Visualizing in R - advanced plotting

Norsk statistikermøte, Halden, 10. juni 2013

Elisabeth Orskaug
Thordis Thorarinsdottir

Norsk Regnesentral

2. Displaying multivariate data

- Scatterplots and pairwise scatter plots
- Parallel coordinate plots

A classic bivariate example

Marginal distributions add information value

We use a 2×2 layout for this plot

```
pdf(...)
zones=matrix(c(2,0,1,3), ncol=2, byrow=TRUE)
layout(zones, widths=c(4/5,1/5), heights=c (1/5,4/5))
limit <- c(58,79)
fhist = hist(father.son$fheight, breaks=58:79, plot=FALSE)
shist = hist(father.son$sheight, breaks=58:79, plot=FALSE)
top = max(c(shist$counts, fhist$counts))
par(mar=c (4,4,1,1))
plot(father.son, xlim=limit, ylim=limit, cex=0.5,
    xlab="Height of father (in)", ylab="Height of son (in)")
abline(a=0, b=1)
par(mar=c (0,4,1,1))
barplot(fhist$counts, axes=FALSE, ylim=c(0, top), space=0)
par(mar=c(4,0,1,1))
barplot(shist$counts, axes=FALSE, xlim=c(0, top), space=0,
    horiz=TRUE)
dev.off()
```


In higher dimensions, we use pairwise scatterplots

We only need one panel

pairs(iris[1:4],
upper. panel=NULL, col=iris\$Species)

Marginal histograms can be added

```
panel.hist <- function(x, ...)
{
    usr <- par("usr")
    on.exit(par(usr))
    par(usr = c(usr[1:2], 0, 1.5) )
    h <- hist(x, plot = FALSE)
    breaks <- h$breaks
    nB <- length(breaks)
    y <- h$counts
    y <- y/max(y)
    rect(breaks[-nB], 0,
        breaks[-1], y)
}
pairs(iris[1:4], col=iris$Species,
    cex = 0.5, pch = 24,
    diag.panel = panel.hist,
    upper.panel=NULL)
```


Norsk
Regnesentral

We can include the correlation

```
panel.cor <- function(x, y,
    digits = 2,
    prefix = "")
{
    usr <- par("usr")
    on.exit(par(usr))
    par(usr = c(0, 1, 0, 1))
    r <- abs(cor(x, y))
    txt <- format(c(r, 0.123456789),
        digits = digits)[1]
    txt <- pasteO(prefix, txt)
    cex.cor <- 0.8/strwidth(txt)
    text(0.5, 0.5, txt,
        cex = cex.cor * r)
}
pairs(iris[1:4],
    upper.panel = panel.cor)
```


$\begin{array}{lllll}0.5 & 1.0 & 1.5 & 2.0 & 2.5\end{array}$

Alternatively, we can use ggpairs()


```
library(GGally)
ggpairs(iris, colour="Species", axisLabels="none")
```


Large tables are cumbersome, especially in presentations
 Section 2.2

	Regional Score				Local Score		
Model	A	B	C		A	B	C
1	9.73	144.9	0.000		8.34	99.7	0.000
2	10.04	161.3	0.364		8.96	120.0	0.678
3	9.74	145.2	0.021		8.39	100.4	0.060
4	9.74	145.2	0.029		8.41	100.7	0.087
5	9.75	145.2	0.074		8.44	100.6	0.134
6	9.80	148.4	0.089		8.72	111.0	0.437
7	9.92	154.3	0.234		8.92	117.5	0.678
8	9.74	146.3	0.132		8.65	106.8	0.450
9	9.81	145.2	0.136		8.91	119.8	0.731
10	10.21	162.9	0.536		9.23	126.1	1.081
11	9.92	152.5	0.172		8.75	111.2	0.423
12	11.23	268.1	2.409		14.03	292.9	4.073
13	10.07	167.1	0.486		8.97	127.7	0.873
14	9.81	147.8	0.128		8.55	106.9	0.352
15	10.15	159.1	0.389		9.08	120.8	0.967
16	9.75	145.5	0.131		8.99	119.9	0.779
17	9.75	145.2	0.062		8.92	115.7	0.605
18	10.47	181.5	0.842		9.23	139.5	1.239
19	10.14	157.2	0.416		8.94	121.0	0.817
20	9.76	147.6	0.065		8.66	109.0	0.510

Parallel coordinate plot offers a graphical view

The code is very simple

```
library(MASS)
pdf(...)
par(mar=c (5,4,4,8)+0.1, xpd=TRUE)
parcoord(scores, lty=lines, col=colors, var.label=TRUE)
legend("topright", inset=c(-0.2,0), legend=c(1:20), lty=lines,
    col=colors, title="Models")
dev.off()
```

scores is a data frame with 20 lines and 6 columns, where the column names are "Reg A", "Reg B",...

