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Abstract

We have constructed a statistical model to forecast, with uncertainty,
the stock of Norwegian farmed Atlantic salmon (Salmo salar). The model
provided good predictions of future biomass of Norwegian farmed salmon
and can also be used to perform what-if analysis exploring the impact of
varying scenarios for stocking and slaughtering. The model is based on the
number of fish in each weight class (0-1 kg, 1-2 kg, ..., 10+ kg) and their
average weight. The model, which is related to standard size-structured
models, computes the number of fish growing into the next weight class the
next month and the number of fish remaining in the same weight class. In
addition, the number of new fish stocked, fish lost, slaughtered and wasted,
as well as the sea temperature related to the growth, were modelled. All the
model parameters were estimated based on monthly data from 2002–2007,
and the model was validated statistically. Any animal production involving
cycles may benefit from this forecasting tool.

Key words: farmed salmon, growth model, population dynamics,
stochastic model, validation

2



Introduction

Thanks to its extraordinary geographical characteristics, Norway became
the first country to actively promote the development of salmon farming.
Today, Norwegian interests play an important role in global salmon farming.
The on-growing production is performed in sea based cages. Cage culture
production of Atlantic salmon (Salmo salar) in the sea has expanded and
intensified considerably over the years and in 2009 amounted to 865 000
tonnes. The production is run in about 700 sites along the coast, owned by
approximately 160 different commercial companies of different sizes.

As one of the major producers of Atlantic salmon, the Norwegian fish
farms industry meets variation in the global market demand for salmon, as
well as increased international competition and price volatility. To minimise
the fluctuations, it is important for the producers to have knowledge about
the expected development of future production and demand. The demand
can be influenced by timing or scaling of marketing campaigns. If informa-
tion about expected production was available, the individual producers could
adapt their production plans, for instance by changing the production regime,
whereas the fish farming industry on a national level could develop improved
production strategies, by changing the time for stocking or slaughtering.

The cycle for producing salmon is rather predetermined. After new
(young) fish have been stocked, the fish are usually slaughtered after 1 1/2
to 3 years. The production cycle involves systematic fluctuations in biomass
and quantity of slaughtered fish. When the new fish have been stocked, the
biomass of slaughtered fish is to some degree predictable at a horizon of up
to 2 years, since the growth of farmed fish to a large extent is systematic.

The production cyclicity is common amongst other farmed animals, such
as cattle or hog production. This cyclicity and its relationship with the
market have been studied for a long time (Russell, 1929) and are still debated
(Crespi et al., 2010). Recent studies suggest that market timing influences
the cattle cycle (Hamilton and Kastens, 2000). As (Allen, 1994, p. 81) points
out, “there has been an overemphasis on explanation, and little interest in
the predictive power of models” for agricultural production.

The market for farmed salmon is growing, but less mature than many
other agricultural markets, and has experienced imperfections due to trade
conflicts (Kinnucan and Myrland, 2005) and outbreaks of fish diseases. In
any case, the increased production of farmed salmon has reduced the wild
salmon prices (Guillotreau, 2004; Asche et al., 2005).
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Until now, no reliable tool for forecasting future production on an aggre-
gated level has been available. This is probably due to the lack of coherent
data. Our aim is to present a prediction model for regional and national
standing biomass. Such a model can also can be used to investigate conse-
quences of changing production strategies.

Since 2002, production data from all Norwegian fish farms have been
electronically collected. Monthly data, including the existing stock, stocking
of new fish and slaughtering, are available on a regional level. The data are
given as numbers and mean weight of fish in the standing stock within weight
classes of 1 kg resolution (0-1 kg, 1-2 kg, ..., 9-10 kg, 10+ kg). Accurate age
information is lacking.

Since the data are divided into weight classes, it is natural to model
them by size-structured models (Hilborn and Mangel, 1997; Tuljapurkar and
Caswell, 1997; Quinn and Deriso, 1999). Rizzo and Spagnolo (1996) describe
optimal management in a single-farm model for sea bass, based on weight
classes and biological sub-models. Results based on different sea tempera-
tures, harvesting, feeding and stocking strategies are presented. Gangnery
et al. (2001) investigate the production of oysters, where the oysters grow
individually between weight classes, and mortality, harvesting and seeding
are included. Halachmi et al. (2005) have studied how to optimise the man-
agement of a single (or a few) fish farm(s), and Bjørndal (1988) investi-
gates optimal harvesting of farmed fish based on an adapted Beverton-Holt
model for a year class of fish. In work related to farmed salmon, Kumbhakar
and Tveter̊as (2003) have studied the risk preferences of Norwegian salmon
farmers, while Bjørndal (1990) describes salmon aquaculture production and
harvesting from an economical viewpoint.

Many of these models (Rizzo and Spagnolo, 1996; Gangnery et al., 2001)
are stochastic on the individual level, but deterministic on the population
level. Their parameters are either found from the literature, estimated on
different data sets or determined more or less subjectively, as is also the
case in Bjørndal (1988). There can be good reasons for this approach. For
example, the data can be incomplete, or parameters like the natural mortality
can be non-identifiable. Simulations from the models are presented, but
the results are not compared with or validated against the actual data in a
thorough analysis. Moreover, the uncertainty in parameters and predictions
of the population is more or less ignored.

We propose a dynamic, statistical model that is related to, but not equal
to, standard size-structured models. One difference is that the proposed
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model takes into account also the average weight in each size class in ad-
dition to the number of fish. Furthermore, it is constructed such that all
unknown parameters can be estimated from one coherent dataset, and pre-
diction uncertainty is an inherent part of the model.

The starting point of the model is the abundance and the average weight
of the fish in each weight class. Based on this and amongst others a growth
function, depending on weight class, sea temperature, seasonality and light
conditions, the model computes per month how many fish that remain in
their weight class and how many that grow into the next weight class the
following month. In addition, we modelled the number of new fish stocked,
lost (dead and escaped), slaughtered and wasted (downgraded slaughter fish),
learning from the production strategies of earlier years. We demonstrate and
justify the predictive ability of the model and describe how what-if scenarios
can be made.

Materials and methods

Data

Production data from Norwegian fish farms have been collected into the
database Havbruksdata since 2002. The data are monthly observations of
abundance and standing biomass in each of 11 weight classes; v = 0: 0-1
kg, v = 1: 1-2 kg, ..., v = 9: 9-10 kg, v = 10: 10+ kg. When both the
numbers and biomass are observed, the average weight in each weight class
is implicitly given as the biomass divided by the number of fish. In addition,
the monthly number of fish stocked (or inserted), lost (died and escaped),
slaughtered and wasted (downgraded slaughter fish) as well as the gutted
slaughtered biomass are known in each weight classes. All these data are
aggregated into three regions; i) Southern, ii) Mid and iii) Northern Norway.
The data are modelled on a regional basis, but results are aggregated further
for Norway as a whole, and all data and results presented here are for Norway
unless otherwise stated.

An overview of the various types of data is given (Table 1). For slaugh-
tered fish, we distinguish between the full weight, simply denoted slaughter
weight (V S

t ) and gutted weight (V G
t ). The slaughter weight, which is un-

observed, is comparable to the weight of the standing stock, whereas the
observable gutted weight is lower. The monthly distribution of the data (for
Norway as a whole) over a year gives an impression of the seasonal variations
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(Table 2). Note that the fish are usually stocked around May, and some
in September and October, while the number of lost fish peaks during the
summer. For an overview of the weight class distribution, a summary in
absolute numbers per weight class is shown (Table 3). The average number
of fish stocked each month is 19.4 million. The corresponding number of
fish in weight class 0 is 93.2 million, which is far below 19.4 million times
12 months, since the fish grow into weight class 1 after a few months and
some fish die each month (1.7% of the stock in weight class 0 according to
the table). Time plots of some of the data described in the Results section
complement the picture.

The number of daylight hours Dt in month t partly explains the growth in
that month (Boeuf and Le Bail, 1999). We used equations from the National
Oceanic and Atmospheric Administration, based on work by Meeus (1991),
to compute the number of daylight hours for a mid point in the region for
the 15th each month. In, e.g., Finnmark, in Northern Norway, there are no
daylight hours in December and 24 daylight hours (midnight sun) in June.

The growth does also depend on the monthly sea temperature STt, av-
eraged over each reporting fish farm in each region, and collected from the
database Havbruksdata.

[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]
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Method overview

The model presented below is first applied to each of the three regions
separately. Results for Norway as a whole are then computed by aggregating
the results over the regions.

The model contains five sub-models for monthly values of: 1) Standing
stock distributed among weight classes, 2) stocked number of fish, 3) loss,
4) slaughter and waste, 5) sea temperature. The standing stock model is
presented in detail below. The other models are outlined in a subsequent
section, except for the model for sea temperature, which is described in
Appendix A. Details for all the five sub-models are provided (Appendix
A, C and D), as well as an overview (Figure 1).

[Figure 1 about here.]

Generally, the choice of models and the inclusion of linear, non-linear and
seasonal effects were based on the available literature, analyses of the data
and the resulting model’s predictive performance.

Model for standing stock

First, we go through the model for the standing stock. The average weight
and the number of fish in each weight class are the key ingredients. For a
given growth function, and based on the principle of balance of numbers
and biomass, we compute how many fish that remain in their weight class
and how many that grow into the next from one month to another. If the
average weight of the fish in a weight class is close to the upper boundary
of that weight class, many fish will grow into the next weight class. Similar
computations are done for the weight in each weight class.

Since individual fish are not observed, we assume that all fish in a weight
class v has the same growth factor ft,v from time (month) t to t + 1, and
that negative growth is impossible, i.e. ft,v ≥ 0. The growth is a function of
i) weight class, ii) sea temperature, iii) the number of daylight hours and iv)
season. The seasonal component accounts for additional seasonal variations
that are not captured by sea temperature and daylight hours. The growth
model is then

ft,v =1 + exp (ηt,v),

where the linear predictor ηt,v is a quadratic function of the sea temperature
STt and the number of daylight hours Dt. The quadratic terms were included
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to allow for non-linear effects, since the salmon does not grow linearly with
STt and Dt.

The seasonal component is handled by a pair of sine and cosine functions
with a period of one year. This gives

ηt,v = βf0,v

+ βf1STt + βf2ST
2
t

+ βf3Dt + βf4D
2
t

+ βf5 sin
(2πt

12

)
+ βf6 cos

(2πt

12

)
.

(1)

Here, the coefficient βf0,v is an intercept specific for each weight class v,
whereas the other βs are regression coefficients common for all weight classes.
To model seasonal variations, we also use the sine and cosine functions
throughout the paper.

The regression coefficients are unknown, but estimated from historical
data by minimising the prediction errors of monthly numbers and average
weight in each weight class (see the next section). They are estimated simul-
taneously with other unknown parameters introduced later in this section.
This is the model for v ≥ 1. For weight class v = 0, the growth is in addition
a function of the average weight Vt(0) in weight class v = 0 at time t (not
shown).

Since all fish in weight class v have the same growth, all fish with a weight
above a threshold v′t,v at time t will enter the next weight class (see Figure 2)
at time t+1. The threshold v′t,v is given by ft,v ·v′t,v = vmax, where vmax = v+1
is the upper boundary of the weight class. This gives

v′t,v =
vmax

ft,v
.

The number of fish remaining in weight class Nt+1(v, v) and the number
of fish switching in weight class Nt+1(v + 1, v) are given by

Nt+1(v, v) = at,v ·Nt(v)

Nt+1(v + 1, v) = (1− at,v) ·Nt(v).
(2)

Here, at,v is the proportion of fish remaining in the weight class v, and Nt(v)
is the number of fish in weight class v in month t.
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Assume that the weight of the individual fish in weight class v is dis-
tributed according to a probability density ht,v(w) between the boundaries v
and v + 1. The proportion at,v is then given by

at,v =

∫ v′
t,v

v

ht,v(w)dw. (3)

The true distribution ht,v(w) is unknown, but the average weight Vt(v) of
the fish in each weight class v is observed. We assume that the weight
distribution ht,v(w) is a beta distribution between v and v + 1. The beta
distribution has two parameters. We parameterise through the expectation
µv,t and a dispersal parameter γv,t in the spirit of generalised linear models
(McCullagh and Nelder, 1989). The parameterisation (described in Appendix
A) leads to the variance

VAR(hv,t(·)) = γv,t · µ′v,t · (1− µ′v,t), (4)

where µ′v,t is between 0 and 1 and given by µv,t = v + µ′v,t, i.e. the part of
the expectation that exceeds the lower limit v of the weight class. Equation
(4) implies that the standard deviation increases with the expected value to
the middle of the weight class, where the maximum value is reached. The
expectation µv,t is given by the mean weight Vt(v), which is observed back
in time and can be predicted ahead in time.

For v ≥ 1, γv,t is a constant βγ independent of time and common for all
weight classes. For weight class 0, γv,t varies seasonally according to

γ0,t = g

(
βγ0 + βγ1 sin

(2πt

12

)
+ βγ2 cos

(2πt

12

))
, (5)

where the βs are unknown regression coefficients. The term γ0,t must be
between 0 and 1 (see Appendix A), which will be fulfilled by the function

g(x) =
1

2
+

arctan(x)

π
. (6)

The total of four unknown β-parameters are estimated from the data by
minimising the prediction errors (see the next section).

We have chosen the beta distribution for h(·) since it is bounded and
quite flexible. Note that the proportion at,v is implicitly a function of both
the average weight and the growth (see Figure 2 for an illustration; more
details are found in Appendix A).
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[Figure 2 about here.]

The number of fish in weight class v in the next month t+ 1 is then given
by the balance of numbers,

Nt+1(v) =Nt+1(v, v − 1) +Nt+1(v, v)−NR
t+1(v) +N I

t+1(v), (7)

which is the sum of the number of fish that switched from weight class v− 1
(Nt+1(v, v−1)) and those that remained in weight class v (Nt+1(v, v)), minus
the number of fish removed (NR

t+1(v)), plus fish stocked (N I
t+1(v)). The latter

is only non-zero for the first weight class v = 0, and the number NR
t+1(v) is

the sum of fish lost, slaughtered and wasted.
There is a corresponding, but slightly more complicated, balance of biomass.

First, consider those fish that is in weight class v at time t and will remain
in the same weight class at time t+ 1. At time t, the average weight of these
fish is given by

V ∗t (v, v) =

∫ v′
t,v

v
w · ht,v(w)dw∫ v′

t,v

v
ht,v(w)dw

=

∫ v′
t,v

v
w · ht,v(w)dw

at,v
. (8)

At time t+ 1, their average weight is increased by the growth factor ft,v to

Vt+1(v, v) = ft,v · V ∗t (v, v).

Correspondingly, consider those fish in weight class v at time t, that grow
into the next weight class at time t + 1. At time t, the average weight of
these fish is given by

V ∗t (v + 1, v) =

∫ v+1

v′
t,v

w · ht,v(w)dw

1− at,v
,

and at time t+ 1 their average weight has increased to

Vt+1(v + 1, v) = ft,v · V ∗t (v + 1, v).

To update the average weight, we also need to divide the number of fish
removed, NR

t+1(v), into NR
t+1(v, v) and NR

t+1(v, v−1), i.e. into those remaining
in the same and those coming from the weight class below at time t. This
is done in a similar way as for Nt(v) of the standing stock in Equation (2).
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Furthermore, we assume that the fish removed and those not removed have
the same average weight.

Finally, the average weight of fish in weight class v in the next month
t+ 1 is given by

Vt+1(v) =

(
Nt+1(v, v − 1)−NR

t+1(v, v − 1)
)
· Vt+1(v, v − 1)

Nt+1(v)
+(

Nt+1(v, v)−NR
t+1(v, v)

)
· Vt+1(v, v)

Nt+1(v)
.

(9)

Equation (9) above has to be modified for weight class v = 0: The quan-
tity Nt+1(v, v−1)−NR

t+1(v, v−1) is replaced by the observed number N I,obs
t of

stocked fish and Vt+1(v, v−1) is replaced by the average weight V I
t of stocked

fish, such that

Vt+1(0) =
N I,obs
t · V I

t +
(
Nt+1(v, v)−NR

t+1(v, v)
)
· Vt+1(v, v)

Nt+1(v)
.

The average weight of stocked fish is unknown, but varies over the year. Sim-
ilar to Equation (5), this average weight is therefore modelled as a seasonal
function by

V I
t = g

(
βI0 + βI1 sin

(2πt

12

)
+ βI2 cos

(2πt

12

))
, (10)

where g(·) is given by Equation (6), and the βs are unknown parameters
estimated from the data by minimising the prediction errors (see the next
section).

As a summary, the parameters of the model for the standing stock are
listed (Table 4).

[Table 4 about here.]

The proposed model can be compared with the framework of a size-
structured or stage-structured model (Quinn and Deriso, 1999). In our case
the weight classes are the stages, and the model is based on one-month tran-
sitions between the stages. We have imposed the constraint that fish may not
grow beyond the next weight class in one month. The model for the number
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of fish described by (2) and (7) is therefore a special case known as an Usher
model (Usher, 1996), which (disregarding fish lost, slaughtered, wasted and
stocked) can also be written in matrix form,

N t+1 = M tN t,

where N t is a vector of the number of fish in each weight class. The growth
transition matrix M t is given as: M t(v, v) = at,v, M t(v + 1, v) = (1− at,v),
where at,v is given by Equation (3) for weight class v, and all other M t(i, j) =
0. Note that M t is time-varying. Contrary to many of the stage-structured
models, we need to model both the weight and the number of fish in each
weight class, with a non-linear connection between the two, and based on
the unknown weight distribution of fish within each weight class. Our weight
model (9) cannot easily be written in matrix form.

Estimation of model for the standing stock

The unknown parameters from the model for the standing stock are esti-
mated from the historical data by minimising the prediction errors of monthly
numbers and average weight in each weight class. It is essential that the esti-
mated model gives sensible predictions for both abundance and weight of fish,
for different weight classes as well as on the short and long term. How these
various goals should be balanced is, however, not obvious. Furthermore, it
is not obvious which (joint) statistical distribution the numbers and weight
of fish follow. We have therefore chosen not to use Maximum Likelihood or
any model based fitting criterion, butinstead to minimise a least squares type
criterion, which turns out to be relatively robust against modelling error and
numerical optimisation problems.

This has the unfortunate consequence that measures of precision for the
parameters in Table 4 are not readily available. (The sub-model parameters
are accomanied by precision estimates.) However, our primary concern has
been to build a proper forecasting model for noisy data, and the precision
parameter of the in sample fit is not crucial in pursuing the best forecasting
model.

First, let Nobs
t+k(v) and V obs

t+k(v) denote the observed number and average

weight of fish in weight class v at time t + k. Furthermore, let N̂t+k|t(v)

and V̂t+k|t(v) denote the corresponding conditional k-step-ahead predictions,
conditioned on all observed quantities at time t, and on the observed number
of removed (lost, slaughtered, wasted) and stocked fish as well as on the sea
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temperature and the number of daylight hours at times between t + 1 and
t + k. The following fitting criterion takes into account prediction errors
for numbers and average weights for the first seven weight classes and for
prediction horizons from one month to one year:

12∑
k=1

(√√√√ T∑
t=1

6∑
v=0

(
wN(N̂t+k|t(v)−Nobs

t+k(v))
)2

+

√√√√ T∑
t=1

6∑
v=0

wV (v)
(
V̂t+k|t(v)− V obs

t+k(v)
)2
)
,

(11)

where t = 1, 2, . . . , T are months over the data period 2002–2007 and wN and
wV (v) are weights chosen to give a reasonable balance between weight classes
and between numbers and average weights of fish. The weights for numbers

are given by wN = 1/N
obs

, where N
obs

is the sample mean of the observed
number of fish over the entire data period. The first term of the criterion
(11) then consists of a sum of relative prediction errors for the number of
fish. The weights for average weights put more emphasis on the dominating
weight classes, defined as wV (v) = Nt(v)obs/Nobs

t . Since data in the upper
weight classes (v = 7 − 10) are scarce and very variable, these weight class
are ignored in the estimation.

Model for number of fish stocked and other sub-models

Typically, a lot of fish are stocked in some months (late spring and early
autumn) and very few are stocked in other months. There is, in principle,
no upper limit on the number of stocked fish, but a lower limit at 0. The
number of fish stocked at month t is modelled as a gamma distribution;

N I
t ∼ Gamma(λt, σt). (12)

Here, λt is the expected value at month t given by

λt = s(t) + βλ1 sin
(2πt

12

)
+ βλ2 cos

(2πt

12

)
,

where s(t) is a smooth trend over the data period with four unknown pa-
rameters (see Appendix F for details) and the βs are unknown regression
coefficients expressing seasonal variation. The corresponding standard devi-
ation σt is a function of the expected value, given by σt = σ0(λt)

δ, where
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δ and σ0 are unknown parameters. In terms of a standard gamma distri-
bution parameterisation, shapet = λ

2(1−δ)
t /σ2

0 and scalet = λt/shapet. This
distribution allows for a seasonally varying relative variance (or coefficient of
variation).

The models for number of fish lost, slaughtered and wasted (Appendix
C) are more or less similar. Furthermore, there is a model for the gutted
weight of slaughtered fish (Appendix D), and a model for the sea temperature
(Appendix E).

All the sub-models, except for the model for the standing stock, are esti-
mated separately by Maximum Likelihood (Pawitan, 2001), by numerically
maximising the log likelihood or by using standard software for generalised
linear models. For each of the sub-models (and for each weight class), the
parameters are estimated conditional on all other data. We assume, for ex-
ample, that the number of fish Nt−1(v) is known when estimating the loss
model (C.3) for NL

t (v).
Our sub-models are richer than what is common in the literature (Rizzo

and Spagnolo, 1996; Ferreira et al., 1998; Gangnery et al., 2001). The sub-
models are not deterministic, to better represent the actual possible variation
between months and years in stocking, loss, slaughtering and waste. Assum-
ing deterministic sub-models for (e.g.) stocking would underestimate the
uncertainty in future loss and standing biomass due to uncertain and time-
varying loss, and hence produce worse predictions.

Predictions with uncertainty

The fitting criterion (Equation (11)) we used to estimate the standing

stock model involved in the conditional k-step-ahead predictions N̂t+k|t(v) of

numbers and V̂t+k|t(v) of average weights, where we conditioned not only on
data known at time t, but also on observed values of stocked and removed fish
and sea temperature between time t+ 1 and t+ k. However, in an ordinary
prediction situation, these additional variables are unknown and must be
predicted as well, by their respective sub-models. To take into account their
prediction uncertainties, Monte Carlo simulated values from the sub-models
are used.

Even if the number of stocked and removed fish and the sea temperatures
between time t+1 and t+k were known, there would be a discrepancy between
predicted and observed values, due to model and observational error. To take
this uncertainty into account, we compute empirical prediction errors from
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the historical data, and add samples from these to the predicted values to
get a predictive distribution (Appendix B).

Our procedure may be summarised as followed: To predict future states,
we i) condition on the present data known at time t, ii) sample future random
numbers between time t+1 and t+k for every term in the model that follows
a distribution (e.g. the gamma distribution for the number of fish stocked),
iii) compute the number and weight of fish the next k months and iv) add a
sample of empirical prediction errors for numbers and average weight. This
procedure is repeated B times. The prediction is equal to the sample mean
of the B simulations for each future point in time. To distinguish these
unconditional predictions from the conditional ones, we use the notation
Ñt+k|t(v) etcetera. A 90% prediction interval is correspondingly found from
the 5% and 95% quantiles of the simulations.

Validation

To demonstrate that the model provides sensible and robust predictions,
we validate the predictions by out-of-sample validation. Starting with two
years of historical data (2002 and 2003), we estimated parameters based
on these data and predict the next year. For each prediction month, we
compared the prediction with the actual data and computed the prediction
error. Next, we used two years plus one month of historical data, two years
plus two months of historical data, and so on. Based on this, we computed
the mean relative prediction error k months ahead, given the observation Yt+k
of one of the quantities of interest (for instance Nt+k), and the corresponding

prediction Ỹt+k|t at time t;

1

T − k − t1 + 1

T−k∑
t=t1

|Ỹt+k|t − Yt+k|
Yt+k

(13)

for k = 1− 12 months, where t1 is December 2003.
For comparison, the same criterion (13) was computed for a naive predic-

tor, which was chosen to be the last observed value. For one month ahead
prediction, this is the value of the current month.

The naive predictor is expected to perform worse if the seasonality is
strong, and therefore the comparison may be unfair, yet it is simple and easy
to understand. Since the data are quite stationary, a simple regression model
with a linear time trend and seasonal variation could be an alternative and
improved naive predictor. However, even if such an empirical predictor can
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give reasonably good predictions within the present historical data, it will
neither be useful in the future if important aspects, such as the stocking
strategy, changed, nor in different what-if analysis. Therefore, an improved
naive predictor is not a realistic alternative to our more causal model, which
satisfies the balance of numbers and mass.

Scenarios for stocked fish or slaughtering strategy

The model can also be used for investigating what-if scenarios. This
means that we replace simulations from one or more of the sub-models with
certain scenarios for those quantities. For instance, one may be interested in
developing a production strategy that gives less seasonal variations than to-
day. This can be investigated by changing stocking or slaughtering strategies
according to given scenarios and study the corresponding changes in seasonal
patterns for standing stock or gutted slaughtered biomass.

Scenarios can also be useful if the approximate number of smolt to be
set out is known some months in advance. Then, using the known number
of future stocked fish instead of the predicted numbers from our stocking
model may improve the precision of the predictions of the standing stock
considerably.

Results

Parameter estimation

[Figure 3 about here.]

The various sub-models were estimated for each of the three regions
(South, Mid, Northern Norway) separately on the data from 2002 to 2007.
The estimated growth as a function of the sea temperature for four weight
classes in Mid Norway is displayed (Figure 3). The relative growth decreases
along with increasing weight, and has a maximum when the sea temperature
is around 11-12◦C.

There are plenty of parameters in the model (but not more than what is
justifiable from the amount of data). Many of the parameters are not directly
interpretable. Estimates for the most important parameters (the parameters
in the model for the standing stock) are supplied for the three regions (Table
5). The intercepts (βf0,0, β

f
0,1, . . . ) of the growth growth model (1) generally

decrease with increasing weight class (in agreement with Figure 3). For
equal sea temperature and number of daylight hours, the growth is generally
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lower in the North. Both the sea temperature and the number of daylight
hours growth parameters imply a concave growth function (βf1 and βf3 are
positive, βf2 and βf4 are negative) for all three regions. The variance intercept
terms (βγ and βγ0 ) and the weight of stocked fish intercept terms (βI0) are
all quite similar across the regions (after the transformation (6)). Of the
corresponding seasonal fluctuations, the absolute values of the parameters
for the seasonally varying weight of stocked fish (βI1 and βI2) for the Northern
region stand out as high.

[Table 5 about here.]

Predictions with uncertainty

We display two examples of predictions with uncertainty, based on aggre-
gation of regional results to make predictions for Norway (the predictions in
Figures 4–5 are based on B = 1 000 simulations). The results are shown for
weight classes 0–5, since the upper ones are of marginal interest.

The predicted biomass in each weight class (Figure 4) is increasing, in line
with the historical trend, and approximately proportional to the predicted
number of fish (not shown), because the biomass is the product of the number
of fish and their average weight. The latter is quite stable over time and is
predicted with rather high precision (results not shown).

The predicted slaughtered biomass of gutted fish (Figure 5) displays
a more diverse picture, also because the slaughtered biomass historically
has been more variable than the current stock quantities. The slaughtered
biomass is quite uncertain due to uncertainty in both numbers and weight,
as well as historically changing slaughtering strategies.

Generally, the relative uncertainty is increasing with prediction horizon
and weight class, as expected.

[Figure 4 about here.]

[Figure 5 about here.]

Model validation

To investigate the goodness of the model fit, we performed out-of-sample
validation of the predictions on the data for the period 2004–2007 (at least
two years are used for estimating the model). The mean relative prediction
error (13) for the biomass is shown (Figure 6). As expected, the prediction
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error generally increases with the prediction horizon and the weight class.
The model based predictions are better than the naive predictor in the short
run, and approximately equal to the naive predictor twelve months ahead.

The results for the numbers of fish (not shown) were very similar. As
explained above, this is because the average weight per fish per weight class
is both stable over time and predicted rather precisely.

The mean relative prediction error for the slaughtered biomass is pre-
sented (Figure 7). The results for weight classes 0–2 are of marginal interest,
and therefore not shown here, since most of the slaughtering takes place in
weight classes 3–5. Here, the results based on the model are slightly bet-
ter than the naive predictor, but the prediction error is large (20–40%) for
both predictors, and at its lowest (20%) in weight class 4, where most of the
biomass is being slaughtered.

We also estimated how often the prediction intervals were violated. The
results (not shown here) indicate that the uncertainty is somewhat underes-
timated.

[Figure 6 about here.]

[Figure 7 about here.]

What-if scenarios for stocking strategy and slaughtering strategy

We performed a scenario analysis on stocking strategy to demonstrate
how the model can be used for what-if analysis to investigate consequences
of potential changes in production strategy.

One problem in the production has been the strong seasonality, which to
some extent forces the amount of slaughtered fish to be driven by the supply
and not by the demand of fish. Therefore, it is of interest to investigate if
other production strategies can give a more stable production over time.

Traditionally, most fish have been stocked during spring and autumn (see
Table 2). As a hypothetical alternative to the current practice, we assumed
a scenario where all the fish were stocked during the spring. This is an ex-
treme stocking strategy, but provides a good illustration of the model. We
compared the results with a scenario where the current stocking strategy
was followed as predicted by our stocking sub-model (Equation (12)). The
slaughtering strategy was the same in the two scenarios, given by our slaugh-
ter model to represent the current strategy. Predictions for the two scenarios
are displayed (Figure 8), conditioned on the situation in December 2007 (the
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prediction intervals depicted in Figure 4 are not shown here). Since the
predictions for the first months depend highly on the initial conditions, we
produced forecasts up to four years ahead, to see the long term effect of the
stocking strategy. For weight class 0, the stocking strategy resulted in a more
pronounced seasonality. For weight classes 2 and 3, the seasonal variation
was reduced a great deal. For weight classes 4 and 5, however, the reduction
is less, due to the high number of fish being slaughtered during the autumn.

[Figure 8 about here.]

Slaughtering is not only governed by changing prices. Sometimes there is
a need to slaughter to avoid too many fish in the upper weight classes. Our
second scenario therefore combines the stocking scenario (Figure 8) with a
slaughtering strategy where (as far as possible) an equal amount of fish is
slaughtered each month in weight classes 3–5 (Figure 9). There is little
slaughtering in weight classes 0–2 (Table 3), and we use the sub-models for
slaughtering from these weight classes. The result (compared to Figure 8) is
quite few changes in weight classes 4 and 5. This demonstrates that, allowing
for a stocking strategy, a flat slaughtering strategy is possible with quite few
consequences for the standing stock.

[Figure 9 about here.]

Discussion

We have described a statistical model to predict the stock of Norwegian
farmed salmon. The model was designed for our unique data set, where pro-
duction data from all Norwegian fish farms have been electronically collected
into the database Havbruksdata since 2002. The model starts with the num-
ber and the weight of fish in a weight class. We computed how many fish
that remain in a weight class and how many that grow into the next weight
class. In addition, we modelled the number of new fish stocked, lost, slaugh-
tered and wasted. Based on the statistical validation, we concluded that the
model provides sensible predictions with uncertainty of future production of
Norwegian farmed salmon. In addition to prediction, the model can be used
for what-if scenarios, particularly for testing the effect of changed stocking
and slaughtering strategies.

The growth rate of individual farmed salmon (from the same age class)
depends on their weight, temperature in the sea, light conditions given by
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geographical location and amount of feed (Gardeur et al., 2001; Mørkøre
and Rørvik, 2001). We have chosen to disregard feed consumption to ex-
plain growth, since it is difficult to separate the effect of feed consumption
from the effects of sea temperature and seasonality. Other factors may im-
pact production, such as a suboptimal environment, reduced fish health and
technological challenges. However, the influence of these factors are not sys-
tematic and therefore almost impossible to model and predict. Usually these
factors will influence on a smaller part of the production and will therefore
not have a major influence on the estimated values.

Our model can be compared with the framework of a size-structured or
stage-structured model (Quinn and Deriso, 1999). However, we go beyond
the standard stage-structured model, since both the number of fish and the
average weight of fish in each weight class (stage) are modelled, and we
estimated the unknown weight distribution of fish in each weight class to
accomplish this.

The parameters of our model were estimated from and validated on one
coherent data set. In contrast to similar models in the literature, which
usually are deterministic, our sub-models are stochastic to better represent
the actual variation in stocking, loss and slaughtering.

One may wonder why the regional approach, where data are aggregated
over multiple farms, was used instead of a set of single-farm models. This
was not a feasible option for two reasons: i) The data are far from error free.
Even though all farmers are obliged to report each month, data from a few
farms were missing each month. The proportion of missing farms was known,
and the data were scaled up to avoid bias. However, even with all farms
reporting their numbers, the numbers themselves are not error free. The
impact of these errors was reduced when aggregating over multiple farms. ii)
Individual farm data are protected and can not be used without a written
consent.

Forecasting production fluctuations may be an important tool for opti-
mising the production planning for Norwegian fish farms, especially since
large companies represent the majority of the Norwegian production. There
is a range of interesting what-if scenarios to investigate. We have already
studied a stocking and a slaughtering strategy. One could also study the
effect of changing framework conditions, for example: i) High prices lead to
excess slaughtering in weight class 3, resulting in fewer fish in weight classes
4 and 5 later on. ii) Fish diseases lead to obligatory slaughtering of half the
fish in weight class 2 in a particular month. iii) The number of stocked fish
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is halved one year due to smolt production problems. iv) Increased spring
slaughtering is needed to cope with increased demand during the spring.

Any animal production involving cycles may benefit from this tool, since
it takes quite some time between the time a producer decides to expand the
production, and the time those animals have reached their slaughter weight.
Both for livestock and farmed fish, the long and short term impact of market
prices can be built into the model.

The model is, however, a first attempt at predicting the production, and
can be improved in many ways. Since the balances of number and mass are
not always correct, there are inconsistencies in the data. An improved model,
where inconsistent data were weighted down, could provide even better pre-
dictions.

To achieve that goal, and avoid our somewhat ad-hoc approach, we advo-
cate the use of Bayesian hierarchical models (Gelman et al., 2004) within a
state-space framework (Durbin and Koopman, 2001). This allows for seper-
ate modelling of the system process and the data process. The system process
is essentially the theoretical model for the standing stock and the sub-models.
The data process describes the observable quantities, measurement errors
and how the data are connected to the system process. Still, how to properly
balance the numbers and weight of fish, as well as the short and long term
performance of the model, continues to be a challenge.
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Appendix A The weight distribution in one weight class

We have assumed that the weight w of fish in weight class v is beta
distributed between v and v+1. If we write w = v+x, where x is the weight
that exceeds the lower limit in the weight class, x is beta distributed between
0 and 1 with density

h′(x; p, q) =
Γ(p+ q)

Γ(p)Γ(q)
xp−1(1− x)q−1 = xp−1(1− x)q−1/B(p, q), (A.1)

where we use h′(·) to distinguish it from the shifted distribution h(·) between
v and v+1. Here p > 0 and q > 0 are parameters, Γ(·) is the gamma function
and B(p, q) = Γ(p)Γ(q)/Γ(p + q). The relation between p and q and the
parameters µ and γ we used in the model for the standing stock, are found
from:

Expected value = µ = (V obs
t − v) =

p

p+ q
,

Variance =
pq

(p+ q)2(p+ q + 1)
= γ(µ(1− µ))

⇓

γ =
1

p+ q + 1
.

(A.2)

The parameter γ is between 0 and 1, since both p and q are greater than 0.
Using the definition of the beta density (A.1), we may write

x · h′(x; p, q) = x · xp−1(1− x)q−1/B(p, q)

=
B(p+ 1, q)

B(p, q)
xp(1− x)q−1/B(p+ 1, q)

=
B(p+ 1, q)

B(p, q)
h′(x; p+ 1, q).

The average weight V ∗t (v, v) of those fish that will remain in their weight
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class v, given in Equation (8), can be computed by

V ∗t (v, v) =

∫ v′

v
w · h(w; p, q)dw

a

=

∫ v′−v
0

(x+ v)h′(x; p, q)dx

a

=

∫ v′−v
0

xh′(x; p, q)dx

a
+ v

∫ v′−v
0

h′(x; p, q)dx

a

=
B(p+ 1, q)

B(p, q)
·
∫ v′−v

0
h′(x; p+ 1, q)dx

a
+ v.

Here, a is the proportion of fish remaining in the weight class v in month t,
defined in Equation (3). To simplify the notation, the indices v and t are
here omitted from h, h′ and a.
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Appendix B Empirical prediction errors

The model for the standing stock, conditioned on the values of removed
and stocked fish and sea temperatures, is essentially deterministic. The rea-
son is that we require a model that is causal in structure and strictly fulfils
the principles of balance of numbers and biomass. This is easier to achieve in
a deterministic model. However, the data contain measurement errors and
the model is not perfect (model error). To take this uncertainty into account
when calculating the prediction uncertainty, we calculate empirical residuals.
Then we add samples from these empirical residuals to the predicted values.

The empirical k-step ahead prediction errors are the differences between
predicted and observed values,

êNt+k = N̂t+k|t(v)−Nobs
t+k(v)

êVt+k = V̂t+k|t(v)− V obs
t+k(v).

For each time point t, a consecutive series of empirical prediction errors is
calculated for k = 1 up to usually k = 24 for both numbers and weight,
to keep the correlation structure between prediction errors of numbers and
weight and between different prediction horizons. When predicting, we first
predict for the entire prediction horizon, and then add a sample of the cor-
related prediction errors afterwards. When predicting 24 months ahead, this
sample consists of 24 consecutive prediction errors from one historical 24
month prediction. This is repeated several times, giving a distribution of the
prediction errors.
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Appendix C Sub-models for number of fish lost, slaugh-
tered and wasted

When updating the number of fish in each weight class from one time
point to the next, the order of the different steps influences the result. The
fish removed at each time step is the sum of fish lost, slaughtered and wasted.
First, we update the number of fish lost, then the number of fish slaughtered
and wasted and finally the growth of the fish remaining, where some fish
grow into the next weight class. In addition, the stocked fish are added in
weight class 0.

Therefore, the number of fish lost at time t in weight class v can at most
be the number of fish in that weight class at time t−1. For a given probabil-
ity pLt,v, the number of fish lost NL

t (v) is binomially distributed (pLt,v, N
L
t (v)).

To allow for over-dispersion, we further assume that the probability pLt,v is
stochastic and follows a beta distribution with expectation πLt,v and an addi-
tional parameter aLv , where aLv corresponds to the parameter p in Equation
(A.1). The expectation πLt,v depends on the time and the weight class, while
aLv depends on the weight class only. The number of fish lost is therefore
beta-binomially distributed (Agresti, 2002),

NL
t (v) ∼ Beta-binomial

(
πLt,v, a

L
v , Nt−1(v)

)
. (C.3)

The expected proportion or probability πLt,v is modelled as a smoothly varying
trend, using a logit link where the linear predictor is a smooth function of time
(Appendix F) plus a seasonal adjustment with one parameter per month.

After fish lost have been removed, there are Nt−1(v) − NL
t (v) left. Let

NSW
t (v) = NS

t (v)+NW
t (v) be the sum of slaughtered and wasted fish. Similar

to fish lost (NL
t (v)), NSW

t is modelled as a proportion of remaining fish,

NSW
t (v) ∼ Beta-binomial

(
πSWt,v , a

SW
v , Nt−1(v)−NL

t (v)
)
.
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Appendix D Model for weight of slaughtered fish

Monthly data are available for mean gutted weight of slaughtered fish
in each weight class, which is lower than the weight of live fish. The gut-
ted weight of slaughtered fish is assumed to be proportional to the weight
per fish in the same weight class in the same month, and follows a gamma
distribution;

V G
t (v) ∼ Gamma

(
βGv,t · Vt(v), aGv

)
,

where the product βGv,t · Vt(v) is the expected value per month and aGv is
the shape parameter. In addition, we let the proportionality factor βGv,t vary
smoothly with time (Appendix F). This model, as opposed to Equation (12),
falls into the generalised linear modelling framework (McCullagh and Nelder,
1989).
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Appendix E Model for sea temperature

The sea temperature affects the growth. Hence, to predict and simulate
future possible growth, we have to predict and simulate the sea temperature.
We assumed that the temperature varies randomly around a seasonal term,
and that the temperature may not deviate too much from this trend, where
the deviations (residuals) are modelled as an AR(1) process:

STt = Λt + εt,

εt = αεt−1 + wt,

where wt ∼ N (0, σ2
ST,). Here, Λt is a seasonal term described by seven

parameters:

Λt = βST0 + βST1 sin
(2πt

12

)
+ βST2 cos

(2πt

12

)
+ βST3 sin

(4πt

12

)
+ βST4 cos

(4πt

12

)
+ βST5 sin

(8πt

12

)
+ βST6 cos

(8πt

12

)
.
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Appendix F Time trend

In the models for the number of stocked fish, the number of fish lost,
slaughtered and wasted and weight for slaughtered fish, we use a smooth
time trend to handle changes in the overall level over time. Such changes
may occur due to improved farming in some sense (fewer deaths) or changed
routines, like gradually slaughtering heavier fish. The time trend is modelled
by B-splines (Eilers and Marx, 1996). A B-spline of degree q consists of q+1
polynomial pieces, each of degree q, on n′ intervals. Let t = 1, 2, . . . , T be
the historical times (number of months since the first observation). Then the
time level is given by the linear combination

s(t) =
r∑
l=1

αlbl(t), (F.4)

where bl(t) denotes the lth B-spline with regression coefficient αl and r is
the number of equidistant B-splines covering the interval [1, T ]. We chose
B-splines for their flexibility, and at the same time they fit in the linear
regression modelling framework. A further improvement would have been
to include penalties to facilitate further flexibility, while still controlling the
effective number of parameters (Eilers and Marx, 1996).

When adding extra parameters, as we did for the time trend, we ran
the risk of over-fitting. Partly by considering Akaike’s Information Criteria
(Pawitan, 2001), we saw that the time trend was justified, with q = 2 and r =
4 in (F.4), at least for the major weight classes (0-5), which are the important
ones. This criterion has also been used for selecting the sea temperature
model (Appendix E).

When predicting, we used s(T ) for all future time points. Hence, we
assumed a constant level for future time points, since we did not assume
that we can predict future time level changes.
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Table 1: Overview of data and notation. (#) denotes observable quantities.

(a) Total numbers and numbers per weight class and month t. Note that Bt =∑10
v=0Bt(v), Nt =

∑10
v=0Nt(v), V B

t = Bt/Nt, etcetera.

Biomass Number of fish Weight per fish Description
(#) Bt (#) Nt (#) V B

t Standing stock
BL
t (#) NL

t V L
t Lost

BS
t (#) NS

t V S
t Slaughtered

(#) BG
t as above (#) V G

t Gutted (slaughtered)
BW
t (#) NW

t V W
t Wasted

BR
t (#) NR

t V R
t Lost, slaughtered and wasted

BI
t (#) N I

t V I
t Stocked (in weight class 0)

(#) Bt(v) (#) Nt(v) (#) Vt(v) At time t in weight class v
Nt(v, v − 1) Vt(v, v − 1) At time t in weight class v,

who were in weight class
v − 1 at time t

(b) Other quantities.

Description
(#) STt Sea temperature
(#) Dt Number of daylight hours

ft,v Growth function
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Table 2: Distribution of Norwegian farmed salmon data per month (in percentage of
yearly quantities), computed as sample averages over the data period 2002–2007; number
of fish in the standing stock (Nt), standing biomass (Bt), number of fish lost (NL

t ) and
slaughtered (NS

t ), gutted slaughtered biomass (BG
t ) and number of stocked fish (N I

t ).
Nt Bt NL

t NS
t BG

t N I
t

Jan. 7.7 % 8.5 % 6.3 % 7.3 % 7.6 % 0.4 %
Feb. 7.3 % 8.1 % 5.2 % 6.7 % 7.0 % 0.4 %
Mar. 7.0 % 7.6 % 5.2 % 8.0 % 8.2 % 2.0 %
Apr. 7.3 % 7.3 % 6.2 % 7.5 % 7.3 % 12.0 %
May. 8.7 % 7.2 % 9.0 % 8.2 % 8.1 % 29.5 %
June 9.0 % 7.2 % 13.3 % 8.4 % 8.2 % 13.4 %
July 8.7 % 7.8 % 11.2 % 7.6 % 7.3 % 3.7 %
Aug. 8.6 % 8.6 % 10.1 % 7.9 % 7.6 % 4.5 %
Sept. 8.9 % 9.2 % 9.0 % 8.8 % 8.6 % 13.5 %
Oct. 9.3 % 9.6 % 8.5 % 9.5 % 9.6 % 14.3 %
Nov. 9.1 % 9.6 % 8.5 % 10.2 % 10.6 % 5.1 %
Dec. 8.6 % 9.2 % 7.6 % 10.0 % 10.0 % 1.1 %
Total 100 % 100 % 100 % 100 % 100 % 100 %
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Table 3: Summary of Norwegian farmed salmon data per weight class (average quantities
per month, computed as sample averages over the data period 2002–2007). Number of
fish lost (NL

t ) and slaughtered (NS
t ) is given in percentage of the number of fish in the

standing stock (Nt) in each weight class. Biomass (Bt and BG
t ) is given in 1 000 tonnes,

number of fish (Nt and N I
t ) is given in 1 000 000.

Nt Bt NL
t NS

t BG
t N I

t

Weight class 0 93.2 38.2 1.7 % 0.2 % 0.1 19.4
Weight class 1 44.5 64.9 0.8 % 0.4 % 0.3 –
Weight class 2 27.6 68.0 0.5 % 1.2 % 0.9 –
Weight class 3 21.3 74.2 0.6 % 5.9 % 5.0 –
Weight class 4 16.6 74.0 0.7 % 24.5 % 19.3 –
Weight class 5 7.7 41.6 0.6 % 38.8 % 16.5 –
Weight class 6 1.9 12.2 0.5 % 38.6 % 4.7 –
Weight class 7 0.4 2.7 0.6 % 38.0 % 1.0 –
Weight class 8 0.1 1.1 0.9 % 30.7 % 0.3 –
Weight class 9 0.1 0.5 1.3 % 16.8 % 0.1 –

Weight class 10 0.0 0.3 1.7 % 21.6 % 0.1 –
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Table 4: Overview of unknown parameters in the model for the standing stock.

Parameter Parameter group Eq. Description

βf0,v Growth (1) Intercept growth, weight class v

βf1 , βf2 Growth (1) Sea temperature driven growth

βf3 , βf4 Growth (1) Daylight hours driven growth

βf5 , βf6 Growth (1) Seasonal growth
βγ Weight distribution within Intercept dispersal,

a weight class weight class v ≥ 1
βγ0 Weight distribution within (5) Intercept dispersal,

weight class 0 v = 0
βγ1 , βγ2 Distribution within (5) Seasonal dispersal,

weight class 0 v = 0
βI0 Weight of stocked fish (10) Intercept weight
βI1 , βI2 Weight of stocked fish (10) Seasonal weight
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Table 5: Values for of the estimated parameters in the model for the standing stock for
each of the three regions (confer with Table 4 for a description of the parameters). Some
parameters are listed pairwise. For example, for Mid Norway, βf

0,0 = −3.9 and βf
0,1 = −4.1.

Regions of Norway
Parameter Parameter group Southern Mid Northern

βf0,0, β
f
0,1 Growth –3.9, –3.8 –3.9, –4.1 –4.6, –5.2

βf0,2, β
f
0,3 Growth –4.2, –4.5 –4.4, –4.6 –5.3, –5.6

βf0,4, β
f
0,5 Growth –5.3, –4.8 –5.2, –5.6 –6.0, –6.1

βf1 , βf2 Growth 0.22, –0.0077 0.43, –0.019 0.51, –0.021

βf3 , βf4 Growth 0.16, –0.0062 0.040, –0.00092 0.15, –0.0049

βf5 , βf6 Growth –0.034, –0.19 0.024, –0.060 0.32, –0.026
βγ Weight distribution –0.70 –0.61 –0.61
βγ0 Weight distribution –0.79 –0.65 –0.81
βγ1 , βγ2 Weight distribution –0.11, 0.16 –0.10, 0.079 0.0019, 0.22
βI0 Weight of stocked fish –2.0 –1.7 –2.2
βI1 , βI2 Weight of stocked fish –0.10, –0.66 –1.3, –0.55 –2.4, 0.44
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