1980s were largely because of bad retransmission strategies.
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the peer, and if this time is greater than the retransmission timeout value, then the CM is informed
about persistent congestion. Figure 6.5 shows what the ITP sender does when it receives a request
for retransmission.

6.3.4 Design Summary

In summary, ITP provides out-of-order delivery with selective reliability. It handles all
combinations of active/passive opens and closes by server and client applications by borrowing
TCP’s connection management techniques. Application-level protocols like HTTP do not have to
change their specifications to use ITP.

ITP differs from TCP in the following key aspects. It does not force a reliable in-order
byte stream delivery and puts the receiver in control of deciding when and what to request from the
sender. It uses a callback-based API to deliver out-of-order ADUs to the application. ITP includes
a “half-close” method that moves the TIME WAIT maintenance to the client in the case of HTTP.
In TCP the sender detects re-ordered segments only after three duplicate ACKs are received, while
in ITP, receivers detect re-ordering based on a measurement of the sending rate. We emphasize
that ITP has a modular architecture and relies on CM for congestion control. ACKs in ITP are
used solely as feedback messages for congestion control and round-trip time calculation, and not
for reliability.

6.4 JPEG Transport using ITP

In this section, we discuss how to tailor ITP for transmitting JPEG images. JPEG was
developed in the early 1990s by a committee within the International Telecommunications Union,
and has found widespread acceptance for use on the Web. The compression algorithm uses block-
wise discrete cosine transform (DCT) operations, quantization, and entropy coding [104]. JPEG-
ITP is the customization of ITP by introducing a JPEG-specific framing strategy based on restart
markers and tailoring the retransmission protocol by scheduling request retransmissions.

6.4.1 Framing

The current model for JPEG image transmission on the Internet is to segment it multiple
packets. However, JPEG uses entropy coding, and the resulting compressed bitstream consists of a
sequence of variable-length code words, and packet losses often result in catastrophic loss if pieces
of the bitstream are missing at the decoder. Arbitrarily breaking an image bitstream into fixed-size
ADUs does not work because of dependencies between them.

However, JPEG uses restart markers to allow decoders to resynchronize when confronted
with an ambiguous or corrupted JPEG bitstream, which can result from partial loss of an entropy
coded segment of the bitstream. The introduction of restart markers helps localize the effects of
the packet loss or error to a specific sub-portion of the rendered image. This segmentation of the
bitstream into independent restart intervals also facilitates out-of-order processing by the application
layer. The approach used by JPEG to achieve loss resilience provides a natural solution to our
framing problem.

When an image is segmented into restart intervals, each restart interval is independently
processible by the application and naturally maps to an ADU. The image decoder is able to decode
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Figure 6.6: JPEG-ITP maintains a mapping of restart intervals to ADU sequence numbers.

and render those parts of the image for which it receives information without waiting for packets to
be delivered in order. The base ITP header is extended with a JPEG-specific header shown in that
carries framing information, which includes the spatial position of a 2-byte restart interval number.

Our implementation of JPEG-ITP uses 8-bit gray-scale images in the baseline sequential
mode of JPEG. We require that the image server store JPEG images with periodic restart markers.
This requirement is easy to meet, since a server can easily transcode offline any JPEG image (using
the jpegtran utility) to obtain a version with markers. When these markers occur at the end of
every row of blocks, each restart interval corresponds to a “stripe” of the image. These marker-
equipped bistreams produce exactly the same rendered images as the original ones when there are
no losses. Since JPEG uses a blocksize of 8x8 pixels, each restart interval represents 8 pixel rows
of an image. We use the sequence of bits between two restart markers to define an ADU, since any
two of these intervals can be independently decoded. Our placement of restart markers achieves the
effect of rendering an image in horizontal rows.

6.4.2 Scheduling

Figure 6.6 shows the key interfaces between ITP and JPEG-ITP, and between JPEG-ITP
and the decoder. ITP handles all fragments and makes only complete ADUs visible to JPEG-ITP.
To preserve its generality, we do not expose application-specific ADU names to ITP. Thus, when
a missing ADU needs to be recovered by the decoder, JPEG-ITP needs to map the restart interval
number to an ITP ADU sequence number. To do this, the JPEG-ITP sender reliably transmits this
mapping as the first ADU of the connection, before transmitting the image ADUs. This name map
is used to schedule ITP retransmission requests.

ITP maintains a priority list of the retransmission schedule by exporting an asynchronous
API function itp get adu() that customized protocols like JPEG-ITP and applications can use
to inform ITP of the desired ADU. ITP uses this priority information to schedule requests for miss-
ing fragments from these ADUs ahead of others. In addition, JPEG-ITP exports an API function to
the decoder that allows the latter to specify restart intervals that must be prioritized during recovery,
e.g., if the decoder uses error concealment as in Section 6.4.3, this is used to preferentially request
ADUs that have not been interpolated from the existing partial image.



95

6.4.3 Error Concealment

Out-of-order delivery allows the JPEG decoder to refine a partial image using error con-
cealment based on interpolation techniques. Portions of the image corresponding to the received
ADUs are decoded and rendered. Before rendering, a post-processing step is applied to the im-
age to conceal lost stripes. Error concealment exploits spatial redundancy in images and aims to
increase the perceptual quality of the rendered image.

Each missing pixel value is the result of a linear interpolation, or average, of its neighbors.
This step is applied to all missing restart intervals at the receiver. Therefore, in 2-D, the missing
pixel

� � � � is given by: � � � � � � � � � � � � � � 	 � � � � � � � � � � � � � � � 	 �
� (6.1)

The boundary conditions are determined by the pixel values of neigh-
boring blocks. Using the lexicographic ordering of pixels in a block, � �

� � % � % � � % � � � � � � � % � � � �
�
� � � % � � � � � � � � � � � �

�
� � � � � � � � � , the estimate of the missing block may

be computed as
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and � is a 8x8 tri-diagonal matrix formed from
� �
�
� �
�
� � .� is a vector that represents the boundary conditions imposed by the pixels � � � � 
 � � � ,

� 
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� � � � � � � � � � � � � � � � � � �
Other sophisticated error concealment techniques have been proposed in the literature,

especially for video. For example, in [120], the authors propose the use of a Markov Random Field
image model and optimally interpolate the missing pixels. The emphasis of our scheme, however, is
on simplicity and on maximizing interactivity, rather than precision, for which we find empirically
that our simple averaging strategy seems to work well.
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6.4.4 Other Formats

We have described a simple framing strategy and further refinement using error conceal-
ment scheme for JPEG over ITP. The same techniques also extend to progressive JPEG images.
In progressive JPEG, the quantized DCT coefficients corresponding to each block are divided into
a series of scans. These scans may either represent different frequencies (low to high), or dif-
ferent bit-planes of the quantized coefficients (most significant to least significant bits). A coarse
representation of the image is rendered with the receipt of the first scan, which is successively re-
fined as subsequent scans arrive. Each scan can be segmented into restart intervals, which results
in the ability to process and render out-of-order within a scan, leading to quicker response times
and interactivity. Error-concealment can be carried out in a multi-resolution manner by performing
concealment within one scan at a time.

Similar techniques are also possible for transmission of JPEG2000, which is a recent pro-
posal for wavelet-based image coding scheme that results in higher compression ratios and better
fidelity. The standard supports several features such as layered coding and “region of interest” (ROI)
coding. Designing transport support for ROI coding requires customized scheduling of retransmis-
sion requests at the receiver, which is provided by ITP.

6.5 Performance Evaluation

In this section, we evaluate our implementation of ITP under a variety of network loss
rates. Our implementation of ITP performs out-of-order data delivery at the receiver and uses the
averaging method to interpolate missing packets at the receiver. We have customized ITP for JPEG
transport where the images contain restart intervals. We have not implemented nor evaluated other
formats We first discuss the performance metrics we use and present the results of our evaluation.

6.5.1 Peak Signal-to-Noise Ratio (PSNR)

Image quality is often measured using a metric known as the PSNR, defined as follows.
Consider an image whose pixel values are denoted by

� � � � � � and a compressed version of the same
image whose pixel values are


� � � � � � . The PSNR quality of the compressed image (in dB) is:

PSNR
� � � � ����� � % � � �

�
� 
 
 � � � � � � � 
� � � � � � 
 
 � (6.4)

In our experiments, we use PSNR with respect to the transmitted image as the metric to measure the
quality of the image at the receiver. Note that PSNR is inversely proportional to the mean-square
distortion between the images, which is given by the expression in the denominator of Equation 6.4.
When the two images being compared are identical, e.g., at the end of the transfer when all blocks
from the transmitted image have been received, the mean-square distortion is � and the PSNR be-
comes � . We recognize that PSNR does not always accurately model perceptual quality, but use it
because it is a commonly used metric in the signal processing literature.
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Figure 6.7: PSNR vs. Time for ITP and TCP-like transports. The quality of the image (as measured
by PSNR) is identical in all three scenarios at the start and at the end of the transfer. However, the
sample paths differ — the best performance is seen with ITP optimized with error concealment,
while TCP shows the poorest performance. ITP shows a steady improvement in quality, and is
therefore perceptually superior for interactive applications such as the Web.

6.5.2 Experimental Results

We measure the evolution of instantaneous PSNR as the JPEG image download pro-
gresses. When JPEG-ITP receives a complete restart interval from ITP, it is passed to the decoder.
The decoder output is processed to fill in missing intervals using the error concealment step ex-
plained earlier and the image is updated. We measure PSNR with respect to the original JPEG
image transmitted under three scenarios: (i) when TCP-like in-order delivery is enforced, (ii) when
out-of-order delivery is allowed, and (iii) when error concealment is performed on the mis-ordered
data units.

Figure 6.7 shows the results of this experiment under a variety of loss rates. We use
a simple Bernoulli loss model where each packet is dropped at the receiver with an independent
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probability given by the average loss rate.
We find that across a range of loss rates between 5% and 30%, TCP-like delivery causes

the quality of the rendered image to remain low for extended intervals of time. In comparison, ITP
with out-of-order delivery shows a smoother evolution of PSNR during the transfer. In addition,
the PSNR of the ITP-delivered image is superior to that delivered by TCP while the transfer is in
progress, becoming identical only at the end of the transfer, as expected. This smooth evolution
of quality makes ITP better suited for interactive image downloads. When error concealment is
applied as an added optimization on the partial image, we find that the benefits are between 2–8 dB.
In combination, the two techniques outperform TCP by 10–15 dB.

Figure 6.8 shows the progression of displayed images for the three different scenarios and
Figure 6.9 shows the corresponding PSNR values. Starting with almost identical image snapshots
at � � , the ITP-delivered images (with and without error concealment) show steady improvement
in quality relative to the TCP-delivered snapshot. At

� � � , the ITP image is 3.3 dB and a further
improvement of 1.3 dB is achieved through interpolation on the partial image. As we can see from
the image, the benefits of interpolation are greater when more of the image is available, which
further strengthens the case for out-of-order delivery in ITP. The ITP images continue to improve
and at

�
� � , they are 12 dB (without error concealment) and 20 dB (with error concealment) better

than the corresponding TCP-delivered images. We also conduct a transfer across a 1.5 Mbps link
to study the effect of receiver scheduling. Here, the receiver prioritizes requests for data items that
cannot be concealed using interpolation.

In summary, we find that the rate of increase in PSNR with time is significantly higher for
ITP compared to TCP-like delivery.

6.6 Concluding Remarks

In this Chapter, we observe that the reliable, in-order byte stream abstraction provided
by TCP is overly restrictive for richer data types such as image data. Several image encodings
such as sequential and progressive JPEG and JPEG 2000 are designed to handle sub-image level
granularities and decode partially received image data. To improve perceptual quality of the image
during a download, we proposed a novel Image Transport Protocol (ITP). ITP uses an application
data unit (ADU) as the unit of processing and delivery to the application by exposing application
framing boundaries to the transport protocol. This enables the receiver to process ADUs out of
order. ITP can be used as a transport protocol for HTTP and is designed to be independent of the
higher-layer application or session protocol. ITP relies on the Congestion Manager (CM) to perform
safe and stable congestion control, making it a viable transport protocol for use on the Internet today.

We have shown how ITP is customized for specific image formats, such as JPEG. Out
of order processing facilitates effective error concealment at the receiver that further improve the
download quality of an image. We have implemented ITP as a user-level library that invokes the
CM API for congestion control. We have also presented a performance evaluation demonstrating
the benefits of ITP and error concealment over the traditional TCP approach, as measured by the
peak signal-to-noise ratio (PSNR) of the received image.

In summary, ITP provides the basis for a general purpose selectively reliable unicast trans-
port protocol that can be applied to diverse data types. Our design and implementation provide a
generic substrate for congestion-controlled transports that can be tailored for specific data types.
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Figure 6.8: Snapshots of the displayed image with a TCP-like transport (first row), with ITP (second
row), and with ITP enhanced with error concealment (last row) at 10% loss rate. The entire transfer
of the 184 KB image takes

� � � � � � to complete.
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Figure 6.9: PSNR corresponding to the snapshots shown in Figure 6.8. Starting at almost identical
image snapshots at � � , the ITP image (with and without error concealment) progress steadily in
quality, while the TCP-delivered image only catches up close to completion time.
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Figure 6.10: When receiver request scheduling takes into consideration those “stripes” that cannot
be interpolated, the quality of the rendered image can be improved by 5–15 dB.
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Even though we have studied the specific case of unicast image transfer, the lessons learned here
are especially relevant and applicable to multicast transport as well.
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Chapter 7

libsstp: A User-level Transport Protocol
for Interactive Multicast Applications

Those parts of the system that you can hit with a hammer (not advised) are called
hardware; those program instructions that you can only curse at are called software.

— Anonymous

In this Chapter we describe our implementation of libsstp, which is user-level library that
implements our transport protocol framework for multicast applications. Libsstp is intended as a
vehicle for research and experimentation on issues in multicast transport such as loss recovery, data
naming, data consistency, and congestion control. This Chapter proceeds as follows. Section 7.1
describes the software architecture and implementation of libsstp and its simple yet powerful pro-
gramming interface. We discuss the different applications in Section 7.2, ranging from an informa-
tion dissemination tool to a controller for a special effects video processing system running on a
network of workstations. Finally, we conclude this Chapter in Section 7.3.

7.1 Libsstp Software Architecture

The software architecture of libsstp is shown in Figure 7.1 and consists of the following
main components. We now describe the two main pieces: the core SSTP protocol framework and
the event subsystem.

The SSTP protocol piece is responsible for data naming and name announcement which
are done using the SNAP protocol as discussed in Chapter 4. libsstp runs over UDP and incorporates
the basic slotting and damping algorithm for limiting receiver feedback. It provides “local recovery”
to limit the scope of request and repair packets in an attempt to reduce the amount of network traffic
sent to the global scope in a large session. Libsstp also provides the necessary mechanisms to
traffic shape the local data sources in a session by rate limiting them. The limiting rate is controlled
by the application through hooks provided in the interface. It is conceivable that a congestion
control algorithm that determines “bottleneck” network bandwidth could automatically tune the
transmission rate to avoid excessive packet loss. Libsstp uses application callbacks for significant
network events occur to facilitate selective retrieval of specific data items by the application.
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The libsstp implementation is a user-level library and is composed of about 10,000 lines
of C and C++ code. Libsstp provides a C programming interface, as well as a tcl command inter-
face. It is implemented as an event-based library and plugs into any event system (e.g., the Tcl/Tk
toolkit [95]) via a generic event API that allows handlers for timer and input/output events to be reg-
istered. We use events to implement application callbacks that provide the appropriate hooks for the
application to tailor its behavior. The event API is shown in Figure 7.1.5 and allows an application
to register and de-register handlers for network and I/O events.

In the remainder of this section, we describe the modules within libsstp and the relevant
application interfaces.

$SSOLFDWLR � ,QWHUIDFH$SSOLFDWLR � ,QWHUIDFH

(YHQ � VXEV\VWHP(YHQ � VXEV\VWHP
H�J� � 7FOH�J� � 7FO
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��VWH � ORFD � UHFRYHU\ � HQFU\SWLRQ��VWH � ORFD � UHFRYHU\ � HQFU\SWLRQ

1HWZRUN1HWZRUN

$SSOLFDWLR � H�J� �$SSOLFDWLR � H�J� � PEPE � PIWS �� PIWS � ZHEFDVWZHEFDVW
LFDVWHU � PEY� � I[BFWOLFDVWHU � PEY� � I[BFWO

1HWZRUN

(YHQW(YHQW ,QWHUIDFH,QWHUIDFH

Figure 7.1: Software architecture of libsstp, our user-level library that implements the soft state-
based transport protocol.

The core protocol functions are divided into five main categories: source, session func-
tions that allow the application to manipulate the SSTP session and source objects; data and callback
functions, that affect the data path and assist the receiver in performing selective reliability; as well
as debugging functions.

7.1.1 Session Object

The session object represents an SSTP session specified using a multicast group address,
from the range 224.*.*.* — 239.*.*.*, the send and receive UDP port numbers, and a
TTL to limit the scope of the session. An application process may simultaneously create and use
multiple SSTP sessions, and each session is uniquely identified within the application process by a
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32-bit session ID of type sstp session t. The following code shows the syntax of the functions
used to create, reset and delete a session object, and to manipulate the amount of session bandwidth
allocated to local sources.

sstp_session_t sstp_create_session(u_int32_t addr, u_int32_t sport,
u_int32_t rport, u_int32_t ttl);

void sstp_destroy_session(sstp_session_t sess);

int sstp_reset_session(sstp_session_t sess, u_int32_t addr,
u_int32_t port, u_int32_t ttl);

void sstp_set_session_bandwidth(sstp_session_t sess, int bps);

int sstp_get_session_bandwidth(sstp_session_t sess);

sstp create session creates a new session on the multicast channel given by
addr. sport and rport are the send and receive addresses respectively. The default ttl
is 15. The function returns an sstp session t handle for this session, or returns NULL if
an error occurred in creating a session with the specified addr, sport, rport, and ttl.
sstp destroy session destroys an existing session sess. sstp reset session resets
an existing SSTP session to use a new multicast group. sess is a token for the session that was
returned by a call to sstp create session.

The session bandwidth functions control the session bandwidth parameter in lib-
sstp. This parameter is used within libsstp to traffic shape messages in this session using the leaky
bucket algorithm. The default bandwidth is set to 128 kbps.

If the application hands a large ADU to libsstp, it is appropriately chunked into smaller
transmission units of at most MTU-sized PDUs to avoid the redundant retransmission problem that
arises when we rely on IP fragmentation and reassembly. We use a MTU of 1408 bytes, which is
sufficiently small to cover most commonly used link layer technologies, since automatic path MTU
discovery is ill-defined for multicast destinations, and there are no known mechanisms for perform-
ing this in a scalable manner. However, many applications including the MediaBoard generate a
large number of small data packets. For example, each segment of a multi-segment scrawl is trans-
mitted as a separate ADU. An application may be allowed to buffer and delay transmission until a
MTU-sized packet-worth of data is available for transmission, even when the required bandwidth is
available through the leaky bucket. Libsstp allows the application to control the mode of buffering
and transmission to achieve this using the delay until full packet flag, as shown below.
Using the buffered mode may increase the application’s perceived latency at the receiver.

int sstp_delay_until_full_packet(sstp_session_t sess, int flag);
int sstp_get_delay_until_full_packet(sstp_session_t sess);

An application uses these functions to request that ADUs be buffered until a full packet’s
worth of ADUs are available for transmission. This function returns the original state of the
delay until full packet flag before the call to the function. When the flag is reset to zero,
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any previously buffered packets are immediately sent out. Typically, an application will set the flag,
invoke sstp send a number of times, and reset the flag to its original value:

int save = sstp_delay_until_full_packet(sess, 1);
sstp_send(...);
sstp_send(...);
/* ... */
sstp_delay_until_full_packet(sess, save);

sstp get delay until full packet retrieves the current value of the flag without changing
any internal state.

7.1.2 Source Object

The SSTP session object is responsible for all transmissions and network-related func-
tionality. Each session contains one or more SSTP source objects that represent data sources. For
example, the MediaBoard application may have one source object that represents the local user’s
drawing operations and one source object each for every other sender in the session. The namespace
is structured as a hierarchy of nodes, each of which has a path name as well as a unique descriptor
returned to the application when it is created using sstp calloc.

sstp_source_t sstp_create_source(sstp_session_t session,
const char *label);

u_int32_t sstp_calloc(sstp_source_t source, unsigned int parent,
const unsigned char *node_name,
int name_len);

sstp create source creates a new source within session. label is an alphanu-
meric string supplied by the application from which a unique 64-bit internal source identifier is
derived using MD5 [119] as a one-way hash function. The function returns an sstp source t
handle for the source within the session. A session may have multiple sources, each with a different
label. The internal identifier of each source is unique, time invariant and location independent. It
depends only on the unique label provided by the application. The function returns NULL if a local
source with the same label already exists, or if allocation has otherwise failed.

sstp calloc allocates a SNAP node within the hierarchical namespace of source
source, and returns a descriptor to the node within source’s namespace. parent is the descriptor of
the parent node of the newly created node, and node name is a buffer containing the application-
defined name or description of the newly created node. For example, in webcast, documents may be
described by their respective URLs. Alternatively, applications may use the

�
attribute, value � con-

vention to describe an ADU. name len is the length in bytes of the description in the node name
buffer.

7.1.3 Data Path

An application uses the function sstp send, shown in in the code below to send data.
The data is named using the node descriptor returned from an earlier call to sstp calloc. The
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send function also takes application-specific information, including an application-level timestamp
and an ADU type.

unsigned int sstp_send(sstp_source_t source, unsigned int nid,
unsigned char *data, int len,
const sstp_adu_info *info);

typedef struct sstp_adu_info {
unsigned char type;
ntp64 timestamp;

};

typedef struct ntp64 {
unsigned int upper; /* more significant 32 bits */
unsigned int lower; /* less significant 32 bits */

} ntp64;

sstp send attempts to send len bytes from the data buffer from node nid within the
namespace of source. If info is not NULL, it points to an sstp adu info structure that is
used to fill the appropriate fields of the SSTP ADU header. If this parameter is NULL, the li-
brary uses default zero values. If the delay until packet full flag is set, the data is merely
copied into a packet buffer, but not immediately transmitted. Transmission occurs when the current
packet buffer has been filled to its maximum capacity (determined by the MTU). When the packet
buffer is filled, it joins the tail of the SSTP transmission queue. All SSTP transmissions are rate-
controlled using a leaky bucket with a configured rate. This rate is presently manually configured
using sstp set session bandwidth, but may also be used in conjunction with a multicast
congestion control algorithm. sstp send returns immediately the sequence number of the ADU
within nid, and the data buffer must be freed by the caller. Application-specific ADU type infor-
mation as well as a 64-bit NTP timestamp are also provided to SSTP and transported in the ADU
headers.

7.1.4 Application Callbacks

Libsstp provides two important callbacks that notify the application of significant pro-
tocol events. sstp recv notifies the application when data is available to the application and
sstp should recover asks the application if the current loss needs to be repaired. When the
transport “layer” receives a request for retransmission, the application is in turn requested for the
relevant data through the callback sstp read adu. These functions are explained below.

void sstp_recv(sstp_source_t source, unsigned int nid,
unsigned int seqno, const unsigned char *data,
int len, const sstp_adu_info *info);

int sstp_should_recover(sstp_source_t source, unsigned int nid,
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unsigned int ss, unsigned int es);

void sstp_read_adu(sstp_source_t source, unsigned int nid,
unsigned int seqno, unsigned char **data_ptr,
unsigned int *len_ptr, sstp_adu_info *info,
sstp_free_proc *free_proc_ptr);

sstp recv is an application-defined handler invoked when a complete ADU is received
by the session. source is the local incarnation of the original source of this data, nid, the ID
of the node to which this ADU belongs, seqno, sequence number of this ADU within nid. The
ADU occupies the first len bytes of the buffer data. Buffering transmitted ADUs is the responsi-
bility of the application and ADUs are evicted from the libsstp buffers once they are handed to the
application. Further access to data is obtained through the application using sstp read adu. The
application may decide to discard or spool to disk some application data from its memory buffers
depending on how much space it has available for buffering. If spooled to disk, sstp read adu
provides an easy way to access it.

sstp read adu is an application-defined handler invoked when a repair request is re-
ceived and data must be transmitted in response. source refers to source object corresponding to
the original source of this data and nid, the ID of the node in the repair request. seqno is the se-
quence number of the requested ADU within nid. On return, the buffer pointed to by data ptr
contains the data and the length of the data is in len ptr. The application also returns a pointer
to a free function via free proc ptr to release the data buffers once the retransmission has oc-
curred. In addition, the application can fill in the sstp adu info structure pointed to by info
with appropriate values for the ADU header.

sstp should recover is an application-defined handler invoked when a loss is de-
tected. ss and es define the range of lost ADUs within nid in the transmission from source.
The function returns 0 if the loss is to be ignored, or 1 if recovery is required.

7.1.5 Event Handling

Libsstp is an event-based system with a single execution stream. Here, the application and
protocol register interest in events — for example, the protocol may register interest by specifying
a handler function for the arrival of packet on the control port. The event loop waits for events and
when the specified event occurs, the corresponding event handler is invoked. Since event handlers
are not preempted in this system, it is best suited for handlers that are relatively short-lived. The
main drawback of using events in place of threads is that it does not achieve true processor concur-
rency. However, if end host performance is not a bottleneck, events provide a convenient alternative
to threads as a means of structuring network applications.

7.2 Libsstp Applications

In this section, we describe some applications that have been developed using libsstp. The
libsstp interface and internals have vastly improved based on the experience gained from developing
real-world applications.
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#include <sstp-event.h>
int sstp_create_timer_handler(milliseconds, proc, clientData);
void sstp_delete_timer_handler(token);

int milliseconds (in)
How many milliseconds to wait before invoking proc.

TimerProc *proc (in)
Procedure to invoke after milliseconds have elapsed.

void* clientData (in)
Arbitrary one-word value to pass to proc.

int token (in)
Token for previously-created timer handler (the return value from some previous call to
create timer handler).

void sstp_create_file_handler(fd, mask, proc, clientData);
void sstp_delete_file_handler(fd);

int fd (in)
Unix file descriptor for an open file, network socket or device.

int mask (in)
Conditions under which proc should be called: OR-ed combination of READABLE,
WRITABLE, and EXCEPTION.May be set to 0 to temporarily disable a handler.

FileProc *proc (in)
Procedure to invoke whenever the file or device indicated by file meets the conditions speci-
fied by mask.

void* clientData (in)
Arbitrary one-word value to pass to proc.

Figure 7.2: The libsstp API to register and de-register events.
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MediaBoard
MediaBoard is a distributed shared drawing tool intended for use in online collaborative set-
tings in conjunction with audio and video applications [133]. It was inspired by the LBL
whiteboard tool wb [63, 79], which was the original context in which the SRM timer al-
gorithms were designed. While MediaBoard is similar to wb in its basic functionality, it
improves it in two key aspects. First, in wb, the application and transport protocol were com-
mingled in an inseparable manner. Second, the wb data representations were based on an
obsolete graphics package that used the PostScript language, making it unsuitable for further
extension and experimentation. The MediaBoard design separates the application function-
ality from the underlying transport protocol invoked using the well-defined libsstp API. Me-
diaBoard was the first SSTP application and its design proved to be an invaluable research
vehicle to test the concepts of application-level framing and selective reliability in a real con-
text and provide critical feedback during the design of libsstp as well as its API. MediaBoard
internally uses both bitmap and structured representations of data and relies on the Tk toolkit
for rendering and manipulating graphics, In addition, because of its persistent data model, in
which all drawing operations are stored (either in memory or on disk), the MediaBoard also
allows the user to “time travel” by rewinding and playing back drawing operations. This al-
lows the end user to view different snapshots during the evolution of the canvas through time.
MediaBoard also attempts to enhance the feeling of “tele-presence”, i.e, the feeling that all
distributed users are present in the same room, by providing tool tips as well as the ability to
follow an active user.

MediaBoard uses a 2-level namespace hierarchy in which the first level is used to rep-
resent each page in the drawing board and the subsequent level represents the drawing
operation within the page. A later version of MediaBoard (version 2.0) takes further
advantage of libsstp and its selective retransmission features. Here, pages currently in
view are reliably recovered by the receiver to provide the user with enhanced interactivity.
This tool is available for download along with the rest of the main MASH distribution at
http://www-mash.cs.berkeley.edu/mash/software/download.html.

Infocaster
Libsstp has been used to develop a periodic information dissemination tool called infocaster
[143]. The infocaster is used to disseminate stock quotes information by periodically trans-
mitting to the infocaster channel. The stock server schedules different update periods for
different stock quotes, depending on the level of trading activity. Infocaster clients only care
for the most current quote information which they receive and display. They request a retrans-
mission of lost data only if it is expected to reach the receiver before the subsequent update
from the sender. The loss recovery algorithm in infocaster is receiver-driven and the clients
uses measured application-level statistics such as the average information update period as
well as network loss conditions to decide whether to schedule a retransmission request for
the lost data. This allows infocaster clients to conserve bandwidth that would otherwise be
used to retrieve a “stale” version of the data. Infocaster uses libsstp’s multicast distribution
mechanism and loss recovery machinery for efficient information dissemination. It achieves
tunable receiver behavior through libsstp’s application callback interface.

Reliable Multicast Proxies
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One alternative to end-to-end congestion control and application adaptation for reliable mul-
ticast applications in highly heterogeneous environments is to use application-level gateways
or proxies [18]. A Reliable Multicast Proxy (RMX) may be deployed when there is a large
discontinuity in network conditions, for example, when handheld PDA devices are connected
to the rest of the high speed Internet via low-bandwidth lossy wireless links. In this case, the
wireless RMX participates in a global session and on behalf of the end hosts, but performs
data format conversion to produce lower fidelity data in the appropriate format that the hand-
held clients are able to handle. SNAP is used in this context to reliably recover only portions
of the namespace that the population of handheld clients is able to handle.

Distributed Archival
Another application of libsstp is for developing distributed control protocols used in the pro-
duction of high quality archives of MBone conferences [123]. Here, a distributed archival
system is deployed to record and store live MBone content. Depending on the location of the
recording agents and the network conditions at the time of recording, each recording agent
may only be able to capture a suboptimal version of each source’s transmission. However, the
archival quality is further improved by applying post-processing algorithms on the individual
recordings to reconstruct a high quality version for the entire session. The distributed MBone
archival system proposed in [123] uses libsstp to selectively repair missing portions during
the reconstruction phase.

Light-weight Control Protocols
Libsstp has been used as a basis for developing a light-weight control protocol for the “Par-
allel Software-only Video Processing” system (PSVP) [100] that is used for titling and com-
positing (e.g., picture-in-picture) using compressed Internet video sources. PSVP exploits
the temporal, spatial and functional parallelism inherent in video special effects processing
to achieve real-time performance on a network of workstations (NOW) connected by a high-
speed network. In order to orchestrate effects processing tasks among the host processors in
such a parallel environment, PSVP uses an SSTP as the basis for a light-weight control proto-
col. Since PSVP processors are not pre-allocated statically, the control protocol must have the
ability to address groups of processors without requiring prior knowledge of individual hosts
within a group. libsstp provides this abstraction because it uses IP multicast. In addition,
libsstp supports receiver-driven recovery on a per-message granularity, i.e., a receiver may
choose to recover some messages and not others within a single session.

The PSVP dynamically parallelizes a video special effect into a hierarchy of tasks and maps
the resulting parallel subtasks onto the available system resources. PSVP exploits tempo-
ral, spatial and functional parallelism inherent in the specific effect. The system comprises
implementation agents, that carry out the parallel subtasks as well as control agents that are
responsible for coordinating tasks at lower levels of the hierarchy, e.g., demultiplexing input
streams and multiplexing the output streams once processing agents have signaled comple-
tion. The control protocol disseminates parameter information which is required to control
the special effect to all the PSVP processors. Since agents at different levels of the hierar-
chy are interested in different portions of the control parameter namespace, SNAP is used to
reliably retrieve parameters of interest.
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7.3 Concluding Remarks

We described the libsstp toolkit, which is a user-level implementation of the SSTP pro-
tocol. Libsstp exposes a simple, yet powerful programming interface that allows applications to
customize the semantics of reliable delivery on a per-message basis. Libsstp is event-based and its
API includes generic event handling. We discussed the session and source objects that are two key
abstractions within libsstp. We also discussed the data path through the toolkit and the application
callback support which provide the necessary hooks for the application to intervene when significant
network-level events occur.

Libsstp has been used to develop a wide range of applications — MediaBoard, which is
a shared drawing tool; an information dissemination tool, called infocaster; to design control proto-
cols for a parallelized software-based video special effects processing system; in reliable multicast
proxies; and in a distributed archival system. Each of these applications has proved invaluable in
refining the design of interfaces as well as the internal architecture of libsstp.
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Chapter 8

Conclusions and Future Work

Though no one can go back and make a brand new start, anyone can start from now
and make a brand new ending.

— Anonymous

We conclude this dissertation in this Chapter by suggesting some key directions for future
research and presenting our conclusions. We also indicate where our protocol framework imple-
mentation and the applications developed using it are available online.

8.1 Future Directions

The work in this dissertation motivates some interesting and potentially fruitful areas
for future work. Some of these are direct extensions derived from our work in this dissertation
and are closely related to our soft state-based transport protocol framework. Other ideas focus on
interesting new areas or novel applications of our framework and motivate research in significantly
new directions.

8.1.1 Soft State Model for RSVP

In this work, we have developed a basic model for soft state-based communication and
used it to model a number of end-to-end transport protocols. An interesting extension of this model
is to RSVP [149, 16] reservation refresh messages between routers and the design of a refresh pro-
tocol that adapts to the observed loss rate. A recent proposal for “summary refresh” aims to reduce
the amount of refresh messaging by organizing reservation state hierarchically [130]. A number of
interesting questions emerge: how must bandwidth be allocated to the different levels of the hierar-
chy so as to maximize the consistency of reservation state? Is there an optimal hierarchy that would
result in consuming the least refresh bandwidth based on the rates at which reservations change, or
in other words, based on flow lifetimes. Perhaps each flow can be assigned to its “optimal” position
in the hierarchy based on its lifetime characteristics.
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8.1.2 Compact Namespace Representations

The SNAP protocol represents each node with a distinct identifier in the recursive descent
procedure. For a large namespace tree, representing a node and its signature individually in the
namespace update messages can be an overhead in terms of the number of messages. One possibility
to overcome this overhead is to represent the “current” snapshot of the namespace in a compact
form. An important requirement of this compact format is that is must reveal which subtrees at a
given level are not synchronized between the sender and receiver. This problem may be posed as
one of mapping an arbitrary tree (with arbitrary branch factor) created by the application onto a
binary tree (a tree with branch factor of 2) of arbitrary height. Once this is achieved, a compact
representation is possible by run-length encoding the resulting binary tree represented using in-
order and pre-order traversals. The main advantage representing namespaces more compactly in
this manner, is that less bandwidth needs to be allocated to namespace refreshes in a multicast
transport session.

8.1.3 Content Peering

Content distribution networks (CDNs) have grown in popularity as a method to enhance
WWW performance. A content distribution network is a network of service nodes, deployed
throughout the Internet, that Web publishers can use to distribute their content on a subscription
basis. A CDN is essentially an overlay network that relies on the underlying IP network and has geo-
graphically distributed service nodes that enable rapid, reliable retrieval from any end-user location.
CDNs attempt to “push” content to the edges of the network, closer to end users, thereby reduc-
ing document download times and improving bandwidth usage between service provider networks.
Global load balancing ensures that users are transparently routed to the “best” content source.

CDNs facilitate “content peering” agreements that allow different service nodes in a dis-
tribution network, perhaps managed by different parties, to exchange content, and providing better
availability. Extensive content peering arrangements, especially between different CDN providers,
call for a protocol that allows different providers to exchange information on what content is locally
available. One way to achieve this is by using periodic announcements much like a network routing
protocol that periodically exchanges host reachability information. A SNAP-like protocol for direc-
tory exchange can be applied to these scenarios to optimize the number of messages exchanged, and
only propagate portions of the directory that have changed. This technique may be used to build an
optimized protocol that reduces bandwidth overhead of the routing protocol. The degree of change
dictates how rapidly content reachability information must be refreshed and how much bandwidth
is required for maintaining consistency between the different routing databases.

Similar work has been performed in the context of service discovery in highly dynamic
ad hoc wireless networks where services are mobile. In such environments, referring to the service
using a host address is ineffective. The Intentional Naming System (INS) [1] proposes an integrated
naming and resolution architecture and an application-level name-based routing protocol to locate
mobile services.
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8.1.4 Napster Overlay Networks

A related technology to CDNs is the recent Napster protocol for file sharing [91]. Nap-
ster allows users to share content via TCP using a simple publish-subscribe model involving the
end hosts, but without requiring a central content server. Occasionally, a centralized napster server
searches and constructs an index of all the available content. Other work in this area attempts to
anonymize file sharing and indexing, so that indexing agents do not discover the identity of the
content being published. Only the clients that send and receive the data are aware of the identity
of the content exchanged. One recent scheme uses a well-known hash function to produce a mes-
sage digest or signature of the content name and uses the hash information to construct the index.
Subscribers use the signature of the content name to locate content. The drawback of this scheme
is that one-way hash functions are irreversible and partial matches are not possible when matching
the signatures rather than the original strings. However, building an intelligent indexing agent that
takes partial matches into account is a significant challenge. SNAP and soft state-based transport
can play an important role in efficient index construction and updates.

Napsters have recently shown the need to perform data type or application-specific band-
width allocation and metering within the network. Recent analyses of traffic from a campus network
has shown that napster traffic can be a bandwidth hog [90], starving out lower bandwidth traffic such
as electronic mail and WWW connections. For example, a network administrator may enforce a
class-based policy that limits napster traffic to 10% of the outgoing link capacity of an organization
connected via a 45 Mbit/s DS3 link to the rest of the Internet, leaving the remaining 60% for other
types of shorter flows.

Another critical component in the napster model for “grassroots” multicast is a more ro-
bust and efficient topology formation scheme that will also allow real-time content delivery, besides
just allowing client-to-client file transfers. This suggests that napster networks are a special case
of content delivery overlays, and similar techniques in robust topology construction can be applied
here too.

Besides being a new application for many-to-many communication without requiring
network-layer multicast, napster has generated much controversy in the public press for making
it easy for users to distribute content without appropriate legal authorization and difficult for law
enforcement agencies to detect such misuse.

8.1.5 Hierarchical Session Directory

The session directory tool sdr uses a linear table of entries and announces each one pe-
riodically. Since there is no structure to its announcement database, the time to receive a given
announcement grows linearly with the number of entries in the database. Previous research [131]
proposes a split architecture for the session announcement protocol (SAP) to improve its perfor-
mance and simultaneously support announcements for layered media sessions. In this architecture,
multiple protocol proxy agents are used — global SAP agents operate at a low frequency, and an-
nounce the availability of sessions to a larger scope. Local caching proxy agents receive global
announcements and re-broadcast them at a higher frequency, and consume more bandwidth but
within a restricted scope. Scoping is configured administratively in border multicast routers by
means of forwarding and blocking rules for specific ranges of multicast addresses. This scheme
can be enhanced using a SNAP-like protocol that categorizes announcements hierarchically and
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uses an iterative protocol to transmit updates. The iterative protocol allows the receiver to fetch an-
nouncements from only those categories that are relevant to it, thereby dedicating more bandwidth
to announcements of interest.

8.1.6 Multicast-based Software Updates

A pressing problem today in software engineering is software maintenance — the prob-
lems associated with version control and software updates. Some researchers have proposed using
multicast-based distribution mechanisms to deliver software updates to large groups of users. Such
“self updating” software must perform version management automatically, without human inter-
vention and in order to do so, must first solve the problem of naming objects and modules and
representing their inter-dependencies. Once such a naming and identification scheme is available,
a SNAP-like protocol can be employed to deliver differential updates of updated modules. Both
server and client authentication are required to prevent intrusions and protect the client systems
from malicious software as well as ensure that only the eligible clients are allowed to participate,
for example, if it is accompanied by a subscription and payment for the software.

8.2 Availability

All of the software and protocol implementations developed in this dissertation are avail-
able on-line in source and binary code form.

Our stand-alone implementation of the soft state transport protocol libsstp is available
from:

http://www-mash.cs.berkeley.edu/mash/software/srm2.0/

Our extensions to ns-2 to perform large-scale simulations to study the asymptotic scaling
behavior of timer-based recovery is available from the ns-2 [83] distribution, available from:

http://www-mash.cs.berkeley.edu/ns/

All the applications written have been written within the context of the MASH program-
ming environment and are available from the MASH web page:

http://www-mash.cs.berkeley.edu/mash/

8.3 Summary

In this dissertation, we proposed a new framework for soft state-based multicast transport
for interactive applications. We have presented a formal model for “soft state” as an end-to-end
construct that enables loose state synchronization between sender and receivers. We have analyzed
this model to study the performance of our protocol and its variants. Our soft state-based trans-
port treats protocol control state at the end points as “soft” by not requiring that they be perfectly
consistent at all instants. This allows us to avoid tight sender-receiver synchronization, as in TCP-
like instantaneous receiver acknowledgements. Our soft state-based transport protocol provides a
relaxed reliability, instead of TCP-like deterministic reliability.
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To accommodate heterogeneity among receivers and network paths, we allow receivers
to tailor the semantics of reliability. Hence, a receiver incapable of or uninterested in processing
portions of the data stream may refrain from receiving it reliably. We do not rely on the transport-
level sequence space, but rather, use application-specific namespaces to express receiver preferences
while requesting retransmissions. This application-level namespace is exposed to the transport pro-
tocol and is used by the receiver to selectively retrieve specific data items. The use of such a common
“vocabulary” to describe data puts the application in control of loss recovery. Even though the fu-
ture of ubiquitous wide-area multicast routing extensions is uncertain at this time, our schemes only
require a multi-point distribution service, and are orthogonal to the exact details of the service.

Finally, since many new data types including certain image formats can be processed and
rendered out of order at the receiver, we do not enforce a TCP-like delivery order on the data stream.
Instead, we provide out-of-order delivery to the receiving application and demonstrate its benefits
for image delivery. This specific technique is also applicable to unicast transmission and we design
and implement a JPEG image transmission protocol for use with HTTP.

Our transport protocol is layered on top of UDP [108] in the protocol stack, and we have
implemented it as a user-level library called libsstp, a library for soft state-based reliable trans-
port. We also present probabilistic analyses of the performance of our protocol in terms of the
performance of the basic algorithms for loss recovery, using “slotting and damping,” as well as the
tradeoffs involving consistency and bandwidth consumption.
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Rüschlikon, May 1989.

[22] David D. Clark. The Design Philosophy of the DARPA Internet Protocols. In Proceedings of
SIGCOMM ’88, Stanford, CA, August 1988. ACM.

[23] David D. Clark and David L. Tennenhouse. Architectural Considerations for a New Gen-
eration of Protocols. In Proceedings of SIGCOMM ’90, Philadelphia, PA, September 1990.
ACM.

[24] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. John Wiley and
Sons, Inc., 1991.

[25] J. Crowcroft, Z. Wang, A. Ghosh, and C. Diot. RMFP: A Reliable Multicast Framing Proto-
col, March 1997. Internet Draft (RFC pending).

[26] Yogen Dalal and Robert Metcalfe. Reverse path forwarding of broadcast packets. Communi-
cations of the ACM, December 1978.



119

[27] John Danskin, Geoffrey Davis, and Xiyong Song. Fast Lossy Internet Image Transmission.
In Proceedings of ACM Multimedia ’95. ACM, November 1995.

[28] Brian DeCleene et al. RMF: A Transport Protocol Framework for Reliable Multicast Appli-
cations, November 1999. Draft specification.

[29] Stephen Deering, Deborah Estrin, Dino Farinacci, and Van Jacobson. An Architecture for
Wide-Area Multicast Routing. In Proceedings of SIGCOMM ’94, University College Lon-
don, London, U.K., September 1994. ACM.

[30] Stephen E. Deering. Multicast Routing in a Datagram Internetwork. PhD thesis, Stanford
University, December 1991.

[31] Steven Deering, Deborah Estrin, Dino Farinacci, Van Jacobson, Ahmed Helmy, David Meyer,
and Liming Wei. Protocol Independent Multicast version 2 Dense Mode Specification, Au-
gust 1997. Internet Draft.

[32] A. Demers, S. Keshav, and S. Shenker. Analysis and Simulation of a Fair Queueing Algo-
rithm. In Proceedings of SIGCOMM ’89. ACM, September 1989.

[33] T. Faber, J. Touch, and W. Yue. The TIME-WAIT state in TCP and its Effect on Busy Servers.
In Proc. INFOCOM ’99, 1999.

[34] Aaron Falk and Vern Paxson. Minutes of the ”RUTS” IETF BOF, December 1998.
ftp://ftp.ee.lbl.gov/ietf/ruts-98-minutes.

[35] Dino Farinacci, Yakov Rekhter, Peter Lothberg, Hank Kilmer, and Jeremy Hall. Multicast
Source Discovery Protocol (MSDP), June 1998. Internet Draft.

[36] W. Fenner. Internet Group Management Protocol, Version 2, Nov 1997. RFC-2236.

[37] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee. Hypertext Transfer Protocol
– HTTP/1.1, Jan 1997. RFC-2068.

[38] Definition of the Flexible Image Transport System (FITS). http://fits.gsfc.nasa.
gov/documents/nost_1.2/fits_standard.html, 1998.

[39] Sally Floyd and Van Jacobson. Link-Sharing and Resource Management Models for Packet
Networks. IEEE/ACM Transactions on Networking, 3(4):365–386, August 1995.

[40] Sally Floyd, Van Jacobson, Steven McCanne, Ching-Gung Liu, and Lixia Zhang. A Re-
liable Multicast Framework for Light-weight Sessions and Application Level Framing. In
Proceedings of SIGCOMM ’95, Boston, MA, September 1995. ACM.

[41] Ron Frederick. Network Video (nv). Xerox Palo Alto Research Center.
ftp://ftp.parc.xerox.com/net-research.

[42] Jim Gemmell, Eve Schooler, and Jim Gray. Fcast: Scalable Multicast File Distribution:
Caching and Parameters Optimizations. Technical Report MSR-TR-99-14, Microsoft Bay
Area Research Center, San Francisco, CA, June 1999.



120

[43] J. Gettys. MUX protocol specification, WD-MUX-961023. http://www.w3.org/pub/
WWW/Protocols/MUX/WD-mux-961023.html, 1996.

[44] Graphics Interchange Format (SM), Version 89a. ftp://ftp.ncsa.uiuc.edu/misc/
file.formats/graphics.formats/gif89a.doc, 1990.

[45] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics. Addison-Wesley,
second edition, 1994.

[46] S. Gribble and E. Brewer. System Design Issues for Internet Middleware Services: Deduc-
tions from a Large Client Trace. In Proc. 1997 Usenix Symposium on Internet Technologies
and Systems, December 1997.

[47] Rajarshi Gupta, Mike Chen, Steven McCanne, and Jean Walrand. A Receiver-Driven Trans-
port Protocol for the Web. In Proc. INFORMS 2000 Telecommunications Conference, March
2000.

[48] R. Han and D. G. Messerschmitt. Asymptotically Reliable Transport of Multimedia/Graphics
Over Wireless Channels. In Proc. SPIE Multimedia Computing and Networking, January
1996.

[49] Mark Handley. SAP: Session Announcement Protocol. Internet Draft, Nov 19, 1996.

[50] Mark Handley. Session Directories and Internet Multicast Address Allocation. In Proceed-
ings of SIGCOMM 1998, Vancouver, Canada, Sep 1998. ACM.

[51] Mark Handley and Jon Crowcroft. Network Text Editor (NTE): A Scalable Shared Text
Editor for the MBone. In Proceedings of SIGCOMM 1997, Cannes, France, Sep 1997. ACM.

[52] Mark Handley and Van Jacobson. SDP: Session Directory Protocol. Internet Draft, Mar 26,
1997.

[53] Mark Handley and Van Jacobson. sdr — A Multicast Session Directory. University College
London.

[54] Vicky Hardman, Peter Kirstein, et al. Robust Audio Tool. University College London.
http://www-mice.cs.ucl.ac.uk/multimedia/software/.

[55] C. Hedrick. Routing Information Protocol. Rutgers University, June 1988. RFC-1058.

[56] Andrew T. Heybey. Video Coding and the Application Level Framing Protocol Architecture.
Technical Report TR 542, MIT LCS, Cambridge, MA, June 1992.

[57] Hugh Holbrook and David Cheriton. IP Multicast Channels: EXPRESS Support for Large-
scale Single-source Applications. In Proceedings of SIGCOMM ’99, Cambridge, MA,
September 1999. ACM.

[58] Hugh Holbrook, Sandeep Singhal, and David Cheriton. Log-Based Receiver-Reliable Multi-
cast for Distributed Interactive Simulation. In Proceedings of SIGCOMM ’95, Boston, MA,
September 1995. ACM.



121

[59] IANA-assigned MIME Types. ftp://ftp.isi.edu/in-notes/iana/
assignments/media-types/media-types.

[60] V. Jacobson, R. Braden, and D. Borman. TCP Extensions for High Performance. Internet
Engineering Task Force, May 1992. RFC 1323.

[61] Van Jacobson. Session Directory. Lawrence Berkeley Laboratory.
ftp://ftp.ee.lbl.gov/conferencing/sd.

[62] Van Jacobson. Congestion Avoidance and Control. In Proceedings of SIGCOMM ’88, Stan-
ford, CA, August 1988.

[63] Van Jacobson and Steven McCanne. LBL Whiteboard. Lawrence Berkeley Laboratory
ftp://ftp.ee.lbl.gov/conferencing/wb.

[64] Van Jacobson and Steven McCanne. Visual Audio Tool. Lawrence Berkeley Laboratory.
ftp://ftp.ee.lbl.gov/conferencing/vat/.

[65] Raj Jain. Congestion Control in Computer Networks: Issues and Trends. IEEE Network
Magazine, pages 24–30, May 1990.

[66] Raj Jain, K.K. Ramakrishnan, and Dah-Ming Chiu. Congestion Avoidance in Computer
Networks With a Connectionless Network Layer. Technical Report DEC-TR-506, Digital
Equipment Corporation, August 1987.

[67] JPEG2000 Links. http://www.jpeg.org/JPEG2000.htm.

[68] Miriam Kadansky and Dah-Ming Chiu. Tree-based reliable multicast (tram), January 2000.
Internet Draft expires 7/2000.

[69] S. K. Kasera, J. F. Kurose, and D. F. Towsley. Scalable Reliable Multicast Using Multiple
Multicast Groups. In Proceedings of ACM SIGMETRICS Conference on Measurement &
Modeling of Computer Systems, June 1997.

[70] J. C. Kent and J. C. Mogul. Fragmentation considered harmful. In Proc. ACM SIGCOMM,
October 1987.

[71] Satish Kumar, Pavlin Radoslavav, David Thaler, Cengiz Alaettinoglu, Deborah Estrin, and
Mark Handley. The MASC/BGMP Architecture for Inter-domain Multicast Routing. In
Proceedings of SIGCOMM 1998, Vancouver, Canada, Sep 1998. ACM.

[72] A. Lempel and J. Ziv. A universal algorithm for sequential data compression. IEEE Trans.
on Inf. Theory, 23(3):337 – 343, 1977.

[73] Brian Neal Levine, David B. Lavo, and J.J. Garcia-Luna-Aceves. The Case For Reliable
Concurrent Multicasting Using Shared Ack Trees. In Proceedings of ACM Multimedia ’96,
Boston, MA, November 1996. ACM.

[74] John C. Lin and Sanjoy Paul. RMTP: A Reliable Multicast Transport Protocol. In Proceed-
ings IEEE Infocom ’96, pages 1414–1424, San Francisco, CA, March 1996.



122

[75] Ching-Gung Liu, Deborah Estrin, Scott Shenker, and Lixia Zhang. Local Recovery in SRM.
Submitted to IEEE Transactions on Networking, 1998.

[76] Ching-Gung Liu, Deborah Estrin, Scott Shenker, and Lixia Zhang. Recovery Timer Adapta-
tion in SRM. Submitted to IEEE Transactions on Networking, 1998.

[77] Jeffrey Lo and K. Taniguchi. IP Network Address (and Port) Translation, June 1998. Internet
Draft expires 6/99.

[78] K. Lougheed and Y. Rekhter. A Border Gateway Protocol (BGP). Cisco Systems and T. J.
Watson Research Center, IBM Corp., June 1989. RFC-1105.

[79] Steven McCanne. A Distributed Whiteboard for Network Conferencing. Unpublished
manuscript, May 1992.

[80] Steven McCanne. Receiver-driven Layered Multicast. PhD thesis, University of California,
Berkeley, December 1996.

[81] Steven McCanne et al. UCB/LBNL/VINT Network Simulator - ns (version 2). http://www-
mash.cs.berkeley.edu/ns/.

[82] Steven McCanne et al. Towards a Common Infrastructure for Multimedia-Networking Mid-
dleware. In Proceedings of the Seventh International Workshop on Network and OS Support
for Digital Audio and Video, St. Louis, CA, May 1997. ACM.

[83] Steven McCanne and Sally Floyd. The LBNL Network Simulator. University of California,
Berkeley. http://www-mash.cs.berkeley.edu/ns/.

[84] Steven McCanne and Van Jacobson. vic: video conference. Lawrence Berkeley Laboratory
and University of California, Berkeley. ftp://ftp.ee.lbl.gov/conferencing/vic.

[85] Steven McCanne and Van Jacobson. vic: A Flexible Framework for Packet Video. In Pro-
ceedings of ACM Multimedia ’95. ACM, November 1995.

[86] J. McQuillan et al. A New Routing Algorithm for the ARPANET. IEEE Transcations on
Networking, May 1980.

[87] David Meyer. Glop Bit Usage. Cisco Systems, 1999. draft-ietf-mboned-glop-bits-00.txt.

[88] P. Mockapetris. Domain Names – Implementation and Specification. SRI International,
Menlo Park, CA, November 1987. RFC-1035.

[89] J. C. Mogul and S. E. Deering. Path MTU Discovery. SRI International, Menlo Park, CA,
April 1990. RFC-1191.

[90] Napster Statistics from the University of Wisconsin. http://wwwstats.net.wisc.
edu/.

[91] Napster.com. http://www.napster.com/.

[92] Netsizer Internet Growth Reports. http://www.netsizer.com/.



123

[93] J. Nonnenmacher and E. W. Biersack. Optimal Multicast Feedback. IEEE Infocom, 1998.

[94] Masataka Ohta and Jon Crowcroft. Static Multicast, June 1999. Internet Draft.

[95] John K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, 1994.

[96] V. Padmanabhan. Addressing the Challenges of Web Data Transport. PhD thesis, Univ. of
California, Berkeley, Sep 1998.

[97] V. N. Padmanabhan and J. C. Mogul. Improving HTTP Latency. In Proc. Second Interna-
tional WWW Conference, October 1994.

[98] C. Papadopoulos, G. Parulkar, and G. Varghese. An Error Control Scheme for Large-Scale
Multicast Applications. In Proceedings IEEE Infocom ’98, San Francisco, CA, 1998.

[99] C. Partridge and R. M. Hinden. Version 2 of the Reliable Data Protocol (RDP). Internet
Engineering Task Force, Apr 1990. RFC 1151.

[100] Ketan Patel and Lawrence A. Rowe. A Multicast Control Scheme For Parallel Software-only
Video Effects Processing. In Proceedings of ACM Multimedia ’99. ACM, August 1999.

[101] V. Paxson. End-to-End Routing Behavior in the Internet. In Proc. ACM SIGCOMM ’96,
August 1996.

[102] V. Paxson. Automated Packet Trace Analysis of TCP Implementations. In Proc. ACM SIG-
COMM ’97, September 1997.

[103] V. Paxson. End-to-End Internet Packet Dynamics. In Proc. ACM SIGCOMM ’97, September
1997.

[104] William B. Pennebaker and Joan L. Mitchell. JPEG Still Image Data Compression Standard.
Van Nostrand Reinhold, 1993.

[105] Radia Perlman, Jon Crowcroft, Tony Ballardie, and Cheng-Yin Lee. A Design for Simple
Low Overhead Multicast, December 1998. Internet Draft (work in progress).

[106] Sridhar Pingali, Don Towsley, and James F. Kurose. A Comparison of Sender-Initiated and
Receiver-Initiated Reliable Multicast Protocols. In Proceedings of SIGMETRICS ’94, Santa
Clara, CA, May 1994.

[107] PointCast Inc. PointCast Home Page. http://www.pointcast.com.

[108] J. B. Postel. User Datagram Protocol. International Sciences Institue, CA, August 1980.
RFC-768.

[109] J. B. Postel. Transmission Control Protocol. SRI International, Menlo Park, CA, August
1989. RFC-793.

[110] J. B. Postel and J. Reynolds. File Transfer Protocol (FTP). Internet Engineering Task Force,
Oct 1985. RFC 959.



124

[111] Suchitra Raman. Design and Analysis of a Framework for Reliable Multicast. UCB CS
Masters Thesis, May 1998.

[112] Suchitra Raman and Steven McCanne. Generalized Data Naming and Scalable State An-
nouncements for Reliable Multicast. Technical report, University of California, Berkeley,
CA, June 1997.

[113] Suchitra Raman and Steven McCanne. Scalable Data Naming for Application Level Framing
in Reliable Multicast. In Proceedings of ACM Multimedia ’98, Bristol, UK, September 1998.
ACM.

[114] Suchitra Raman and Steven McCanne. A Model, Analysis and Protocol Framework for
Soft State-based Communication. In Proceedings of ACM SIGCOMM ’99, Cambridge, MA,
September 1999. ACM.

[115] Suchitra Raman, Steven McCanne, and Scott Shenker. Asymptotic Behavior of Global Re-
covery in SRM. In Proceedings of ACM SIGMETRICS ’98, Madison, WI, June 1998. ACM.

[116] RealNetworks, Inc. RealPlayer. http://www.real.com/.

[117] Reza Rejaie, Mark Handley, and Deborah Estrin. RAP: An End-to-end Rate-based Conges-
tion Control Mechanism for Realtime Streams in the Internet. IEEE Infocom, 1999.

[118] Antony Richards et al. The Application of ITP/ALF to Configurable Protocols. In Proc.
First International Workshop on High Performance Protocol Architectures (HIPPARCH ’94),
December 1994.

[119] R. Rivest. The MD5 Message-Digest Algorithm. MIT Laboratory for Computer Science and
RSA Data Security, Inc., 1992. RFC-1321.

[120] P. Salama, N. B. Shroff, and E. J. Delp. Error Concealment in Encoded Video Streams.
Kluwer Academic Publishers, 1998. Book Chapter in ”Signal Recovery Techniques for Im-
age and Video Compression and Transmission”, edited by N. P. Galatsanos and A. K. Kat-
saggelos.

[121] Khalid Sayood. Introduction to Data Compression. Morgan Kaufmann, 1996.

[122] Eve M. Schooler. A multicast user directory service for synchronous rendezvous. Computer
science department, California Institute of Technology, September 1996.

[123] Angela Schuett, Randy Katz, and Steven McCanne. A Distributed Recording System for
High Quality MBone Archives. In Proc. First International Workshop on Networked Group
Communication,, November 1999.

[124] Henning Schulzrinne, Steve Casner, Ron Frederick, and Van Jacobson. RTP: A Transport
Protocol for Real-Time Applications. Internet Engineering Task Force, Audio-Video Trans-
port Working Group, November 1991. Internet Draft expires 3/1/96.



125

[125] Henning Schulzrinne, Steve Casner, Ron Frederick, and Van Jacobson. RTP: A Transport
Protocol for Real-Time Applications. Internet Engineering Task Force, Audio-Video Trans-
port Working Group, January 1996. RFC-1889.

[126] Puneet Sharma, Deborah Estrin, Sally Floyd, and Van Jacobson. Scalable Timers for Soft
State Protocols. In Proceedings IEEE Infocom ’97, Kobe, Japan, 1997.

[127] Tony Speakman et al. Pragmatic Good Multicast (PGM) Transport Protocol Specification,
June 1999. Internet Draft (RFC pending).

[128] W. Richard Stevens. TCP/IP Illustrated, Volume 1 – The Protocols. Addison-Wesley, first
edition, December 1994.

[129] I. Stoica, H. Zhang, and T. S. E. Ng. A Hierarchical Fair Service Curve Algorithm for
Link-Sharing, Real-Time and Priority Service. In Proceedings of SIGCOMM 1997, Cannes,
France, Sep 1997. ACM.

[130] George Swallow. RSVP Hierarchical Summary Refresh, October 1999. Internet Draft.

[131] Andrew Swan, Steven McCanne, and Larry Rowe. Layered Transmission and Caching for
the Multicast Session Directory Service. In Proceedings of ACM Multimedia ’98, Bristol,
UK, September 1998. ACM.

[132] J. Touch. TCP Control Block Interdependence. Internet Engineering Task Force, April 1997.
RFC 2140.

[133] Teck-Lee Tung. MediaBoard: A Shared Whiteboard Application for the MBone. UCB CS
Masters Thesis, February 1998.

[134] Teck-Lee Tung and Suchitra Raman. A Distributed MediaBoard Using the Scalable, Reliable
Multicast Toolkit. UCB CS 262 Project Report, December 1996.

[135] Thierry Turletti. INRIA Video Conferencing System (ivs). Institut National de Recherche en
Informatique et an Automatique. http://www.inria.fr/rodeo/ivs.html.

[136] Thierry Turletti and Jean-Chrysostome Bolot. Issues with Multicast Video Distribution in
Heterogeneous Packet Networks. In Proceedings of the Sixth International Workshop on
Packet Video, Portland, OR, September 1994.

[137] C. J. Turner and L. L. Peterson. Image transfer: an end-to-end design. In Proc. ACM SIG-
COMM, August 1992.

[138] D. Velten, R. Hinden, and J. Sax. Reliable Data Protocol. Internet Engineering Task Force,
July 1984. RFC 908.

[139] Carl A. Waldspurger and William E. Weihl. Lottery Scheduling: Flexible Proportional-Share
Resource Management. In First Symposium on Operating Systems Design and Implementa-
tion (OSDI), pages 1–11. USENIX Association, 1995.



126

[140] Carl A. Waldspurger and William E. Weihl. Stride Scheduling: Deterministic Proportional-
Share Resource. Technical Report MIT/LCS/TM-528, MIT Laboratory for Computer Sci-
ence, Cambridge, MA, June 1995.

[141] Gregory K. Wallace. The JPEG sill picture compression standard. Communications of the
ACM, 34(4):31–44, April 1991.

[142] Terrence A. Welch. A Technique for High Performance Data Compression. IEEE Computer,
17(6):8–19, 1984.

[143] Tina Wong, Thomas Henderson, Suchitra Raman, Adam Costello, and Randy Katz. Policy-
Based Tunable Reliable Multicast for Periodic Information Dissemination. In Proceedings
of Workshop on Satellite Based Information Services, Dallas, TX, October 1998.

[144] World Wide Web Consortium. http://www.w3.org/.

[145] Kristin Wright. MASHCast: Applying SRM Middleware to Webcast. Presentation at the
Winter ’98 MASH Retreat.

[146] Message Multiplexing (memux) Charter. http://www.w3.org/Protocols/HTTP-
NG/1999/02/mux-Charter-222.html, 1999.

[147] Maya Yajnik, Jim Kurose, and Don Towsley. Packet Loss Correlation in the MBone Multicast
Network. IEEE Global Internet Conference, 1996.

[148] R. Yavatkar, J. Griffioen, and M. Sudan. A Reliable Dissemination Protocol for Interactive
Collaborative Applications. In Proceedings of ACM Multimedia ’95, San Francisco, CA,
November 1995. ACM.

[149] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala. RSVP: A New Resource
ReSerVation Protocol. IEEE Network Magazine, pages 8–18, September 1993.


