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Abstract. This paper describes tools for character string recognition on
maps. Single character recognition is performed using elliptical Fourier
descriptors applying a statistical classifier. The recognized characters are
grouped into strings, and the syntax of these strings are then analysed
to detect and correct errors. As training of the classifier is essential, tools
for manual and automatic training and updating are included.

1 Introduction

The use of geographical information systems is increasing, and for such systems efficient
acquisition of cartographic data is crucial. Often the information is contained in paper-
based maps. Manual digitizing of maps is a costly and tedious process, and automation
is therefore desirable. Automatic map conversion includes both extraction of lines and
symbol recognition. The system described here performs both tasks, but this paper
focuses on the recognition phase.

Symbol recognition in maps poses a more complex problem from that of traditional
OCR. The symbols may be intermixed with graphics, printed at varying angles with
several fonts or handwritten. We have used a feature based approach, applying a statis-
tical classifier. In [1] methods based on transformations or series expansions are said to
be robust to rotation, style variation, and distortions. We have therefore used features
based on the Fourier expansion [2] [3] which have shown good results [4].

In a complete recognition system efficient tools for training are necessary. In this
system we have included tools for both training and automatic updating of the sta-
tistical descriptions. Using these tools it is possible to obtain good class descriptions
from an initial manually obtained training set of minimal size.

The recognition of character strings is performed stepwise. First the single charac-
ters are classified based on class descriptions obtained during a training phase. Then,
the symbols are grouped to obtain informative strings. Finally, syntax analysis is used
to check the strings against a grammar defining legal numbers and words.

2 Recognition of single raster symbols

From the binary image of the map, the symbols are first separated from other struc-
tures (sec. 2.1). Next, the characteristic features are extracted (sec. 2.2). Based on the
features the symbols are classified (sec. 2.4), and at the same time the rotation of the
single symbols can be determined (sec. 2.3). The statistical approach also requires a
training phase where the extracted features are used to obtain a statistical description
for each class (sec. 2.5).

2.1 Segmentation

During segmentation, the connected components of foreground pixels are extracted.
From the contour of these connected components, certain parameters are analysed
to determine whether this may be a symbol candidate. The technique is simple, but
problems may occur if symbols touch or if they are fragmented. The problem of symbols
touching lines may be eliminated by performing line extraction prior to recognition.



2.2 Feature extraction

The features are based on the Fourier expansion of the contour of the symbols, and
can easily be made invariant to scale, shift and rotation. The coefficients of each term
n of the Fourier expansion will be denoted (an, bn, Cn, dn). Two methods for deriving
features from the Fourier coeffecients are presented below. The features are robust to
noise and style variations, but can be sensitive to deformations of the contours.

Lin & Hwang’s method. Lin and Hwang [3] presented the following set of descriptors :

In =ai+b+ci+d2

Jn = Qn dn - Cnbn

Konpn = (a2, + b2) (a2 + b2) + (2, + d2,)(c2 + d2) + 2(amem + bmdm ) (ancn + bndy)
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These descriptors are independent of rotation, and can be made independent of scgmlg
by diving the I- and J-terms by J; and the K-terms by J?. K., defines the relationship
between the ellipse resulting from term m and n. We have used Ky, with m = 1. Knp,
is always positive, and to be able to separate a symbol from its reflection, K1, should
have different sign dependent of the sign of 81,. (Hln is the difference in angle between
the 1’st and n’th ellipse). This is obtained by computing a sign function:

SIGN = (ancn + bndn)(ci +di —af = b7) + (arc1 + bidi)(cn + dfy — ap, = 07)  (2)

The sign of K1, is determined by SIGN. If the ellipse corresponding to the first or the
nth term of the expansion is circular, the expression above is zero and K1, is undefined.

Kuhl & Giardina’s method. Kuhl and Giardina [2] derive features independent of the
starting point on the contour as follows:

[aii CZ] _ [ cosnfr sin n61] [an Cn:| 8, = Larctan[Zitited) ] (3)
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The descriptors, a,, b}, c), and d},, can be made independent of rotation by:

|:a::* br*z*:| _ |: cos 1y sin ¢1:| [ig 27*:1:| ?)1 = arctan |::—11Z:| (4)
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91, 1s the angle of the semimajor axis of the 1’st ellipse. These descriptors can be made
independent of scale by dividing each term by the magnitude of the semimajor axis.

The equation for ¢1 has two equivalent solutions, which give rise to different values.
To uniquely determine 1, we require it to always be positive. If it is negative, we add
7 radians to the original ¢; and repeat the computations above. This method may fail
for symbols where the angle of the semimajor axis varies around 0 or 7 radians.

If the first ellipse is circular, the equation for §; cannot be solved, and an alternative
approach for determination of ¥; suggested in [2] is used. However, this approach will
fail if the symbol itself is circular. Moreover, in case of handprinted characters, the first
ellipse may be circular for some symbols and not for other symbols of the same class,
giving a non-uniform determination of .

2.3 Computation of rotation angle

On maps there is usually not a general orientation for the symbols and text strings, and
the orientation must be found separately for each symbol. We have here used a method
for determining this rotation angle which makes it possible to compute the angle and
the descriptors (Kuhl and Giardina’s) simultaneously [5]. The rotation angle, w, of a
symbol is here determined as:

w=t— (5)



where 1 is the orientation of the semimajor axis of the first ellipse and ¢ is the mean
of the axis angle computed for non-rotated symbols of known class during training. ¥
is given by equation (4) while ¥ has to be determined from the training symbols.

The problem of non-uniquely determination of the axis angle, can here be solved
for the training case by always choosing the one of the two axis-angles which is closest
to that of the previous symbol of each class. The classification may then later be
performed for both the two possible axis-angles, choosing the axis angle giving the
largest probability. Still, the computation of rotation angle will fail if the first ellipse
is circular. However, if the symbol itself is circular, the rotation has no meaning.

2.4 Classification

For the classification we have used Bayes’ classifier [6], which assigns a feature vector
y to the class ¢ which maximizes the posterior probability:

mefe(y)

c
2= Tk IR(Y)
Here C' 1s the number of classes, 7. is the prior probability density for class ¢, and

fe(y) is the probability of y given that it belongs to class c. We assume fc(y) to be a
Gaussian distribution:

Plely) = (6)
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fC(y) =

with covariance matrix Y. and mean vector p.. d is the size of the feature vector.

If P(c|y) is not comparatively large for any class, the symbol is classified as doubt.
If f.(y)is very small for all classes, the symbol is classified as outlier. Doubt may occur
for very similar classes, while outliers may occur for non-symbols wrongly accepted as
symbol candidates.

Figure 2.4 shows the result when Kuhl and Giardina’s rotation invariant descrip-
tors are applied to a part of a naval chart with handwritten depths. Ten features from
the first three terms of the Fourier expansion were used. The sign @ indicates sym-
bols classified as outliers. Numbers which were connected to lines or other symbols
were not passed to the recognition stage. Also, severly fragmented symbols were lost
during segmentation. These problems may be avoided by using a more sophisticated
binarization or segmentation technique. Symbols connected to depth curves could have
been avoided by performing linefollowing with removal of the underlying raster prior
to recognition. Of the symbols passed to the recognition stage, 92.5% were correctly
classified. A further inspection of the misclassified symbols (see fig. 2.4) revealed that
the digits’ contours were all severly distorted by noise.

2.5 Training and updating

The Bayes’ classifier for Gaussian classes is specified completely by the mean vectors
and covariance matrices, p1, X1, ..., fic, X, which can be estimated through training.

Traditional training Here, the situation is that a training set y = {y5;7 =1,...,mc,c=
1,...,C} is available, where the feature vectors y; are obtained from symbols manually
labelled with the correct class. By maximizing the likelihood function the maximum
likelihood estimates fiq, ..., fic and ﬁl, ...2¢c can be obtained from the training set.
The performance of the Bayes’ classifier improves with more training data, but
the manual labelling process is timeconsuming, and the operator is not necessarily
unbiased when selecting the symbols. However, it is usually inexpensive to get hold of
a large number of unlabelled feature vectors. The next section considers the potential
of using unknown symbols for updating the maximum likelihood estimates, fi1, .., fic

and ﬁl,..,Ec.
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Fig. 1. Handwritten depths (left) and the result from classification (right).
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Fig. 2. Difficult symbols: 0,5,9,2,8,6,3,0,0,5,9,2,8,6,0,3,9,2,0,5.

Automatic updating of parameter estimates. The maximum likelihood estimates from
the previous section may be updated using feature vectors of unclassified symbols. Here
we assume that in addition to the feature vectors, y = {y5;5=1,...,me;c=1,...,C},
with known class labels, another set of unlabelled feature vectors ¢ = {z;;1 =1,..., N}
is available. A feature vector z; of unknown class is assumed to follow the mixture distri-
bution: f(z;) = m fi(zip1, 21)+ -+ 7c fo(xi; pe, o) The simultaneous likelihood

of the two sets y and « is given by:
C me
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Because the class labels of the feature Vectors in ¢ are unknown, the maximum
likelihood estimates must be determined iteratively. This may be done using the EM-
algorithm [7]. The EM equations for the case where maximum likelihood estimates are
to be updated from feature vectors with unknown class, may be considered as natural
generalisations of the EM equations for the case where feature vectors with known
class memberships are available [6]. The necessary equations can be found in [8]. The
parameter values are ensured to converge by the general theory of EM-algorithms [9]
and the limiting values are the updated estimates =}, pr and X} for ¢ = 1,...,C.
Different results using this approach can be found in [10] and [11].

3 Grouping and Syntax Analysis

It 1s usually desireable to group the single symbols resulting from the recognition, into
words and numbers. This is done based on the symbols’ location in the image which



is defined through the coordinates of their bounding box. The ordering of the symbols
is done under the assumption that symbols in a string are always ordered from left to
right. For vertically orientated strings, the symbols are assumed to be ordered from
top to bottom. The result of the grouping is a set of symbol strings.

For the syntax analysis a grammar is defined based on the syntax directed transla-
tion schema (SDTS), described in [12] and used for character recognition in [13]. The
grammar consists of syntax rules for a set of string types, where a string is defined by
an ordered set of substrings. The rules for a substring define the length and the set
of legal basic symbols (alphabet) for the substring. In addition to the alphabet, the
possible translations for the symbols are defined. The length of a substring may vary
over an interval, specified by a minimum and maximum length. A minimum length
of zero indicates that the substring may be skipped. A maximum length of zero, flags
that an extra symbol should be inserted.

All symbols are assigned a list of possible symbol classes, sorted on probability,
during classification. For each symbol, the probability is found as that of the most
probable legal class in the list. This means that if the most probable class, is not a
legal symbol, it will not be considered. If the symbol class itself is not legal, but has
a translation which is legal, the translation is considered. If none of the classes in the
list is legal, the probability of the symbol is zero. In this way, the syntax analysis may
detect and correct classification errors. In addition, symbols like points and commas
which tend to disappear during digitization, can be inserted.

Fig. 3. A part of a naval chart with handwritten depths.

Figure 3 shows a part of a naval chart containing handwritten depth values. To
avoid selecting the dots indicating shallow waters as symbol candidates, the limits for
the smallest symbols were set larger than these dots. However, then the decimal points
were lost as well. To be able to correct these errors, we defined a grammar containing
definitions of two types of strings; single numbers and decimal numbers. We knew the
depths to be below 10 meters and the accuracy of the measurements half a meter.
Hence, we defined the decimal numbers to consist of three parts; first a digit between
0 and 9, then a decimal point and finally the decimal ’5°. For single numbers the legal
classes were the numbers from 1 to 9. Applying these rules, all the numbers were
correctly classified and the commas were inserted correctly.

4 Summary and conclusions

This paper presented different tools for symbol recognition in maps, including single
symbol recognition, parameter estimation, grouping and syntax analysis. Symbol can-
didates are first segmented from the background. Contour based features are extracted



and the symbol is classified based on previously obtained class descriptions. Single
symbols may be grouped into strings, and a final syntax analysis allows for detection
and correction of classification errors.

Combined with the tools for automatic updating of class descriptions, the symbol
recognition provides a flexible and powerful tool for map recognition. However, sym-
bols that are severly fragmented or connected to other symbols or linework, are not
recognized. The most efficient way of solving this problem is to use more sophisticated
methods for binarization, increasing the quality of the binary raster. When this is not
possible; methods for separating connected elements must be usd.

The features used in the system are robust to rotation and style variation. However,
they are sensitive to broken contours, and they are also unable to distinguish symbols,
differing only in the shape of the inner contour. A combination of different features
may solve these problems.
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