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Abstract— To interact naturally with humans, robots need
to be aware of their own surroundings. This awareness is
usually encoded in some implicit or explicit representation of
the situated context. In this paper, we present a new framework
for constructing rich belief models of the robot’s environment.
Key to our approach is the use of Markov Logic as a unified
framework for inference over these beliefs. Markov Logic is
a combination of first-order logic and probabilistic graphical
models. Its expressive power allows us to capture both the rich
relational structure of the environment and the uncertainty
arising from the noise and incompleteness of low-level sensory
data. The constructed belief models evolve dynamically over
time and incorporate various contextual information such
as spatio-temporal framing, multi-agent epistemic status, and
saliency measures. Beliefs can also be referenced and extended
“top-down” via linguistic communication. The approach is
being integrated into a cognitive architecture for mobile robots
interacting with humans using spoken dialogue.

I. INTRODUCTION

The situated context plays a central role in human-robot
interaction (HRI). To be able to interact naturally with
humans, robots needs to be aware of their own environment.
This situation awareness is generally expressed in some sort
of belief models in which various aspects of the external
reality are encoded. Such belief models provide an explicit
or implicit representation for the current state of the world,
grounded in the robot’s experience. They therefore serve
as a representational backbone for a wide range of high-
level cognitive capabilities related to reasoning, planning and
learning in complex and dynamic environments. They are
also essential for the robot to verbalise its own knowledge.

In speech-based HRI, critical tasks in dialogue under-
standing, management and production are directly depen-
dent on such belief models. Examples are context-sensitive
speech recognition [15], reference resolution and generation
in small- [11] and large-scale space [24], spoken dialogue
parsing [14] and interpretation [20], dialogue management
[23], user-tailored response generation [22], and contextually
appropriate intonation patterns [13]. Contextual knowledge is
also a prerequisite for the dynamic adaptation of the robot’s
behaviour to different environments and interlocutors [3].

Belief models are usually expressed as high level symbolic
representations merging and abstracting information over
multiple modalities. For HRI, the incorporated knowledge
might include (inter alia): entities in the visual scene, spatial
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structure, user profiles (intentional and attentional state,
preferences), dialogue histories, and task models (what is
to be done, which actions are available).

But, construction of such belief models raises two impor-
tant issues. The first question to address is how these high-
level representations can be reliably abstracted from low-
level sensory data [1], [18]. To be meaningful, most symbolic
representations should be grounded in (subsymbolic) sensory
inputs [19]. This is a difficult problem, partly because of
the noise and uncertainty contained in sensory data (partial
observability), and partly because the connection between
low-level perception and high-level symbols is typically
difficult to formalise in a general way [6].

The second issue relates to how information arising from
different modalities and time points can be efficiently merged
into unified multi-modal structures [12] and how these inputs
can refine and constrain each other to yield improved estima-
tions, over time. This is the well-known engineering problem
of multi-target, multi-sensor data fusion [5].

Belief models can thus be seen as the product of an iter-
ative process of information fusion, refinement and abstrac-
tion. Typical HRI environments are challenging to model,
being simultaneously complex, multi-agent, dynamic and
uncertain. Four requirements can be formulated:

1) HRI environments are complex and reveal a large
amount of internal structure (for instance, spatial re-
lations between entities, or groupings of objects). The
formal representations used to model them must there-
fore possess the expressive power to reflect this rich
relational structure.

2) Interactive robots are made for multi-agent settings.
Making sense of collaborative acts requires the ability
to distinguish between one’s own knowledge (what
I believe), knowledge attributed to others (what I
think the others believe), and shared common ground
knowledge (what we believe as a group).

3) Situated interactions are dynamic and evolve over time.
The incorporation of spatio-temporal framing is thus
necessary to go beyond the “here-and-now” and be ca-
pable of linking the present with (episodic) memories
of the past and anticipation of future events.

4) And last but not least, due to the partial observability of
most contextual features, it is crucial that belief models
incorporate an explicit account of uncertainties.

Orthogonal to these “representational” requirements, cru-
cial performance requirements must also be adressed. To
keep up with a continuously changing environment, all
operations on belief models (updates, queries, etc.) must be
performed under soft real-time constraints.



This paper presents ongoing work on a new approach to
multi-modal situation awareness which attempts to address
these requirements. Key to our approach is the use of a
first-order probabilistic language, Markov Logic [17], as a
unified representation formalism to perform various kind of
inference over rich, multi-modal models of context. Markov
Logic is a combination of first-order logic and probabilistic
modelling. As such, it provides an elegant account of both
the uncertainty and complexity of situated human-robot
interactions. Our approach departs from previous work such
as [9] or [18] by introducing a much richer modelling
of multi-modal beliefs. Multivariate probability distributions
over possible values are used to account for the partial
observability of the data, while the first-order expressivity
of Markov Logic allows us to consisely describe and reason
over complex relational structures. As we shall see, these
relational structures are annotated with various contextual
information such as spatio-temporal framing (where and
when is the entity assumed to exist), epistemic status (for
which agents does this belief hold), and saliency (how
prominent is the entity relative to others). Furthermore, per-
formance requirements can be addressed with approximation
algorithms for probabilistic inference optimised for Markov
Logic [17], [16]. Such algorithms are crucial to provide an
upper bound on the system latency and thus preserve its
efficiency and tractability.

The rest of this paper is structured as follows. Section II
provides a brief introduction to Markov Logic, the framework
used for belief modelling. Section III details our approach in
terms of architecture, representations, and processing opera-
tions. Section IV discusses further aspects of our approach.
Section V concludes and provides directions for future work.

II. BACKGROUND

Markov logic combines first-order logic and probabilistic
graphical models in a unified representation [17]. A Markov
logic network L is defined as a set of pairs (Fi, wi), where Fi

is a first-order formula and wi ∈ R is the associated weight
of that formula. A Markov logic network can be interpreted
as a template for constructing Markov networks, which in
turn can be used to perform probabilistic inference over the
relational structure defined by the set of formulas Fi.

A. Markov Network
A Markov network G, also known as a Markov random

field, is an undirected graphical model [10] for the joint
probability distribution of a set of random variables X =
(X1, . . . , Xn) ∈ X . The network G contains a node for
each random variable Xi. The joint probability of a Markov
network is defined as such:

P (X = x) =
1

Z

∏
k

φk(x{k}) (1)

where φk(x{k}) is a potential function mapping the state of
a clique1 k to a non-negative real value. Z is a normalization
constant (known as partition function).

1In graph theory, a clique is a fully connected subgraph. That is, a subset
of nodes where each node is connected with each other.

Alternatively, the potential function φk in (1) can be
replaced by an exponentiated weighted sum over real-valued
feature functions fj :

P (X = x) =
1

Z
e(

∑
j wjfj(x)) (2)

B. Ground Markov Network

Recall that a Markov logic network L is a set of pairs
(Fi, wi). If in addition to L we also specify a set of constants
C = {c1, c2, ..., c|C|}, one can generate a ground Markov
network ML,C as follows:

1) For each possible predicate grounding over the set C,
there is a binary node in ML,C . The value of the node
is true iff the ground predicate is true.

2) For every formula Fi, there is a feature fj for each
possible grounding of Fi over C. The value of the
feature fi(x) is 1 if Fi is true given x and 0 otherwise.
The weight of the feature corresponds to the weight wi

associated with Fi.
The graphical representation of ML,C contains a node for
each ground predicate. Furthermore, each formula Fi defines
a set of cliques j with feature fj over the set of distinct
predicates occurring in Fi. For further details see [17].

Fig. 1. Example (adapted from [17]) of a ground Markov Network ML,C

given the Markov logic network L = (∀x.P (x)∨Q(x), w) and C = {A}.
It contains a single clique with feature f . The value of f is 1 for the three
worlds (P (A), Q(A)), (¬P (A), Q(A)), (P (A),¬Q(A)). Following Eq.
(3), the probability of each of these worlds is ew/Z, where Z = ew + 1.
For the last world (¬P (A),¬Q(A)) the formula is false (f = 0) and its
probability is 1/Z (thus tending to 0 as w → ∞).

C. Inference

Once a ground Markov network ML,C is constructed, it
can be exploited to perform conditional inference over the
relational structure defined by L. Following (1) and (2), the
joint probability distribution of a ground Markov network
ML,C is given by

P (X = x) =
1

Z

∏
i

φi(x{k})
ni(x) =

1

Z
e(

∑
i wini(x)) (3)

The function ni(x) in (3) counts the number of true ground-
ings of the formula Fi in ML,C given x. Due to the nor-
malization term Z, exact inference is in general untractable.
However, efficient algorithms for probabilistic inference such
as Markov Chain Monte Carlo (MCMC) can then be used
to yield approximate solutions [16].

D. Learning

The weight wi in a Markov logic network encode the
“strength” of its associated formula Fi. In the limiting
case, where limwi→∞, the probability of a world violating
Fi has zero probability. For smaller values of the weight,
worlds violating the formula will have a low, but non-zero
probability. Weights can be learned on training samples using
classical gradient-based techniques, or sampling.



III. APPROACH

We now describe our approach to belief modelling for
situation awareness. We detail the architecture in which our
system is integrated, the representations we used and the
processing components operating on them.

A. Architecture

Our approach is being developed as part of a distributed
cognitive architecture for autonomous robots in open-ended
environments [8]. The architecture has been applied to vari-
ous scenarios such as visual learning and object manipulation
in a tabletop scene [21] and exploration of indoor environ-
ments for human-augmented mapping [7].

Our approach to rich multi-modal belief modelling is
implemented in a specific module called the “binder” [9].
The binder is directly connected to all subsystems in the
architecture (i.e. vision, navigation, manipulation, etc.), and
serves as a central hub for the information gathered about the
environment. The core of the binder system is a shared work-
ing memory where beliefs are formed and refined based on
incoming perceptual inputs. Fig. 2 illustrates the connection
between the binder and the rest of the architecture.

B. Representation of beliefs

Each unit of information describing an entity2 is expressed
as a probability distribution over a space of alternative
values. These values are formally expressed as propositional
logical formulae. Such unit of information is called a belief.

Beliefs are constrained both spatio-temporally and epis-
temically. They include a frame stating where and when the
described entity is assumed to exist, and an epistemic status
stating for which agent(s) the belief content holds. Finally,
beliefs are also given an ontological category used to sort the
various belief types. Examples of such ontological categories
are person, place or visualobject.

Formally, a belief is a tuple 〈i, e, σ, c, δ〉, where i is
the belief identifier, e is an epistemic status, σ a spatio-
temporal frame, c an ontological category, and δ is the
belief content itself. The content δ is typically defined by
a list of features. For each feature, we have a (continuous
or discrete) distribution over alternative values. Fig. 3(a)
provides a schematic illustration of a belief.

In addition, beliefs also contain bookkeeping information
detailing the history of their formation. This is expressed
as pointers to the belief ancestors (i.e. the beliefs which
contributed to the emergence of this particular belief) and
offspring (the ones which themselves emerged out of it).

The spatio-temporal frame σ defines a a probability dis-
tribution over the existence of the entity in a given temporal
and spatial domain. The frame can for instance express that
a particular visual object is thought to exist (with a given
probability) in the world at a location l and in a temporal
interval [t1, t2].

The epistemic status e for an agent a can be either:

2The term “entity” should be understood here in a very general sense.
An entity can be an object, a place, a landmark, a person, etc.
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Fig. 2. Schema of the cognitive architecture in relation with the binder
system and its working memory

• private: denoted {a}, is a result of agent a’s perception
of the environment;

• attributed: denoted {a[b1, ..., bn]}, is a’s conjecture
about the mental states of other agents b1, ..., bn, usually
resulting from communicative acts.

• shared: denoted {a1, ..., am}, is information which is
part of the common ground for the group [2].

As a brief illustration, assume a belief bi defined as

〈i, {robot}, σi, visualobject, δi〉 (4)

where the spatio-temporal frame σi can be a normal distri-
bution over 3D space combined with a temporal interval:

σi = (N3(µ,Σ), [t1, t2]) (5)

and with the content δi being composed of two features:

〈LABEL〉 = {(mug, 0.7), (Unknown, 0.3)} (6)
〈COLOUR〉 = {(red, 0.8), (orange, 0.2)} (7)

Note that the probability distributions between features are
by default assumed to be conditionally independent.

Feature values can be either discrete (as for categorical
knowledge) or continuous (as for real-valued measures). A
feature value can also be a pointer to another formula:

〈LOCATION〉 k (8)

where k points to another belief (using its unique identifier).
Such pointers are crucial to capture relational structures
between entities.

Converting the probability distribution δ into Markov
Logic is relatively straightforward. Modal operators are
translated into first-order predicates and nominals into con-
tants. A (sub-)formula 〈COLOUR〉 blue with probability p1
for a belief i is therefore expressed as:

w1 Colour(I1, I2) ∧ Blue(I2) (9)

where the weight w1 = log
p1

1− p1
.
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Ontological category:     visual object
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(a) Schematic view of a belief representation.
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Fig. 3. Rich belief modelling for HRI: representations (left) and processing (right).

C. Levels of beliefs

The beliefs constructed and refined in the binder can be of
different types. The number and nature of these types depend
on the application domain. We discuss here four levels which
are common for cognitive robotic architectures:

1) The lowest-level type of beliefs is the percept, which
is a uni-modal representation of a given entity in
the environment. Perceptual beliefs are inserted onto
the binder by the various subsystems included in the
architecture. The epistemic status of a percept is private
per default, and the temporal frame is constrained to
the present time-point.

2) If several percepts (from distinct modalities) are as-
sumed to originate from the same entity, they can be
grouped into a percept union. A percept union is just
another belief, whose content is the combination of all
the features from the included percepts.

3) The features of a percept union can be abstracted using
multi-modal fusion and yield a multi-modal belief.

4) If the current multi-modal belief (which is constrained
to the present spatio-temporal frame) is combined
with beliefs encoded in past or future spatio-temporal
frames, it forms a temporal union.

5) Finally, the temporal unions can be refined over time
to improve the estimations, leading to a stable belief,
which is both multi-modal and spans an extended
temporal frame.

Since beliefs can point to each other, such models are
able to capture relational structures of arbitrary complexity.
Beliefs can also express past or future knowledge (i.e.
memories and anticipations). That is, beliefs need not be
directly grounded in the “here-and-now” observations.

D. Iterative belief refinement

We now turn our attention to the way stable beliefs can be
constructed bottom-up from the initial input provided by the
perceptual beliefs. The formation of stable beliefs proceeds
in four consecutive steps: (1) perceptual grouping, (2) multi-

modal fusion, (3) tracking and (4) temporal smoothing. Fig.
3(b) provides a graphical illustration of this process.

1) Perceptual grouping: The first step is to decide which
percepts from different modalities belong to the same real-
world entity, and should therefore be grouped into a belief.
For a pair of two percepts p1 and p2, we infer the likelihood
of these two percepts being generated from the same under-
lying entity in the real-world. This is realised by checking
whether their respective features correlate with each other.

The probability of these correlations are encoded in a
Markov Logic Network. The formulae might for instance ex-
press a high compatibility between the haptic feature “shape:
cylindrical” and the visual feature “object: mug” (since most
mugs are cylindrical), but a very low compatibility between
the features “shape: cylindrical” and “object: ball”. Eq. 10
illustrates the correlation between the cylindrical shape (Cyl)
and the object label “mug” (Mug).

wi ∃i, j Shape(x, i) ∧ Cyl(i) ∧
Label(y, j) ∧ Mug(j)→ Corri(x, y) (10)

A grouping of two percepts will be given a high probability if
one or more feature pairs correlate with each other, and there
are no incompatible feature pairs. This process is triggered
at each insertion or update of percepts. Its outcome is a
probability distribution over possible percept unions. It is
worth noting that the outlined mechanism is more expressive
than a Bayesian Network, since Markov Logic Networks
are able to express dependencies between arbitrary relational
structures, and not only between atomic primitives.

2) Multi-modal fusion: We want multi-modal beliefs to go
beyond the simple superposition of isolated modal contents.
Multi-modal information should be fused. In other words,
the modalities should co-constrain and refine each other,
yielding new multi-modal estimations which are globally
more accurate than the uni-modal ones. We are not talking
here about low-level fusion on a metric space, but about
fusion based on conceptual structures. These approaches
should be seen as complementary with each other.



Multi-modal fusion is also specified in a Markov Logic
Network. As an illustration, assume a multi-modal belief B
with a predicate Position(B, loc) expressing the positional
coordinates of an entity, and assume the value loc can be
estimated via distinct modalities a and b by way of two
predicates Position(a)(U, loc) and Position(b)(U, loc)
included in a percept union U.

wi Position(a)(U, loc)→ Position(B, loc) (11)
wj Position(b)(U, loc)→ Position(B, loc) (12)

The weights wi and wj specify the relative confidence of the
modality-specific measurements.

3) Tracking: Environments are dynamic and evolve over
time – and so should beliefs. Analogous to perceptual
grouping which seeks to bind observations over modalities,
tracking seeks to bind beliefs over time. Both past beliefs
(memorisation) and future beliefs (anticipation) are consid-
ered. The outcome of the tracking step is a distribution over
temporal unions, which are combinations of beliefs from
different spatio-temporal frames.

The Markov Logic Network for tracking works as follows.
First, the newly created belief is compared to the already
existing beliefs for similarity. The similarity of a pair of
beliefs is based on the correlation of their content (and spatial
frame), plus other parameters such as the time distance
between beliefs. If two beliefs B1 and B2 turn out to be
similar, they can be grouped in a temporal union U whose
temporal interval is defined as [start(B1), end(B2)].

4) Temporal smoothing: Finally, temporal smoothing is
used to refine the estimates of the belief content over time.
Parameters such as recency have to be taken into account,
in order to discard outdated observations.

The Markov Logic Network for temporal smoothing is
similar to the one used for multi-modal fusion:

wi Position(t-1)(U, loc)→ Position(B, loc) (13)
wj Position(t)(U, loc)→ Position(B, loc) (14)

IV. EXTENSIONS

A. Salience modelling

The belief formula of an entity usually contains a specific
feature representing its salience. The salience value gives an
estimate of the “prominence” or quality of standing out of
a particular entity relative to neighboring ones. It allows us
to drive the attentional behaviour of the agent by specifying
which entities are currently in focus.

In our model, the salience is defined as a real-valued
measure which combines several perceptual measures such as
the object size and its linear and angular distances relative to
the robot. During linguistic interaction, these perceptual mea-
sures can be completed by measures of linguistic saliency,
such as the recency of the last reference to the object.

The salience being real-valued, its probability is defined
as a probability density function.

Percept p2 Percept p3Percept p1

Belief b2 Belief b3Belief b1

Reference r1

P=0.01

P=0.92

P=0.02

Asserted 
formula a1

link

“ this is yellow ” 
this yellow

Fig. 4. An utterance such as “This is yellow” illustrates the two mechanisms
of referencing and belief extension. First, the expression “this” is resolved
to a particular entity. Since “this” is a (proximal) deictic, the resolution
is performed on basis of saliency measures. The belief B2 is selected as
most likely referent. Second, the utterance also provides new information –
namely that the object is yellow. This asserted content must be incorporated
into the robot’s beliefs. This is done by constructing a new belief which is
linked (via a pointer) to the one of the referred-to entity.

B. Referencing beliefs

Beliefs are high-level symbolic representations available
for the whole cognitive architecture. As such, they provide
an unified model of the environment which can be used
during interaction. An important aspect of this is reference
resolution, which connects linguistic expressions such as
“this box” or “the ball on the floor” to the corresponding be-
liefs about entities in the environment. Reference resolution
is performed via a Markov Logic Network specifying the
correlations between the linguistic constraints of the referring
expression and the belief features (in particular, the entity
saliency and its associated categorical knowledge).

Formula (15) illustrates the resolution of a referring ex-
pression R containing the linguistic label “mug” to a belief
B which includes a label feature with value Mug:

wi ∃i, j Label(B, i) ∧ Mug(j) ∧
Ref(R, j) ∧ Mug(j)→ Resolve(R, B) (15)

The resolution process yields a probability distribution over
alternative referents, which is then retrieved by the commu-
nication subsystem for further interpretation.

C. Asserting new information

In Section III-D, we described how beliefs can be formed
from percepts, bottom-up. When dealing with cognitive
robots able to reflect on their own experience, anticipate
possible events, and communicate with humans to improve
their understanding, beliefs can also be manipulated “top-
down” via high-level cognitive functions such as reasoning,
planning, learning and interacting.

We concentrate here on the question of belief extension via
interaction. In addition to simple reference, interacting with
a human user can also provide new content to the beliefs.
Using communication, the human user can directly extend
the robot’s current beliefs, in a top-down manner, without



altering the incoming percepts. The epistemic status of this
information is attributed. If this new information conflicts
with existing knowledge, the agent can decide to trigger a
clarification request to resolve the conflict.

Fig. 4 provides an example of reference resolution coupled
with a belief extension.

D. Belief filtering

Techniques for belief filtering are essential to keep the
system tractable. Given the probabilistic nature of the frame-
work, the number of beliefs is likely to grow exponentially
over time. Most of these beliefs will have a near-zero
probability. A filtering system can effectively prune such
unecessary beliefs, either by applying a minimal probability
threshold on them, or by maintaining a fixed maximal
number of beliefs in the system at a given time. Naturally,
a combination of both mechanisms is also possible.

In addition to filtering techniques, forgetting techniques
could also improve the system efficiency [4].

V. CONCLUSION

In this paper, we presented a new approach to the con-
struction of rich belief models for situation awareness. These
beliefs models are spatio-temporally framed and include
epistemic information for multi-agent settings. Markov Logic
is used as a unified representation formalism, allowing us
to capture both the complexity (relational structure) and
uncertainty (partial observability) of typical HRI domains.

The implementation of the approach outlined in this paper
is ongoing. We are using the Alchemy software3 for efficient
probabilistic inference. The binder system revolves around
a central working memory where percepts can be inserted,
modified or deleted. The belief model is automatically up-
dated to reflect the incoming information.

Besides the implementation, future work will focus on
three aspects. The first aspect pertains to the use of machine
learning techniques to learn the model parameters. Using
statistical relational learning techniques and a set of training
examples, it is possible to learn the weights of a given
Markov Logic Network [17]. The second aspect concerns the
extension of our approach to non-indexical epistemic knowl-
edge –i.e. the representation of events, intentions, plans, and
general knowledge facts. Finally, we want to evaluate the
empirical performance and scalability of our approach under
a set of controlled experiments.
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