

Anonymisation models for text data:

State-of-the-art, challenges and future directions

Pierre Lison, Ildikó Pilán, David Sánchez, Montserrat Batet & Lilja Øvrelid

PrivateNLP workshop NAACL 2021

Text anonymisation?

 Access to text documents with (sensitive) personal data crucial for many scientific fields

- Medicine, social sciences, legal studies, etc.
- Consent often difficult to obtain
- Can we (semi-) automatically mask personal information from text data?

Plan

- ► What is anonymisation?
- Existing methods
- Limitations & case study
- ► Three challenges
- Sketch of future model

What is anonymisation?

(in the GDPR sense of the word)

= Complete & irreversible removal from the data of all information that may lead (directly or indirectly) to an individual being identified

But also **quasi-identifier**s that do not identify a person in isolation, but may do so when combined (with background knowledge): places, organisations, dates, demographic attributes, etc.

Must filter out all **direct identifiers**: names, bank accounts, mobile phones, etc

What is anonymisation?

(in the GDPR sense of the word)

= *Complete* & *irreversible* removal from the data of all information that may lead (*directly* or *indirectly*) to an individual being identified

- → Removal of predefined categories of entities (like done in NER) is not enough!
- ➔ Must consider how each textual element may influence the disclosure risk

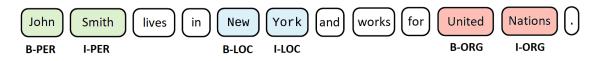
(& the remaining data utility)

NLP methods

Based on sequence labelling:

 Handcrafted patterns or neural nets + domain adaptation

```
Meystre et al. (2010)
Aberdeen et al., 2010)
Yogarajan et al. (2018)
Dernoncourt et al. (2017)
Liu et al. (2017)
Hartman et al. (2020)
```



Largest application domain: clinical data

 Notably the 2014 i2b2/UTHealth shared task (diabetic patient records) & the 2016 CEGS –NGRID shared task (psychiatric intake)

Stubbs and Uzuner (2015), Stubbs et al. (2017)

NLP methods

- + obfuscation methods to conceal particular personal attributes (gender, ethnicity, sexual orientation, etc.)
 - Either from the text itself, or from latent representations derived from it
 - Lexical substitution Reddy and Knight (2016)
 adversarial learning Elazar and Goldberg (2018)
 reinforcement learning Friedrich et al (2019)
 xu et al. (2019)
 Mosallanezhad et al. (2019)

➤ Huang et al., 2020

Privacy-preserving data publishing (PPDP)

Privacy-first approach that explicitly reasons
 over *disclosure risk* based on a *privacy model* (often *k-anonymity* and its variants)

- K-safety
- K-confusability
- ► t-plausibility
- ► C-sanitize

Chakaravarthy et al. (2008)

Cumby and Ghani (2011),

Anandan et al. (2012)

Sánchez and Batet (2016, 2017)

Privacy-preserving data publishing (PPDP)

C-sanitize:

Inputs:

- Document *d* (defined as a collection of terms)
- List of individuals/entities
 C to protect in d
- Bakground knowledge K

Output:

Edited document d' such that the remaining terms no longer identify any individual/entity in C

- Information-theoretic approach based on pointwise mutual information (PMI)
 - PMI estimated from web occurrence counts

Case study

 Task: anonymise 8
 Wikipedia biographies of famous scientists

- 5 human annotators
- 3 systems: NER, C-sanitize & Presidio
- Low agreement between the 5 annotators
 - Average of 0.68 on (binary) token decisions
 - But remember: anonymisation is a problem
 that allows for multiple solutions!

Case study

		Р	R	F_1
NER	IOB-Exact	0.5	0.49	0.47
	IOB-Partial	0.61	0.48	0.54
	Binary	0.64	0.51	0.57
Presidio	IOB-Exact	0.63	0.22	0.33
	IOB-Partial	0.74	0.24	0.36
	Binary	0.76	0.25	0.38
C-sanitise	IOB-Exact	0.51	0.66	0.57
	IOB-Partial	0.57	0.68	0.62
	Binary	0.58	0.69	0.63

Table 2: Micro-averaged scores for NER, *C*-sanitise and Presidio over all texts for annotators a1, a4, a5.

Main takeway: No method really solves the task appropriately

(see paper for details on error analysis)

Limitations

NLP methods:

- Does not remove
 enough (restricted to
 predefined categories)
- Removes too much (no account of disclosure risk)
- Focus on detection, not editing

PPDP methods:

- Documents reduced to "bags of terms"
- Restricted types of semantic inferences
- Scalability issues

Can we somehow «combine» those two families of approaches?

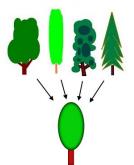
Challenge 1: inferences

- Must model how an attacker can *infer* the identity of a person by combining *text elements* with *background knowledge*
 - In C-sanitize: web co-occurrence counts
 - Good start, but far from sufficient
- Most harmful inferences in text documents are semantic (Montserrat Batet & David Sánchez, 2018)

= they are based on the actual *meaning* expressed in the texts instead of their statistical distributions

Challenge 2: masking

- Most text anonymisation methods simply «black out» text spans
 - Loss of data utility!
- Alternative: *edit* text spans instead of deleting them



- Ex: «surgeon» → «health professional»
- But how to we find the right generalisation?
- Good starting point: ontologies

(Anandan et al., 2012; Sánchez and Batet, 2016)

Challenge 3: evaluation

- Current systems often evaluated with IR-based metrics: precision, recall, F₁
- ► But not all identifiers are equally important!
 - Idea: provide separate recall measures for e.g. direct & quasi-identifiers
- Those metrics also exclusively focus on the *detection*, not the *editing*
- Human evaluations also very useful

(For instance: re-identification attacks)

