
Dialogue Management as Graph
Transformations

Nicholas Walker, Torbjørn Dahl and Pierre Lison

AbstractWe present ongoing work on a new dialoguemanagement framework using
graphs as core representation for the current dialogue state. Dialogue management
tasks such as state tracking and action selection are framed as sequences of graph
transformations that repeatedly update this graph based on incoming observations.
Those graph transformations are expressed using a graph query language, making it
possible to specify all dialogue management operations through a unified, declara-
tive syntax. We argue that graphs are particularly well-suited to model the dialogue
state of complex, open-ended domains. In contrast to traditional dialogue state rep-
resentations that are limited to fixed, predefined slots, graphs can naturally express
dialogue domains with rich relational structures and variable numbers of entities to
track. We describe how dialogue state tracking and action selection can be modelled
in such graph-centric view of dialogue management, using either handcrafted rules
or data-driven models. We also briefly discuss how to account for some aspects
of dialogue management such as uncertainties, incremental inputs and contextual
knowledge. Finally, we describe a proof-of-concept study of this dialogue manage-
ment framework in a human-robot interaction scenario.

1 Introduction

Representing, updating and acting upon the current dialogue state is at the core of
dialogue management. For task-oriented systems, this dialogue state is often repre-

Nicholas Walker
Norwegian Computing Center, Postboks 114, Blindern 0314 Oslo, e-mail: walker@nr.no

Torbjørn Dahl
Department of Informatics, University of Oslo e-mail: torbjd@ifi.uio.no

Pierre Lison
Norwegian Computing Center, Postboks 114, Blindern 0314 Oslo, e-mail: plison@nr.no

1

walker@nr.no
torbjd@ifi.uio.no
plison@nr.no


2 Nicholas Walker, Torbjørn Dahl and Pierre Lison

sented by a fixed, predefined list of slots to fill [19, 16]. However, this representation
in terms of slot-value pairs is difficult to apply to open-ended domains with varying
numbers of entities to track. For example, human–robot interaction tasks must often
keep track of entities such as locations, persons or tasks to perform. Those entities
may vary over time – for instance, the number of persons located in a given room
is not known in advance and may change over the course of the interaction. Those
entities are also connected with one another through various relations, such as a
person being in a room, or a response being an answer to a preceding utterance.

Graphs are well suited to represent such rich relational structures between (ab-
stract or concrete) entities. Graphs, and machine learning models operating on those
graphs (in particular graph neural networks) are also increasingly popular for di-
alogue modelling [6, 9, 5] and generally in NLP [20]. However, such approaches
generally focus on specific dialogue modelling aspects and eschew the more general
question of how to design a full-fledged dialogue manager operating on a dialogue
state expressed as a graph. This paper is a first attempt at answering this question.
We describe how to (1) encode the dialogue state as a property graph and (2) frame
dialogue management as sequences of graph transformations that iteratively refine
this state (and select actions to perform) based on incoming observations.

We also showhow thesemanipulations can be expressed in a graph query language
calledOpenCypher [7] and executed on a graph database. Using a unified, declarative
language for all dialogue operations allows us to clearly separate the domain-specific
logic (which graph operations to execute and on the basis of which inputs) from
implementation issues related to e.g. concurrency and query optimisation (which
are handled by the back-end graph database). It also makes it possible to query
knowledge graphs (expressing background knowledge) using the same syntax.

The proposed approach aims to accommodate both handcrafted rules andmachine
learning models. This ability to combine rule-based and data-driven modules is im-
portant when operating on rich, graph-based state representations, as the complexity
of the resulting state-action space makes it difficult to learn end-to-end models, at
least for domains without large amounts of training data readily available.

We start by briefly reviewing related work on graph-based dialogue management
(Section 2), then sketch our dialogue management approach, with a particular focus
on the representation of the dialogue state and formalisation of dialoguemanagement
tasks with graph transformations (Section 3). Section 4 illustrates this framework
with a case study in human–robot interaction, and Section 5 concludes.

2 Related Work

The use of graphs – or more generally, relational representations – in dialogue man-
agement has been explored in several previous works. Earlier rule-based approaches
to dialogue management often relied on rich formalisations of the dialogue state
encoding the beliefs, desires and intentions of each conversational partner through
logical forms [2, 12, 11]. However, such formalisations are typically limited to high-



Dialogue Management as Graph Transformations 3

level symbolic knowledge, thereby leaving out non-symbolic information such as
spatio-temporal features from the dialogue state. Incremental approaches to dia-
logue processing [17] also rely on relational representations to connect incremental
units with one another through temporal or semantic links.

Graphs have also been used as part of statistical and neural conversational models.
One important instance is the use of probabilistic graphical models such as Bayesian
Networks [18, 14]. However, the “relations“ defined in such models are limited to
conditional probability distributions between random variables, and cannot as such
express other, more semantic relationships. Graph neural networks have also been
employed for dialogue policy learning of slot-based systems, such as in [6].

A number of papers have also focused on the use of knowledge graphs to improve
the quality of dialogue responses. A sequence-to-sequence conversational model
relying on graph embeddings derived from a knowledge graph is presented in [10].
In [8], the authors present a knowledge-grounded conversational model that exploits
a large knowledge graph to derive more content-rich responses to user queries.
The authors of [21, 13] make use of a graph-encoded knowledge base to inform a
dialogue system along with dependency parses of sentences. Finally, [15] show how
to integrate a graph database (expressed as RDF triples) to a social chatbot.

Graph representations are also a core element of conversational semantic parsing,
although the graphs are here limited to relations within a given utterance and do not
typically cross utterance boundaries – although see [3] for an exception that allows
for some semantic relations (references, repairs) across utterances.

The main novelty of the proposed approach is its reliance on a unified graph
to track all variables relevant to dialogue management (including e.g. utterances,
speakers, entitymentions, conversational intents, external knowledge, etc.). Dialogue
state tracking and action selection are then framed as operations that continuously
manipulate this graph to incorporate incoming observations and select new system
actions. Those updates are expressed in a declarative language and run on a graph
database, making it possible to handle concurrent read/write operations and allow
for arbitrarily complex manipulations of the state graph.

3 Approach

The system architecture (illustrated in Fig. 1) revolves around a blackboard design
where various software modules continuously listen for changes (insertion, deletion
or modification of nodes or edges) to the central dialogue graph and generates further
updates to this graph whenever necessary. All updates are specified through graph
queries encoded in OpenCypher [7]. The dialogue state itself is stored using an
in-memory graph database1. The architecture also supports message-passing with
ZeroMQ [1] to allow modules to exchange data that are not relevant for dialogue
management and do not need to be inserted into the dialogue state.

1 See http://www.memgraph.com

http://www.memgraph.com


4 Nicholas Walker, Torbjørn Dahl and Pierre Lison

Fig. 1: General system architecture, with the graph database storing the current
dialogue state at its centre. Each dialogue management module is notified of new
updates to the dialogue state, and may itself submit further updates (expressed
as graph queries). Modules may also receive/submit data to one another through
message-passing. All modules run in parallel and have both an input queue (of
update events to process) and an output queue (of graph queries introducing further
changes to the state), thereby allowing for asynchronous processing.

Modules can be easily plugged in and out of the architecture, and may correspond
to e.g. handcrafted rules or data-driven models. Note that there is no explicit dis-
tinction between dialogue state tracking and action selection – both operations are
expressed using the same graph manipulation mechanisms.

3.1 Dialogue state

We model the dialogue state as a property graph [7], which is graph structure
allowing both nodes and edges to be associated with properties and labels. Property
graphs are often contrasted with triple stores such as RDF, which cannot directly
attach properties to nodes or edges without having to create new entities.

We require each node and edge to have a semantic label such as Utterance,
Speaker, Intent or Location. Those nodes may represent observable entities but
may also express abstract objects such as a task to perform. The labels attached to
each node allow modules to directly filter state updates (for instance, the insertion
of a new Intent will trigger subsequent updates related to action selection). The
architecture does not impose any particular set of labels. However, we do rely on a
number of conventions to account for important dialogue modelling aspects:

Uncertainty: Accounting for uncertainties and partial observability is an impor-
tant consideration in dialogue systems, especially in domains such as human–
robot interaction where observations are often noisy or error-prone. We express
discrete distributions by inserting a central node denoting the random variable
itself and a set of outgoing nodes attached through a special ALTERNATIVE re-
lation, each node corresponding to a distinct value and associated probability.
Discrete conditional distributions between two random variables can be simi-
larly expressed through edges indicating the conditional probability between two



Dialogue Management as Graph Transformations 5

values. This representation can only express a limited form of probabilistic knowl-
edge – in particular, it does not account for uncertainties related to edges, nor
does it capture continuous distributions or conditional distributions with more
than one independent variable. Nevertheless, this representation can express most
common forms of uncertainties in dialogue management, such as N-Best lists and
the probabilistic outputs of machine learning models.

Temporality: Time is a crucial aspect of dialogue management, in particular to
implement flexible turn-taking strategies. To this end, we treat time as a core
component of the graph and associate each node with timestamps expressing its
time of creation and its last update. Entities with a duration (such as Utterances)
also include start and end timestamps. This temporal informationmakes it possible
to 1) explicitly reason over temporal aspects of the interaction and 2) analyse how
the dialogue state evolves over time.

Incrementality: As argued in e.g. [17], human speakers process dialogues in-
crementally, by gradually refining their interpretation of what is being said (and
producing appropriate responses) on the basis of small units of content. To emu-
late such a behaviour in a dialogue system, one needs the ability to chain together
such small units and revise/revoke some of these units whenever necessary. In-
cremental content can be expressed in our framework through a special PREVIOUS
relation connecting together consecutive units, and be revoked by deleting the
content along with all nodes derived from it2.

Contextual knowledge: Finally, dialogue systems often need to access back-
ground knowledge to fulfil their tasks. One important benefit of graph-centric
dialogue management is the fact that such background knowledge can often be
conveniently encoded as a knowledge graph and be queried using the same syntax
as other dialogue management operations (as shown in our case study).

3.2 Graph operations

Each dialoguemanagementmodule listens for notifications of changes in the dialogue
state and (when necessary) outputs further updates in the form of graph queries (see
Fig 1). Those modules can be implemented in several ways:

1. The simplest method is to write a graph query associating a given condition to a
state update. For instance, the rule below specifies that, if an utterance mentions
an entity named G and our knowledge graph includes a person whose full name
starts with G, a REFERS_TO edge can be created between the two3:

MATCH (mention:EntityMention), (person_in_kb:Person)
WHERE person_in_kb.name STARTS WITH mention.name
CREATE (mention)-[:REFERS_TO]->(person_in_kb);

2 This functionality is, however, limited to incremental units with a relatively modest throughput,
and is not appropriate for handling high-frequency events (as is the case for e.g. audio data).
3 For simplicity, we ignore here how to handle ambiguous references with multiple potential targets.



6 Nicholas Walker, Torbjørn Dahl and Pierre Lison

Expressing state updates directly through graph queries allows us to leverage the
expressive power of the Cypher language to detect complex graph patterns.

2. Alternatively, one can produce graph updates directly through Python code. Each
module has read access to the dialogue state (again through graph queries executed
onto the current dialogue state) to extract the inputs necessary for inference, and
outputs a list of update queries in the form of CREATE, MERGE, SET or DELETE
commands. Modules can notably take advantage of machine learning models and
output probabilistic predictions that are then used to update the graph.

4 Case study

We used a simple human–robot interaction scenario to showcase how the proposed
dialogue management framework can be applied in practice. The robot objective was
to function as an automated receptionist, and more specifically (1) answer questions
related to the availability of various researchers as well as (2) accompany visitors to
a few selected places on the current office floor.

We relied on a knowledge graph storing the calendar data of all researchers to
answer questions related to the whereabouts of each person. We use a Pepper robot
as platform, along with Google Speech for speech recognition and the TTS engine
embedded in Pepper. For NLU, we used a neural intent classifier and entity extractor
with a pretrained model from Rasa [4] fine-tuned with a small list of domain-
specific examples. Once a new Intent is added to the graph, the rest of the dialogue
management process is implemented through graph queries.

A step-by-step example of such process is illustrated in Fig. 2. Due to space
constraints, we only provide a high-level description of each update, but the detailed
list of graph queries employed to perform each operation is available at:
https://github.com/NorskRegnesentral/GraphDial.

5 Conclusion

This short paper presented ongoing work on a novel, graph-centric approach to
dialogue management in which dialogue state tracking and action selection are
viewed as graph manipulation problems. The dialogue state is represented as a
property graph. Our case study demonstrates the utility and feasibility of a graph-
centric dialogue management system in a human–robot interaction setting.

Along with the further development of the system architecture (and its release
as an open-source toolkit), future work will concentrate on scaling up the case
study with a larger set of intents and system responses, and on conducting a proper
evaluation of the resulting platform. We also aim to investigate how to integrate
graph neural networks into the architecture, as those types of neural models are
ideally suited to exploit the relational structure expressed in the state graph.

https://github.com/NorskRegnesentral/GraphDial


Dialogue Management as Graph Transformations 7

Fig. 2: Illustration of graph operations upon a new user utterance "Where is John?"
Step 1: The speech recogniser recognises a new utterances and inserts in the di-
alogue graph one new HumanUtterance node (with various information such as
timestamps etc.), along with one ASRHypothesis node attached to it.
Step 2: The NLU module is notified of this utterance and classifies it as a new
request_person_location intent, along with the person mention "John".
Step 3: The mention "John" is connected to a person entity "John Doe" in the knowl-
edge graph through a simple reference resolution rule (see Section 3.2)
Step 4: Another rule detects the presence of a request_person_location intent con-
nected to a person with a known location, and produces inform_person_location as
possible response with high utility. This response is then selected by another rule
selecting the response with highest utility among possible candidates.
Step 5: This response triggers the creation of a RobotUtterance with the Person
and Location as arguments. This utterance is picked up by speech synthesis.

References

[1] Faruk Akgul. 2013. ZeroMQ. Packt Publishing.
[2] James Allen, Donna Byron, Myroslava Dzikovska, George Ferguson, Lucian

Galescu, and Amanda Stent. 2000. An architecture for a generic dialogue shell.
Natural Language Engineering, 6(3–4):213–228.

[3] Jacob Andreas, John Bufe, David Burkett, Charles Chen, Josh Clausman, Jean
Crawford, Kate Crim, Jordan DeLoach, Leah Dorner, Jason Eisner, et al. 2020.
Task-oriented dialogue as dataflow synthesis. Transactions of the Association
for Computational Linguistics, 8:556–571.

[4] Tom Bocklisch, Joey Faulkner, Nick Pawlowski, and Alan Nichol. 2017.
Rasa: Open source language understanding and dialogue management. CoRR,
abs/1712.05181.

[5] Lu Chen, Boer Lv, Chi Wang, Su Zhu, Bowen Tan, and Kai Yu. 2020. Schema-
guided multi-domain dialogue state tracking with graph attention neural net-
works. In Proc. of AAAI, volume 34, pages 7521–7528.

[6] Lu Chen, Bowen Tan, Sishan Long, and Kai Yu. 2018. Structured dialogue
policy with graph neural networks. In Proc. 27th International Conference on
Computational Linguistics, pages 1257–1268.

[7] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias
Lindaaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer,

https://doi.org/10.1017/S135132490000245X
http://arxiv.org/abs/1712.05181
https://doi.org/10.1609/aaai.v34i05.6250
https://doi.org/10.1609/aaai.v34i05.6250
https://doi.org/10.1609/aaai.v34i05.6250
https://aclanthology.org/C18-1107
https://aclanthology.org/C18-1107


8 Nicholas Walker, Torbjørn Dahl and Pierre Lison

and Andrés Taylor. 2018. Cypher: An evolving query language for property
graphs. In Proc. 2018 International Conference on Management of Data,
SIGMOD ’18, page 1433–1445. Association for Computing Machinery.

[8] Marjan Ghazvininejad, Chris Brockett, Ming-Wei Chang, Bill Dolan, Jianfeng
Gao, Wen-tau Yih, and Michel Galley. 2018. A knowledge-grounded neural
conversation model. In Proc. 32nd AAAI Conference on Artificial Intelligence,
pages 5110–5117.

[9] Deepanway Ghosal, Navonil Majumder, Soujanya Poria, Niyati Chhaya, and
Alexander Gelbukh. 2019. DialogueGCN: A graph convolutional neural net-
work for emotion recognition in conversation. In Proc. EMNLP-ĲCNLP, pages
154–164.

[10] He He, Anusha Balakrishnan, Mihail Eric, and Percy Liang. 2017. Learning
symmetric collaborative dialogue agents with dynamic knowledge graph em-
beddings. In Proc. 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1766–1776.

[11] Kristiina Jokinen. 2009. Constructive Dialogue Modelling: Speech Interaction
and Rational Agents. Wiley-Interscience.

[12] S. Larsson and D. R. Traum. 2000. Information state and dialogue management
in the TRINDI dialogue move engine toolkit. Natural Language Engineering,
6(3-4):323–340.

[13] Lizi Liao, Le Hong Long, Yunshan Ma, Wenqiang Lei, and Tat-Seng Chua.
2021. Dialogue state tracking with incremental reasoning. Transactions of the
Association for Computational Linguistics, 9:557–569.

[14] Pierre Lison. 2015. A hybrid approach to dialogue management based on
probabilistic rules. Computer Speech & Language, 34(1):232 – 255.

[15] Jan Pichl, CTU FEE, Petr Marek, Jakub Konrád, Martin Matulík, Jan Šedivỳ,
and CTU CIIRC. 2018. Alquist 2.0: Alexa prize socialbot based on sub-
dialogue models. Alexa Prize Proceedings.

[16] Liliang Ren, Kaige Xie, Lu Chen, and Kai Yu. 2018. Towards universal
dialogue state tracking. In Proc. 2018 Conference on Empirical Methods in
Natural Language Processing, pages 2780–2786.

[17] David Schlangen and Gabriel Skantze. 2011. A general, abstract model of
incremental dialogue processing. Dialogue & Discourse, 2(1):83–111.

[18] Blaise Thomson and Steve Young. 2010. Bayesian update of dialogue state:
A POMDP framework for spoken dialogue systems. Computer Speech and
Language, 24(4):562.

[19] Jason D Williams, Antoine Raux, and Matthew Henderson. 2016. The dialog
state tracking challenge series: A review. Dialogue & Discourse, 7(3):4–33.

[20] Lingfei Wu, Yu Chen, Kai Shen, Xiaojie Guo, Hanning Gao, Shucheng Li,
Jian Pei, and Bo Long. 2021. Graph neural networks for natural language
processing: A survey. arXiv preprint arXiv:2106.06090.

[21] Shiquan Yang, Rui Zhang, and Sarah Erfani. 2020. Graphdialog: Integrating
graph knowledge into end-to-end task-oriented dialogue systems. InProc. 2020
Conference on Empirical Methods in Natural Language Processing, pages
1878–1888.

https://doi.org/10.1145/3183713.3190657
https://doi.org/10.1145/3183713.3190657
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16710
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16710
https://doi.org/10.18653/v1/D19-1015
https://doi.org/10.18653/v1/D19-1015
https://doi.org/10.18653/v1/P17-1162
https://doi.org/10.18653/v1/P17-1162
https://doi.org/10.18653/v1/P17-1162
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0470060263
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0470060263
https://doi.org/10.18653/v1/D18-1299
https://doi.org/10.18653/v1/D18-1299
https://doi.org/10.5087/dad.2011.105
https://doi.org/10.5087/dad.2011.105
https://doi.org/10.1016/j.csl.2009.07.003
https://doi.org/10.1016/j.csl.2009.07.003
http://arxiv.org/abs/2106.06090
http://arxiv.org/abs/2106.06090

	Dialogue Management as Graph Transformations
	Nicholas Walker, Torbjørn Dahl and Pierre Lison
	Introduction
	Related Work
	Approach
	Dialogue state
	Graph operations

	Case study
	Conclusion
	References
	References



